Skip to main content
Log in

Recent advances in 2D semiconductor nanomaterials for photocatalytic CO2 reduction

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

For decades, global warming and energy shortages have been two urgent problems in human society. The solar-driven photocatalytic conversion of carbon dioxide (CO2) into hydrocarbon fuels is expected to become a technology to solve these problems. Two-dimensional (2D) materials shine in the field of photocatalytic CO2 due to their layered structure, larger specific surface area, more active sites, and larger charge transfer efficiency. This article reviews the progress of CO2 reduction by several types of 2D materials in recent years. Generally, the reduction of CO2 is difficult in terms of kinetics and thermodynamics, but it is found through theoretical calculations and experiments that 2D materials have certain advantages in the reduction of CO2. Then the preparation methods of 2D materials are summarized and a variety of 2D materials are discussed and classified. Finally, an outlook on the development trend of 2D materials is made. This review aims to provide systematic and concise guidance for the design of 2D nanomaterials for photocatalytic CO2 reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almeida, R. M.; Shi, Q. R.; Gomes-Selman, J. M.; Wu, X. J.; Xue, Y. X.; Angarita, H.; Barros, N.; Forsberg, B. R.; García-Villacorta, R.; Hamilton, S. K. et al. Reducing greenhouse gas emissions of Amazon hydropower with strategic dam planning. Nat. Commun. 2019, 10, 4281.

    Google Scholar 

  2. Tyrrell, T. Chance played a role in determining whether Earth stayed habitable. Commun. Earth Environ. 2020, 1, 61.

    Google Scholar 

  3. Sorrell, S.; Gatersleben, B.; Druckman, A. The limits of energy sufficiency: A review of the evidence for rebound effects and negative spillovers from behavioural change. Energy Res. Soc. Sci. 2020, 64, 101439.

    Google Scholar 

  4. Centi, G.; Perathoner, S. Towards solar fuels from water and CO2. ChemSusChem 2010, 3, 195–208.

    CAS  Google Scholar 

  5. Fu, J. W.; Zhu, B. C.; Jiang, C. J.; Cheng, B.; You, W.; Yu, J. G. Hierarchical porous O-doped g-C3N4 with enhanced photocatalytic CO2 reduction activity. Small 2017, 13, 1603938.

    Google Scholar 

  6. Jin, J. R.; He, T. Facile synthesis of Bi2S3 nanoribbons for photocatalytic reduction of CO2 into CH3OH. Appl. Surf. Sci. 2017, 394, 364–370.

    CAS  Google Scholar 

  7. Mao, J.; Li, K.; Peng, T. Y. Recent advances in the photocatalytic CO2 reduction over semiconductors. Catal. Sci. Technol. 2013, 3, 2481–2498.

    CAS  Google Scholar 

  8. Yin, G. H.; Bi, Q. Y.; Zhao, W.; Xu, J. J.; Lin, T. Q.; Huang, F. Q. Efficient conversion of CO2 to methane photocatalyzed by conductive black titania. ChemCatChem 2017, 9, 4389–4396.

    CAS  Google Scholar 

  9. Álvarez, A.; Borges, M.; Corral-Pérez, J. J.; Olcina, J. G.; Hu, L. J.; Cornu, D.; Huang, R.; Stoian, D.; Urakawa, A. CO2 activation over catalytic surfaces. ChemPhysChem 2017, 18, 3135–3141.

    Google Scholar 

  10. White, J. L.; Baruch, M. F.; Pander, J. E.; Hu, Y.; Fortmeyer, I. C.; Park, J. E.; Zhang, T.; Liao, K.; Gu, J.; Yan, Y. et al. Light-driven heterogeneous reduction of carbon dioxide: Photocatalysts and photoelectrodes. Chem. Rev. 2015, 115, 12888–12935.

    CAS  Google Scholar 

  11. Sun, Z. Y.; Talreja, N.; Tao, H. C.; Texter, J.; Muhler, M.; Strunk, J.; Chen, J. F. Catalysis of carbon dioxide photoreduction on nanosheets: Fundamentals and challenges. Angew. Chem., Int. Ed. 2018, 57, 7610–7627.

    CAS  Google Scholar 

  12. He, J.; Wang, X. D.; Jin, S. B.; Liu, Z. Q.; Zhu, M. S. 2D metal-free heterostructure of covalent triazine framework/g-C3N4 for enhanced photocatalytic CO2 reduction with high selectivity. Chin. J. Catal. 2022, 43, 1306–1315.

    CAS  Google Scholar 

  13. Chang, X. X.; Wang, T.; Gong, J. L. CO2 photo-reduction: Insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ. Sci. 2016, 9, 2177–2196.

    CAS  Google Scholar 

  14. Xia, P. F.; Zhu, B. C.; Yu, J. G.; Cao, S. W.; Jaroniec, M. Ultra-thin nanosheet assemblies of graphitic carbon nitride for enhanced photocatalytic CO2 reduction. J. Mater. Chem. A 2017, 5, 3230–3238.

    CAS  Google Scholar 

  15. Zou, C. C.; Li, Q. Q.; Hua, Y. Y.; Zhou, B. H.; Duan, J. G.; Jin, W. Q. Mechanical synthesis of COF nanosheet cluster and its mixed matrix membrane for efficient CO2 removal. ACS Appl. Mater. Interfaces 2017, 9, 29093–29100.

