Skip to main content

Advertisement

Log in

Carbon nanotubes/reduced graphene oxide composites as electrode materials for supercapacitors

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNTs)/graphene composite fiber has become an encouraging material for the construction of wearable supercapacitors due to its excellent performance. CNTs/reduced graphene oxide (RGO) composite fibers with large specific surface area were prepared by CVD method using alginic acid (Alg)/graphene oxide (GO) fibers with Ni ions uniformly loaded, the structure and electrochemical performance were investigated. Flexible Alg/GO fiber with diameters of 45 to 125 μm were fabricated by dry-jet wet spinning or wet spinning. CNTs/RGO composite fibers with hollow CNTs in diameters of 150 to 500 nm, which were fabricated by CVD method using Ni as catalyst, exhibited a specific surface area of 366.98 m2 g−1. Electrochemical analysts indicated that the fibers exhibited excellent specific capacitance of 267.8 F g−1 for double-layer capacitors and 49.3 F g−1 for symmetrical capacitors, which implied that the porous composite fiber with large specific surface area is a potential electrode material for fabricating flexible energy storage device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T. Esawy, M. Khairy, A. Hany, M.A. Mousa, Flexible solid-state supercapacitors based on carbon aerogel and some electrolyte polymer gels. Appl. Phys. A 124, 566 (2018)

    ADS  Google Scholar 

  2. J.A. Rogers, T. Someya, Y.G. Huang, Materials and mechanics for stretchable electronics. Science 327(5973), 1603–1607 (2010)

    ADS  Google Scholar 

  3. Z.J. Fan, J. Yan, L.J. Zhi, Q. Zhang, T. Wei, J. Feng, M.L. Zhang, W.Z. Qian, F. Wei, A three-dimensional carbon nanotube/graphene sandwich and its application as electrode in supercapacitors. Adv. Mater. 22(33), 3723–3728 (2010)

    Google Scholar 

  4. M. Reina, A. Scalia, G. Auxilia, M. Fontana, F. Bella, S. Ferrero, A. Lamberti, Boosting electric double layer capacitance in laser-induced graphene-based supercapacitors. Adv. Sustain. Syst. (2021). https://doi.org/10.1002/adsu.202100228

    Article  Google Scholar 

  5. Q. Wang, W. Chen, C.Y. Zhao, Z.Y. Li, Analysis of overpotential in discharge process associated with precipitation for vanadium-manganese flow battery. J Power Sour. 517, 230717 (2022)

    Google Scholar 

  6. M.A.A.M. Abdah, M. Mokhtar, L.T. Khoon, K. Sopian, N.A. Dzulkurnain, A. Ahmad, Y. Sulaiman, F. Bella, M.S. Suait, Synthesis and electrochemical characterizations of poly(3,4-ethylenedioxythiophene/manganese oxide coated on porous carbon nanofibers as a potential anode for lithium-ion batteries. Energy Rep. 7, 8677–8687 (2021)

    Google Scholar 

  7. J. Amici, C. Torchio, D. Versaci, D. Dessantis, A. Marchisio, F. Caldera, F. Bella, C. Francia, S. Bodoardo, Nanosponge-based composite gel polymer electrolyte for safer Li-O2 batteries. Polymers-Basel 13(10), 1625 (2021)

    Google Scholar 

  8. G. Piana, M. Ricciard, F. Bella, R. Cucciniello, A. Proto, C. Gerbaldi, Poly(glycidyl ether)s recycling from industrial waste and feasibility study of reuse as electrolytes in sodium-based batteries. Chem. Eng. J. 382, 122934 (2022)

    Google Scholar 

  9. J.R. Kang, R. Gu, X. Guo, J. Li, H.C. Sun, L.Y. Zhang, R.Y. Jing, L. Jin, X.Y. Wei, Effect of SnO–P2O5–MgO glass addition on the ionic conductivity of Li1.3Al0.3Ti1.7(PO4)3 solid electrolyte. Ceram. Int. 48(1), 157–163 (2022)

    Google Scholar 

  10. S.Y. Lee, J.Y. Park, H.J. Kim, Y.S. Lee, Y.I. Park, Prussian blue-graphene oxide composite cathode for a sodium-ion capacitor with improved cyclic stability and energy density. J. Alloy Compd 249, 162952 (2020)

    Google Scholar 

  11. C. Hao, X.K. Wang, X.L. Wu, Y.N. Guo, L.L. Zhu, X.H. Wang, Composite material CCO/Co-Ni-Mn LDH made from sacrifice template CCO/ ZIF-67 for high-performance supercapacitor. Appl Surf Sci 572, 151373 (2022)