    CAS  Google Scholar 

  16. Habisreutinger, S. N.; Schmidt-Mende, L.; Stolarczyk, J. K. Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem., Int. Ed. 2013, 52, 7372–7408.

    CAS  Google Scholar 

  17. Kong, T. T.; Jiang, Y. W.; Xiong, Y. J. Photocatalytic CO2 conversion: What can we learn from conventional CO2 hydrogenation? Chem. Soc. Rev. 2020, 49, 6579–6591.

    CAS  Google Scholar 

  18. Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 1979, 277, 637–638.

    CAS  Google Scholar 

  19. Yue, X. Y.; Cheng, L.; Fan, J. J.; Xiang, Q. J. 2D/2D BiVO4/CsPbBr3 S-scheme heterojunction for photocatalytic CO2 reduction: Insights into structure regulation and fermi level modulation. Appl. Catal. B 2022, 304, 120979.

    CAS  Google Scholar 

  20. Xue, J. Y.; Yu, Y.; Yang, C.; Zhang, K. F.; Zhan, X. W.; Song, J. M.; Gui, J. J.; Li, Y. K.; Jin, X.; Gao, S. et al. Developing atomically thin Li1.81H0.19Ti2O5·2H2O nanosheets for selective photocatalytic CO2 reduction to CO. Langmuir 2022, 38, 523–530.

    CAS  Google Scholar 

  21. Li, L.; Han, Q. T.; Tang, L. Q.; Zhang, Y.; Li, P.; Zhou, Y.; Zou, Z. G. Flux synthesis of regular Bi4TaO8Cl square nanoplates exhibiting dominant exposure surfaces of {001} crystal facets forcphotocatalytic reduction of CO2 to methane. Nanoscale 2018, 10, 1905–1911.

    CAS  Google Scholar 

  22. Liu, T. Y.; Hao, L.; Bai, L. Q.; Liu, J. G.; Zhang, Y. H.; Tian, N.; Huang, H. W. Z-scheme junction Bi2O2(NO3)(OH)/g-C3N4 for promoting CO2 photoreduction. Chem. Eng. J. 2022, 429, 132268.

    CAS  Google Scholar 

  23. Yu, H. J.; Li, J. Y.; Zhang, Y. H.; Yang, S. Q.; Han, K. L.; Dong, F.; Ma, T. Y.; Huang, H. W. Three-in-one oxygen vacancies: Whole visible-spectrum absorption, efficient charge separation, and surface site activation for robust CO2 photoeeduttion. Angew. Chem., Int. Ed. 2019, 58, 3880–3884.

    CAS  Google Scholar 

  24. Si, J. J.; Yu, J. Q.; Shen, Y.; Zeng, M. Q.; Fu, L. Elemental 2D materials: Progress and perspectives toward unconventional structures. Small Struct. 2020, 2, 2000101.

    Google Scholar 

  25. Cai, X. K.; Luo, Y. T.; Liu, B. L.; Cheng, H. M. Preparation of 2D material dispersions and their applications. Chem. Soc. Rev. 2018, 47, 6224–6266.

    CAS  Google Scholar 

  26. Zhao, W. F.; Wu, F. R.; Wu, H.; Chen, G. H. Preparation of colloidal dispersions of graphene sheets in organic solvents by using ball milling. J. Nanomater. 2010, 2010, 528235.

    Google Scholar 

  27. Xue, T. T.; Zhang, X. C.; Zhang, C. M.; Li, R.; Liu, J. X.; Wang, Y. F.; Wang, Y. W.; Fan, C. M. In-situ electrochemical-ion-exchange synthesis of novel Bi12SiO20/BiOBr composite film from Bi plate for enhanced photocatalytic CO2 reduction activity. Mater.Lett. 2020, 274, 127990.

    CAS  Google Scholar 

  28. Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

    CAS  Google Scholar 

  29. Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J. J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253.

    CAS  Google Scholar 

  30. Zhang, Y. Z.; Yao, D. Z.; Xia, B. Q.; Xu, H. L.; Tang, Y. H.; Davey, K.; Ran, J. R.; Qiao, S. Z. ReS2 nanosheets with in situ formed sulfur vacancies for efficient and highly selective photocatalytic CO2 reduction. Small Sci. 2021, 1, 2000052.

    CAS  Google Scholar 

  31. Dong, R. H.; Zhang, T.; Feng, X. L. Interface-assisted synthesis of 2D materials: Trend and challenges. Chem. Rev. 2018, 118, 6189–6235.

    CAS  Google Scholar 

  32. Zhao, Y. F.; Chen, G. B.; Bian, T.; Zhou, C.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Smith, L. J.; O’Hare, D.; Zhang, T. R. Defect-rich ultrathin ZnAl-layered double hydroxide nanosheets for efficient photoreduction of CO2 to CO with water. Adv. Mater. 2015, 27, 7824–7831.

    CAS  Google Scholar 

  33. Tang, L. Q.; Chen, R. T.; Meng, X. G.; Lv, B. H.; Fan, F. T.; Ye, J. H.; Wang, X. Y.; Zhou, Y.; Li, C.; Zou, Z. G. Unique homo-heterojunction synergistic system consisting of stacked BiOCl nanoplate/Zn-Cr layered double hydroxide nanosheets promoting photocatalytic conversion of CO2 into solar fuels. Chem. Commun. 2018, 54, 5126–5129.

    CAS  Google Scholar 

  34. Duan, X. Y.; Chen, G. D.; Guo, L. A.; Zhu, Y. Z.; Ye, H. G.; Wu, Y. L. A template-free CVD route to synthesize hierarchical porous ZnO films. Superlattices Microstruct. 2015, 88, 501–507.

    CAS  Google Scholar 

  35. Meier, A. J.; Garg, A.; Sutter, B.; Kuhn, J. N.; Bhethanabotla, V. R. MoS2 nanoflowers as a gateway for solar-driven CO2 photoreduction. ACS Sustain. Chem. Eng. 2019, 7, 265–275.

    CAS  Google Scholar 

  36. Park, S.; Song, H. J.; Lee, C. W.; Hwang, S. W.; Cho, I. S. Enhanced photocatalytic activity of ultrathin Ba5Nb4O15 two-dimensional nanosheets. ACS Appl. Mater. Interfaces 2015, 7, 21860–21867.

    CAS  Google Scholar 

  37. Ali, A.; Oh, W. C. Preparation of nanowire like WSe2-graphene nanocomposite for photocatalytic reduction of CO2 into CH3OH with the presence of sacrificial agents. Sci. Rep. 2017, 7, 1867.

    Google Scholar 

  38. Zhu, X. W.; Huang, S. Q.; Yu, Q.; She, Y. B.; Yang, J. M.; Zhou, G. L.; Li, Q. D.; She, X. J.; Deng, J. J.; Li, H. M. et al. In-situ hydroxyl modification of monolayer black phosphorus for stable photocatalytic carbon dioxide conversion. Appl. Catal. B: Environ. 2020, 269, 118760.

    CAS  Google Scholar 

  39. Zheng, Y. N.; Yin, X. H.; Jiang, Y.; Bai, J. S.; Tang, Y.; Shen, Y. L.; Zhang, M. Nano Ag-decorated MoS2 nanosheets from 1T to 2H phase conversion for photocatalytically reducing CO2 to methanol. Energy Technol. 2019, 7, 1900582.

    CAS  Google Scholar 

  40. Kumar, S.; Isaacs, M. A.; Trofimovaite, R.; Durndell, L.; Parlett, C. M. A.; Douthwaite, R. E.; Coulson, B.; Cockett, M. C. R.; Wilson, K.; Lee, A. F. P25@CoAl layered double hydroxide heterojunction nanocomposites for CO2 photocatalytic reduction. Appl. Catal. B: Environ. 2017, 209, 394–404.

    CAS  Google Scholar 

  41. Jiao, W. Y.; Xie, Y.; He, F.; Wang, K. Y.; Ling, Y.; Hu, Y. Y.; Wang, J. L.; Ye, H.; Wu, J.; Hou, Y. A visible light-response flower-like La-doped BiOBr nanosheets with enhanced performance for photoreducing CO2 to CH3OH. Chem. Eng. J. 2021, 418, 129286.

    CAS  Google Scholar 

  42. Hong, J. D.; Zhang, W.; Wang, Y. B.; Zhou, T. H.; Xu, R. Photocatalytic reduction of carbon dioxide over self-assembled carbon nitride and layered double hydroxide: The role of carbon dioxide enrichment. ChemCatChem 2014, 6, 2315–2321.

    CAS  Google Scholar 

  43. Kong, X. Y.; Lee, W. Q.; Mohamed, A. R.; Chai, S. P. Effective steering of charge flow through synergistic inducing oxygen vacancy defects and p-n heterojunctions in 2D/2D surface-engineered Bi2WO6/BiOI cascade: Towards superior photocatalytic CO2 reduction activity. Chem. Eng. J. 2019, 372, 1183–1193.

    CAS  Google Scholar 

  44. Wang, L.; Bahnemann, D. W.; Bian, L.; Dong, G. H.; Zhao, J.; Wang, C. Y. Two-dimensional layered zinc silicate nanosheets with excellent photocatalytic performance for organic pollutant degradation and CO2 conversion. Angee. Chem., Int. Ed. 2019, 58, 8103–8108.

    CAS  Google Scholar 

  45. Jiang, H. Y.; Katsumata, K. I.; Hong, J.; Yamaguchi, A.; Nakata, K.; Terashima, C.; Matsushita, N.; Miyauchi, M.; Fujishima, A. Photocatalytic reduction of CO2 on Cu2O-loaded Zn-Cr layered double hydroxides. Appl. Catal. B: Environ. 2018, 224, 783–790.

    CAS  Google Scholar 

  46. Zhang, T.; Maihemllti, M.; Okitsu, K.; Talifur, D.; Tursun, Y.; Abulizi, A. In situ self-assembled S-scheme BiOBr/pCN hybrid with enhanced photocatalytic activity for organic pollutant degradation and CO2 reduction. Appl. Surf. Sci. 2021, 556, 149828.

    Google Scholar 

  47. Hao, L.; Kang, L.; Huang, H. W.; Ye, L. Q.; Han, K. L.; Yang, S. Q.; Yu, H. J.; Batmunkh, M.; Zhang, Y. H.; Ma, T. Y. Surface-halogenation-induced atomic-site activation and local charge separation for superb CO2 photoreduction. Adv. Mater. 2019, 31, 1900546.

    Google Scholar 

  48. Kawamura, S.; Puscasu, M. C.; Yoshida, Y.; Izumi, Y.; Carja, G. Tailoring assemblies of plasmonic silver/gold and zinc-gallium layered double hydroxides for photocatalytic conversion of carbon dioxide using UV–visible light. Appl. Catal. A: Gen. 2015, 504, 238–247.