    Google Scholar 

  12. S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature 442, 282–286 (2006)

    ADS  Google Scholar 

  13. E.E. Miller, Y. Hua, H. Tezel, Materials for energy storage: review of electrode materials and methods of increasing capacitance for supercapacitors. J Energy Storage 20, 30–40 (2018)

    Google Scholar 

  14. Y.W. Zhu, S. Murali, W.W. Cai, X.S. Li, J.W. Suk, J.R. Potts, R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater 22(46), 3906–3924 (2010)

    Google Scholar 

  15. V.C. Tung, L.M. Chen, M.J. Allen, J.K. Wassei, K. Nelson, R.B. Kaner, Y. Yang, Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors. Nano. Lett. 9(5), 1949–1955 (2009)

    ADS  Google Scholar 

  16. Y.B. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438(7065), 201–204 (2005)

    ADS  Google Scholar 

  17. D.H. Youn, J.W. Jang, J.Y. Kim, J.S. Jang, S.H. Choi, J.S. Lee, Fabrication of graphene-based electrode in less than a minute through hybrid microwave annealing. Sci Rep 4, 5492 (2014)

    Google Scholar 

  18. V. Varshney, S.S. Patnaik, A.K. RoY, G. Froudakis, B.L. Farmer, Modeling of thermal transport in pillared-graphene architectures. ACS Nano. 4(2), 1153–1161 (2010)

    Google Scholar 

  19. Q.Q. Zhang, X.S. Han, J.W. Pu, Formaldehyde adsorption composite paper with nacre-inspired structure and high mechanical strength properties. Appl. Phys. A 125, 453 (2019)

    ADS  Google Scholar 

  20. B. Chen, E.Z. Liu, T.T. Cao, F. He, C.S. Shi, C.N. He, L.Y. Ma, Q.Y. Li, J.J. Li, N.Q. Zhao, Controllable graphene incorporation and defect engineering in MoS2-TiO2 based composites: towards high-performance lithium-ion batteries anode materials. Nano Energy 33, 247–256 (2017)

    Google Scholar 

  21. T. Hoshide, Y.C. Zheng, J.Y. Hou, Z.Q. Wang, Q.W. Li, Z.G. Zhao, R.Z. Ma, T. Sasaki, F.X. Geng, A flexible lithium-ion fiber battery by the regular stacking of two-dimensional titanium oxide nanosheets hybridized with reduced graphene oxide. Nano. Lett. 17(6), 3543–3549 (2017)

    ADS  Google Scholar 

  22. Y. Liang, F. Zhao, Z.H. Cheng, Q.H. Zhou, H.B. Shao, L. Jiang, L.T. Qu, Self-powered wearable graphene fiber for information expression. Nano Energy 32, 329–335 (2017)

    Google Scholar 

  23. X.Y. Wang, W. Wang, G. Lowry, X.Y. Li, Y.J. Guo, T.L. Li, Preparation of palladized carbon nanotubes encapsulated iron composites: highly efficient dechlorination for trichloroethylene and low corrosion of nanoiron. Roy Soc. Open Sci. 5(6), 172242 (2018)

    ADS  Google Scholar 

  24. T. Sathvika, S. Amitesh, S. Kriti, M. Paraneeth, M. Mudaliyar, V. Rajesh, N. Rajesh, Potential application of saccharomyces cerevisiae and rhizobium immobilized in multi walled carbon nanotubes to adsorb hexavalent chromium. Sci. Rep. 8(1), 9862 (2018)

    ADS  Google Scholar 

  25. Y.S. Kim, K. Kumar, F.T. Fisher, E.H. Yang, Out-of-plane growth of CNTs on graphene for supercapacitor applications. Nanotechnology 23(1), 015301 (2012)

    ADS  Google Scholar 

  26. L. Jiang, Q. Jiang, Q.Q. Liu, J.Q. Peng, Y.K. Gao, Z.H. Duan, A.L. Hu, X.Y. Lu, Preparation of CNT/RGO macroscopic body by partially stripping CNT and its energy storage performances. Diam. Relat. Mater 88, 1–5 (2018)

    ADS  Google Scholar 

  27. W. Wang, S.R. Guo, M. Penchev, I. Ruiz, K.N. Bozhilov, D. Yan, M. Ozkan, C.S. Ozkan, Three dimensional few layer graphene and carbon nanotube foam architectures for high fidelity supercapacitors. Nano Energy 2(2), 294–303 (2013)

    Google Scholar 

  28. Y.H. Xue, Y. Ding, J.B. Niu, Z.H. Xia, A. Roy, H. Chen, J. Qu, Z.L. Wang, L. Dai, Rationally designed graphene-nanotube 3D architectures with a seamless nodal junction for efficient energy conversion and storage. Sci. Adv. 1(8), 1400198 (2015)