    CAS  Google Scholar 

  49. Li, K.; Liang, Y. J.; Yang, J.; Gao, Q.; Zhu, Y. L.; Liu, S. Q.; Xu, R.; Wu, X. Y. Controllable synthesis of {001} facet dependent foursquare BiOCl nanosheets: A high efficiency photocatalyst for degradation of methyl orange. J. Alloys Compd. 2017, 695, 238–249.

    CAS  Google Scholar 

  50. Jiang, J.; Zhao, K.; Xiao, X. Y.; Zhang, L. Z. Synthesis and facet-dependent photoreactivity of BiOCl single-crystalline nanosheets. J. Am. Chem. Soc. 2012, 134, 4473–4476.

    CAS  Google Scholar 

  51. Zhang, K. L.; Liu, C. M.; Huang, F. Q.; Zheng, C.; Wang, W. D. Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst. Appl. Catal. B: Environ. 2006, 68, 125–129.

    CAS  Google Scholar 

  52. Ma, Z. Y.; Li, P. H.; Ye, L. Q.; Zhou, Y.; Su, F. Y.; Ding, C. H.; Xie, H. Q.; Bai, Y.; Wong, P. K. Oxygen vacancies induced exciton dissociation of flexible BiOCl nanosheets for effective photocatalytic CO2 conversion. J. Mater. Chem. A 2017, 5, 24995–25004.

    CAS  Google Scholar 

  53. Kong, X. Y.; Lee, W. P. C.; Ong, W. J.; Chai, S. P.; Mohamed, A. R. Oxygen-deficient BiOBr as a highly stable photocatalyst for efficient CO2 reduction into renewable carbon-neutral fuels. ChemCatChem 2016, 8, 3074–3081.

    CAS  Google Scholar 

  54. Ye, L. Q.; Jin, X. L.; Ji, X. X.; Liu, C.; Su, Y. R.; Xie, H. Q.; Liu, C. Facet-dependent photocatalytic reduction of CO2 on BiOI nanosheets. Chem. Eng. J. 2016, 291, 39–46.

    CAS  Google Scholar 

  55. Jin, J. R.; Wang, Y. J.; He, T. Preparation of thickness-tunable BiOCl nanosheets with high photocatalytic activity for photoreduction of CO2. RSC Adv. 2015, 5, 100244–100250.

    CAS  Google Scholar 

  56. Wu, S. Q.; Wang, J. B.; Li, Q. C.; Huang, Z. A.; Rao, Z. Q.; Zhou, Y. Bi/BiOCl nanosheets enriched with oxygen vacancies to enhance photocatalytic CO2 reduction. Trans. Tianjin Univ. 2021, 27, 155–164.

    CAS  Google Scholar 

  57. Kong, X. Y.; Ng, B. J.; Tan, K. H.; Chen, X. F.; Wang, H. T.; Mohamed, A. R.; Chai, S. P. Simultaneous generation of oxygen vacancies on ultrathin BiOBr nanosheets during visible-light-driven CO2 photoreduction evoked superior activity and long-term stability. Catal. Today 2018, 314, 20–27.

    CAS  Google Scholar 

  58. Di, J.; Chen, C.; Zhu, C.; Song, P.; Xiong, J.; Ji, M. X.; Zhou, J. D.; Fu, Q. D.; Xu, M. Z.; Hao, W. et al. Bismuth vacancy-tuned bismuth oxybromide ultrathin nanosheets toward photocatalytic CO2 reduction. ACS Appl. Mater. Interfaces 2019, 11, 30786–30792.

    CAS  Google Scholar 

  59. Wu, J.; Xie, Y.; Ling, Y.; Si, J. C.; Li, X.; Wang, J. L.; Ye, H.; Zhao, J. S.; Li, S. Q.; Zhao, Q. D. et al. One-step synthesis and Gd3+ decoration of BiOBr microspheres consisting of nanosheets toward improving photocatalytic reduction of CO2 into hydrocarbon fuel. Chem. Eng. J. 2020, 400, 125944.

    CAS  Google Scholar 

  60. Xu, Y. X.; Jin, X. L.; Ge, T.; Xie, H. Q.; Sun, R. X.; Su, F. Y.; Li, X.; Ye, L. Q. Realizing efficient CO2 photoreduction in Bi3O4Cl: Constructing van der Waals heterostructure with g-C3N4. Chem. Eng. J. 2021, 409, 128178.

    CAS  Google Scholar 

  61. Jin, X. L.; Lv, C. D.; Zhou, X.; Ye, L. Q.; Xie, H. Q.; Liu, Y.; Su, H.; Zhang, B.; Chen, G. Oxygen vacancy engineering of Bi24O31Cl10 for boosted photocatalytic CO2 conversion. ChemSusChem 2019, 12, 2740–2747.

    CAS  Google Scholar 

  62. Quan, Y.; Wang, B.; Liu, G. P.; Li, H. M.; Xia, J. X. Carbonized polymer dots modified ultrathin Bi12O17Cl2 nanosheets Z-scheme heterojunction for robust CO2 photoreduction. Chem. Eng. Sci. 2021, 232, 116338.

    CAS  Google Scholar 

  63. Bai, Y.; Yang, P.; Wang, L.; Yang, B.; Xie, H. Q.; Zhou, Y.; Ye, L. Q. Ultrathin Bi4O5Br2 nanosheets for selective photocatalytic CO2 conversion into CO. Chem. Eng. J. 2019, 360, 473–482.

    CAS  Google Scholar 

  64. Di, J.; Chen, C.; Yang, S. Z.; Chen, S. M.; Duan, M. L.; Xiong, J.; Zhu, C.; Long, R.; Hao, W.; Chi, Z. et al. Isolated single atom cobalt in Bi3O4Br atomic layers to trigger efficient CO2 photoreduction. Nat. Commun. 2019, 10, 2840.

    Google Scholar 

  65. Ding, C. H.; Ye, L. Q.; Zhao, Q.; Zhong, Z. G.; Liu, K. C.; Xie, H. Q.; Bao, K. Y.; Zhang, X. G.; Huang, Z. X. Synthesis of BLxOyIz from molecular precursor and selective photoreduction of CO2 into CO. J. CO2Util. 2016, 14, 135–142.

    CAS  Google Scholar 

  66. Bai, Y.; Yang, P.; Wang, P. Q.; Xie, H. Q.; Dang, H. F.; Ye, L. Q. Semimetal bismuth mediated UV–vis–IR driven photo-thermocatalysis of Bi4O5I2 for carbon dioxide to chemical energy. J. CO2Util. 2018, 23, 51–60.

    CAS  Google Scholar 

  67. Tu, S. C.; Guo, Y. X.; Zhang, Y. H.; Hu, C.; Zhang, T. R.; Ma, T. Y.; Huang, H. W. Piezocatalysis and piezo-photocatalysis: Catalysts classification and modification strategy, reaction mechanism, and practical application. Adv. Funct. Mater. 2020, 30, 2005158.

    CAS  Google Scholar 

  68. Ribeiro, C. S.; Lansarin, M. A. Enhanced photocatalytic activity of Bi2WO6 with PVP addition for CO2 reduction into ethanol under visible light. Environ. Sci. Pollut. Res. Int. 2021, 28, 23667–23674.

    CAS  Google Scholar 

  69. Kong, X. Y.; Tong, T.; Ng, B. J.; Low, J.; Zeng, T. H.; Mohamed, A. R.; Yu, J. G.; Chai, S. P. Topotactic transformation of bismuth oxybromide into bismuth tungstate: Bandgap modulation of single-crystalline {001}-faceted nanosheets for enhanced photocatalytic CO2 reduction. ACS Appl. Mater. Interfaces 2020, 12, 26991–27000.

    CAS  Google Scholar 

  70. Li, Q. D.; Zhu, X. W.; Yang, J. M.; Yu, Q.; Zhu, X. L.; Chu, J. Y.; Du, Y. S.; Wang, C. T.; Hua, Y. J.; Li, H. M. et al. Plasma treated Bi2WO6 ultrathin nanosheets with oxygen vacancies for improved photocatalytic CO2 reduction. Inorg. Chem. Front. 2020, 7, 597–602.

    CAS  Google Scholar 

  71. Li, H.; Zhang, J. C.; Yu, J. G.; Cao, S. W. Ultra-thin carbon-doped Bi2WO6 nanosheets for enhanced photocatalytic CO2 reduction. Trans. Tianjin Univ. 2021, 27, 338–347.

    CAS  Google Scholar 

  72. Li, Y. Y.; Fan, J. S.; Tan, R. Q.; Yao, H. C.; Peng, Y.; Liu, Q. C.; Li, Z. J. Selective photocatalytic reduction of CO2 to CH4 modulated by chloride modification on Bi2WO6 nanosheets. ACS Appl. Mater. Interfaces 2020, 12, 54507–54516.

    CAS  Google Scholar 

  73. Jiang, Y.; Chen, H. Y.; Li, J. Y.; Liao, J. F.; Zhang, H. H.; Wang, X. D.; Kuang, D. B. Z-scheme 2D/2D heterojunction of CsPbBr3/Bi2WO6 for improved photocatalytic CO2 reduction. Adv. Funct. Mater. 2020, 30, 2004293.

    CAS  Google Scholar 

  74. Zheng, Y.; Zhou, T. F.; Zhao, X. D.; Pang, W. K.; Gao, H.; Li, S. A.; Zhou, Z.; Liu, H. K.; Guo, Z. P. Atomic interface engineering and electric-field effect in ultrathin Bi2MoO6 nanosheets for superior lithium ion storage. Adv. Mater. 2017, 29, 1700396.

    Google Scholar 

  75. Li, S. G.; Bai, L. Q.; Ji, N.; Yu, S. X.; Lin, S.; Tian, N.; Huang, H. W. Ferroelectric polarization and thin-layered structure synergistically promoting CO2 photoreduction of Bi2MoO6. J. Mater. Chem. A 2020, 8, 9268–9277.

    CAS  Google Scholar 

  76. Liu, L. Z.; Huang, H. W.; Chen, F.; Yu, H. J.; Tian, N.; Zhang, Y. H.; Zhang, T. R. Cooperation of oxygen vacancies and 2D ultrathin structure promoting CO2 photoreduction performance of Bi4Ti3O12. Sci. Bull. 2020, 65, 934–943.

    CAS  Google Scholar 

  77. Liu, L. Z.; Huang, H. W.; Chen, Z. S.; Yu, H. J.; Wang, K. Y.; Huang, J. D.; Yu, H.; Zhang, Y. H. Synergistic polarization engineering on bulk and surface for boosting CO2 photoreduction. Angew. Chem., Int. Ed. 2021, 60, 18303–18308.