    ADS  Google Scholar 

  29. I. Sengupta, S. Chakraborty, M. Talukdar, S.K. Pal, S. Chakraborty, Thermal reduction of graphene oxide: how temperature influences purity. J. Mater Res. 33(23), 1–10 (2018)

    Google Scholar 

  30. J.K. Ou, L. Yang, F. Jin, S.G. Wu, J.Y. Wang, High performance of LiFePO4 with nitrogen-doped carbon layers for lithium ion batteries. Adv. Powder Technol 31(3), 1220–1228 (2020)

    Google Scholar 

  31. Z. Xu, C. Gao, Graphene chiral liquid crystals and macroscopic assembled fibres. Nat. Commun. 2, 571 (2011)

    ADS  Google Scholar 

  32. Z. Xu, H.Y. Sun, X.L. Zhao, C. Gao, Ultrastrong fibers assembled from giant graphene oxide sheets. Adv. Mater. 25(2), 188–193 (2013)

    Google Scholar 

  33. Z.P. Yang, W. Zhao, Y. Niu, Y.T. Zhang, L.B. Wang, W.J. Zhang, X. Xiang, Q.W. Li, Direct spinning of high-performance graphene fiber supercapacitor with a three-ply core-sheath structure. Carbon 132, 241–248 (2018)

    Google Scholar 

  34. H.L. Zhang, L. Quan, F.J. Shi, C.Q. Li, H.Q. Liu, L.H. Xu, Rheological behavior of amino-functionalized multi-walled carbon nanotube/polyacrylonitrile concentrated solutions and crystal structure of composite fibers. Polymers 10(2), 186 (2018)

    Google Scholar 

  35. L.H. Quan, H.L. Zhang, L.H. Xu, Orientation and thermal properties of carbon nanotube/polyacrylonitrile nascent composite fibers. J Polym Res 22, 121 (2015)

    Google Scholar 

  36. J.L. Jiang, Y.L. Li, C.T. Gao, N.D. Kim, X.J. Fan, G. Wang, Z.W. Peng, R.H. Hauge, J.M. Tour, Growing carbon nanotubes from both sides of graphene. ACS Appl. Mater. Inter. 8(11), 7356–7362 (2016)

    Google Scholar 

  37. J.B. Niu, M.T. Li, W. Choi, L.M. Dai, Z.H. Xia, Growth of junctions in 3D carbon nanotube-graphene nanostructures: a quantum mechanical molecular dynamic study. Carbon 67(2), 627–634 (2014)

    Google Scholar 

  38. J. Chen, Y. Zhang, M. Zhang, B.W. Yao, Y.R. Li, L. Huang, C. Li, G.Q. Shi, Water-enhanced oxidation of graphite to graphene oxide with controlled species of oxygenated groups. Chem. Sci. 7, 1874–1881 (2016)

    Google Scholar 

  39. J. Chen, K.X. Sheng, P.H. Luo, C. Li, G.Q. Shi, Graphene hydrogels deposited in nickel foams for high-rate electrochemical capacitors. Adv. Mater. 24(33), 4569–4573 (2012)

    Google Scholar 

  40. D. Dorniani, B. Saifullah, F. Barahuie, P. Arulselvan, M.Z.B. Hussein, S. Fakurazi, L.J. Twyman, Graphene oxide-gallic acid nanodelivery system for cancer therapy. Nanoscale Res. Lett. 11(1), 491 (2016)

    ADS  Google Scholar 

  41. B. Amanulla, S. Palanisamy, S.M. Chen, T.W. Chiu, V. Velusamy, J.M. Hall, T.W. Chen, S.K. Ramaraj, Selective colorimetric detection of nitrite in water using chitosan stabilized gold nanoparticles decorated reduced graphene oxide. Sci. Rep. 7, 14182 (2017)

    ADS  Google Scholar 

  42. X. Yan, F. Li, K.D. Hu, J. Xue, X.F. Pan, T. He, L. Dong, X.Y. Wang, Y.D. Wu, Y.H. Song, Nacre-mimic reinforced ag@reduced graphene oxide-sodium alginate composite film for wound healing. Sci. Rep. 7(1), 13851 (2017)

    ADS  Google Scholar 

Download references

Funding

The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanjian Tong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Cao, K., Xu, L. et al. Carbon nanotubes/reduced graphene oxide composites as electrode materials for supercapacitors. Appl. Phys. A 128, 81 (2022). https://doi.org/10.1007/s00339-021-05231-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05231-z

Keywords

Navigation