    CAS  Google Scholar 

  78. Wang, X. Y.; Wang, Y. S.; Gao, M. C.; Shen, J. N.; Pu, X. P.; Zhang, Z. Z.; Lin, H. X.; Wang, X. X. BiVO4/Bi4Ti3O12 heterojunction enabling efficient photocatalytic reduction of CO2 with H2O to CH3OH and CO. Appl. Catal. B: Environ. 2020, 270, 118876.

    CAS  Google Scholar 

  79. Huang, H. W.; Tu, S. C.; Zeng, C.; Zhang, T. R.; Reshak, A. H.; Zhang, Y. H. Macroscopic polarization enhancement promoting photo- and piezoelectric-induced charge separation and molecular oxygen activation. Angew. Chem., Int. Ed. 2017, 56, 11860–11864.

    CAS  Google Scholar 

  80. Chen, F.; Huang, H. W.; Ye, L. Q.; Zhang, T. R.; Zhang, Y. H.; Han, X. P.; Ma, T. Y. Thickness-dependent facet junction control of layered BiOIO3 single crystals for highly efficient CO2 photoreduction. Adv. Funct. Mater. 2018, 28, 1804284.

    Google Scholar 

  81. Chen, F.; Ma, Z. Y.; Ye, L. Q.; Ma, T. Y.; Zhang, T. R.; Zhang, Y. H.; Huang, H. W. Macroscopic spontaneous polarization and surface oxygen vacancies collaboratively boosting CO2 photoreduction on BiOIO3 single crystals. Adv. Mater. 2020, 32, 1908350.

    CAS  Google Scholar 

  82. Zou, J. S.; Wu, J. Experimental study on the photocatalytic reduction of CO2 by Fe2O3/BiOIO3 composite photocatalyst. IOP Conf. Ser.: Earth Environ. Sci. 2021, 770, 012033.

    Google Scholar 

  83. Xu, Y.; You, Y.; Huang, H. W.; Guo, Y. X.; Zhang, Y. H. Bi4NbO8Cl {001} nanosheets coupled with g-C3N4 as 2D/2D heterojunction for photocatalytic degradation and CO2 reduction. J. Hazard. Mater. 2020, 381, 121159.

    CAS  Google Scholar 

  84. Guo, L. N.; You, Y.; Huang, H. W.; Tian, N.; Ma, T. Y.; Zhang, Y. H. Z-scheme g-C3N4/Bi2O2[BO2(OH)] heterojunction for enhanced photocatalytic CO2 reduction. J. Colloid Interface Sci. 2020, 568, 139–147.

    CAS  Google Scholar 

  85. Ye, L. Q.; Jin, X. L.; Liu, C.; Ding, C. H.; Xie, H. Q.; Chu, K. H.; Wong, P. K. Thickness-ultrathin and bismuth-rich strategies for BiOBr to enhance photoreduction of CO2 into solar fuels. Appl. Catal. B: Environ. 2016, 187, 281–290.

    CAS  Google Scholar 

  86. Lu, M. F.; Li, Q. Q.; Zhang, C. L.; Fan, X. X.; Li, L.; Dong, Y. M.; Chen, G. Q.; Shi, H. F. Remarkable photocatalytic activity enhancement of CO2 conversion over 2D/2D g-C3N4/BiVO4 Z-scheme heterojunction promoted by efficient interfacial charge transfer. Carbon 2020, 160, 342–352.

    CAS  Google Scholar 

  87. Oliveira, J. A.; Torres, J. A.; Gonçalves, R. V.; Ribeiro, C.; Nogueira, F. G. E.; Ruotolo, L. A. M. Photocatalytic CO2 reduction over Nb2O5/basic bismuth nitrate nanocomposites. Mater. Res. Bull. 2021, 133, 111073.

    CAS  Google Scholar 

  88. Xie, Z. K.; Xu, Y. Y.; Li, D.; Meng, S. C.; Chen, M.; Jiang, D. L. Covalently bonded Bi2O3 nanosheet/Bi2WO6 network heterostructures for efficient photocatalytic CO2 reduction. ACS Appl. Energy Mater. 2020, 3, 12194–12203.

    CAS  Google Scholar 

  89. Miao, Y. F.; Guo, R. T.; Gu, J. W.; Liu, Y. Z.; Wu, G. L.; Duan, C. P.; Pan, W. G. Z-scheme Bi/Bi2O2CO3/layered double-hydroxide nanosheet heterojunctions for photocatalytic CO2 reduction under visible light. ACS Appl. Nano Mater. 2021, 4, 4902–4911.

    CAS  Google Scholar 

  90. Yan, J. Y.; Wang, C. H.; Ma, H.; Li, Y. Y.; Liu, Y. C.; Suzuki, N.; Terashima, C.; Fujishima, A.; Zhang, X. T. Photothermal synergic enhancement of direct Z-scheme behavior of Bi4TaO8Cl/W18O49 heterostructure for CO2 reduction. Appl. Catal. B: Environ. 2020, 268, 118401.

    CAS  Google Scholar 

  91. Kong, X. Y.; Tan, W. L.; Ng, B. J.; Chai, S. P.; Mohamed, A. R. Harnessing Vis-NIR broad spectrum for photocatalytic CO2 reduction over carbon quantum dots-decorated ultrathin Bi2WO6 nanosheets. Nano Res. 2017, 10, 1720–1731.

    CAS  Google Scholar 

  92. Oshima, T.; Ichibha, T.; Qin, K. S.; Muraoka, K.; Vequizo, J. J. M.; Hibino, K.; Kuriki, R.; Yamashita, S.; Hongo, K.; Uchiyama, T. et al. Undoped layered perovskite oxynitride Li2LaTa2O6N for photocatalytic CO2 reduction with visible light. Angew. Chem., Int. Ed. 2018, 57, 8154–8158.

    CAS  Google Scholar 

  93. Huang, H. H.; Liu, X. Q.; Li, F.; He, Q. Y.; Ji, H. B.; Yu, C. L. In situ construction of a 2D CoTiO3/g-C3N4 photocatalyst with an S-scheme heterojunction and its excellent performance for CO2 reduction. Sustainable Energy Fuels 2022, 6, 4903–4915.

    CAS  Google Scholar 

  94. Lin, N. S.; Lin, Y.; Qian, X. J.; Wang, X. X.; Su, W. Y. Construction of a 2D/2D WO3/LaTiO2N direct Z-scheme photocatalyst for enhanced CO2 reduction performance under visible light. ACS Sustain. Chem. Eng. 2021, 9, 13686–13694.

    CAS  Google Scholar 

  95. Tu, S. C.; Zhang, Y. H.; Reshak, A. H.; Auluck, S.; Ye, L. Q.; Han, X. P.; Ma, T. Y.; Huang, H. W. Ferroelectric polarization promoted bulk charge separation for highly efficient CO2 photoreduction of SrBi4Ti4O15. Nano Energy 2019, 56, 840–850.

    CAS  Google Scholar 

  96. Kwak, B. S.; Do, J. Y.; Park, N. K.; Kang, M. Surface modification of layered perovskite Sr2TiO4 for improved CO2 photoreduction with H2O to CH4. Sci. Rep. 2017, 7, 16370.

    Google Scholar 

  97. Wang, Y. H.; Liu, M.; Chen, W.; Mao, L. Q.; Shangguan, W. F. Ag loaded on layered perovskite H2SrTa2O7 to enhance the selectivity of photocatalytic CO2 reduction with H2O. J. Alloys Compd. 2019, 786, 149–154.

    CAS  Google Scholar 

  98. Vu, N. N.; Nguyen, C. C.; Kaliaguine, S.; Do, T. O. Reduced Cu/Pt-HCa2Ta3O10 perovskite nanosheets for sunlight-driven conversion of CO2 into valuable fuels. Adv. Sustain. Syst. 2017, 1, 1700048.

    Google Scholar 

  99. Pan, L. K.; Mei, H.; Zhu, G. Q.; Li, S. P.; Xie, X. Q.; Gong, S. W.; Liu, H. X.; Jin, Z. P.; Gao, J. Z.; Cheng, L. F. et al. Bi selectively doped SrTiO3−x nanosheets enhance photocatalytic CO2 reduction under visible light. J. Colloid Interface Sci. 2022, 611, 137–148.

    CAS  Google Scholar 

  100. Ouyang, T. W.; Fan, W. Y.; Guo, J. Q.; Zheng, Y. N.; Yin, X. H.; Shen, Y. L. DFT study on Ag loaded 2H-MoS2 for understanding the mechanism of improved photocatalytic reduction of CO2. Phys. Chem. Chem. Phys. 2020, 22, 10305–10313.

    CAS  Google Scholar 

  101. Xu, F. Y.; Zhu, B. C.; Cheng, B.; Yu, J. G.; Xu, J. 1D/2D TiO2/MoS2 hybrid nanostructures for enhanced photocatalytic CO2 reduction. Adv. Opt. Mater. 2018, 6, 1800911.

    Google Scholar 

  102. Jia, P. Y.; Guo, R. T.; Pan, W. G.; Huang, C. Y.; Tang, J. Y.; Liu, X. Y.; Qin, H.; Xu, Q. Y. The MoS2/TiO2 heterojunction composites with enhanced activity for CO2 photocatalytic reduction under visible light irradiation. Colloids Surf. A: Physicochem. Eng. Aspects 2019, 570, 306–316.

    CAS  Google Scholar 

  103. Kumari, S.; Gusain, R.; Kumar, A.; Manwar, N.; Jain, S. L.; Khatri, O. P. Direct growth of nanostructural MoS2 over the h-BN nanoplatelets: An efficient heterostructure for visible light photoreduction of CO2 to methanol. J. CO2Util. 2020, 42, 101345.

    CAS  Google Scholar 

  104. Wang, X. D.; He, J.; Mao, L.; Cai, X. Y.; Sun, C. Z.; Zhu, M. S. CsPbBr3 perovskite nanocrystals anchoring on monolayer MoS2 nanosheets for efficient photocatalytic CO2 reduction. Chem. Eng. J. 2021, 416, 128077.

    CAS  Google Scholar 

  105. Zhao, Y. X.; Cai, W.; Shi, Y. P.; Tang, J. Y.; Gong, Y. H.; Chen, M. D.; Zhong, Q. Construction of Nano-Fe2O3-decorated flower-like MoS2 with Fe–S bonds for efficient photoreduction of CO2 under visible-light irradiation. ACS Sustain. Chem. Eng. 2020, 8, 12603–12611.

    CAS  Google Scholar 

  106. Shown, I.; Samireddi, S.; Chang, Y. C.; Putikam, R.; Chang, P. H.; Sabbah, A.; Fu, F. Y.; Chen, W. F.; Wu, C. I.; Yu, T. Y. et al. Carbon-doped SnS2 nanostructure as a high-efficiency solar fuel catalyst under visible light. Nat. Commun. 2018, 9, 169.

    Google Scholar 

  107. She, H. D.; Zhou, H.; Li, L. S.; Zhao, Z. W.; Jiang, M.; Huang, J. W.; Wang, L.; Wang, Q. Z. Construction of a two-dimensional composite derived from TiO2 and SnS2 for enhanced photocatalytic reduction of CO2 into CH4. ACS Sustain. Chem. Eng. 2019, 7, 650–659.

    CAS  Google Scholar 

  108. Wang, X. D.; Huang, Y. H.; Liao, J. F.; Jiang, Y.; Zhou, L.; Zhang, X. Y.; Chen, H. Y.; Kuang, D. B. In situ construction of a Cs2SnI6 perovskite nanocrystal/SnS2 nanosheet heterojunction with boosted interfacial charge transfer. J. Am. Chem. Soc. 2019, 141, 13434–13441.

    CAS  Google Scholar 

  109. Yin, S. K.; Sun, L. L.; Zhou, Y. J.; Li, X.; Li, J. Z.; Song, X. H.; Huo, P. W.; Wang, H. Q.; Yan, Y. S. Enhanced electron-hole separation in SnS2/Au/g-C3N4 embedded structure for efficient CO2 photoreduction. Chem. Eng. J. 2021, 406, 126776.

    CAS  Google Scholar 

  110. Li, G. H.; Sun, Y. Y.; Sun, S. M.; Chen, W. L.; Zheng, J. C.; Chen, F.; Sun, Z. F.; Sun, W. The effects of morphologies on photoreduction of carbon dioxide to gaseous fuel over tin disulfide under visible light irradiation. Adv. Poeder Technol. 2020, 31, 2505–2512.

    CAS  Google Scholar 

  111. Sun, Y. Y.; Li, G. H.; Xu, J.; Sun, Z. F. Visible-light photocatalytic reduction of carbon dioxide over SnS2. Mater. Lett. 2016, 174, 238–241.

    CAS  Google Scholar 

  112. Qiu, C. H.; Bai, S.; Cao, W. J.; Tan, L.; Liu, J. Y.; Zhao, Y. F.; Song, Y. F. Tunable syngas synthesis from photocatalytic CO2 reduction under visible-light irradiation by interfacial engineering. Trans. Tianjin Univ. 2020, 26, 352–361.

    CAS  Google Scholar 

  113. Li, J.; Xu, X. H.; Huang, B. B.; Lou, Z. Z.; Li, B. J. Light-induced in situ formation of a nonmetallic plasmonic MoS2/MoO3−x heterostructure with efficient charge transfer for CO2 reduction and SERS detection. ACS Appl. Mater. Interfaces 2021, 13, 10047–10053.

    CAS  Google Scholar 

  114. Gao, G.; Zhu, Z.; Zheng, J.; Liu, Z.; Wang, Q.; Yan, Y. S. Ultrathin magnetic Mg-Al LDH photocatalyst for enhanced CO2 reduction: Fabrication and mechanism. J. Colloid Interface Sci. 2019, 555, 1–10.

    CAS  Google Scholar 

  115. Bai, S.; Wang, Z. L.; Tan, L.; Waterhouse, G. I. N.; Zhao, Y. F.; Song, Y. F. 600 nm irradiation-induced efficient photocatalytic CO2 reduction by ultrathin layered double hydroxide nanosheets. Ind. Eng. Chem. Res. 2020, 59, 5848–5857.

    CAS  Google Scholar 

  116. Zhang, T. T.; Shang, H. S.; Zhang, B.; Yan, D. P.; Xiang, X. Ag/ultrathin-layered double hydroxide nanosheets induced by a self-redox strategy for highly selective CO2 reduction. ACS Appl. Mater. Interfaces 2021, 13, 16536–16544.

    CAS  Google Scholar 

  117. Wang, K. X.; Miao, C. L.; Liu, Y. N.; Cai, L. Y.; Jones, W.; Fan, J. X.; Li, D. Q.; Feng, J. T. Vacancy enriched ultrathin TiMgAl-layered double hydroxide/graphene oxides composites as highly efficient visible-light catalysts for CO2 reduction. Appl. Catal. B: Environ. 2020, 270, 118878.

    CAS  Google Scholar 

  118. Wang, X.; Wang, Z. L.; Bai, Y.; Tan, L.; Xu, Y. Q.; Hao, X. J.; Wang, J. K.; Mahadi, A. H.; Zhao, Y. F.; Zheng, L. R. et al. Tuning the selectivity of photoreduction of CO2 to syngas over Pd/layered double hydroxide nanosheets under visible light up to 600 nm. J. Energy Chem. 2020, 46, 1–7.

    Google Scholar 

  119. Tan, L.; Xu, S. M.; Wang, Z. L.; Xu, Y. Q.; Wang, X.; Hao, X. J.; Bai, S.; Ning, C. J.; Wang, Y.; Zhang, W. K. et al. Highly selective photoreduction of CO2 with suppressing H2 evolution over monolayer layered double hydroxide under irradiation above 600 nm. Angew. Chem. 2019, 131, 11986–11993.

    Google Scholar 

  120. Bai, S.; Li, T.; Wang, H. J.; Tan, L.; Zhao, Y. F.; Song, Y. F. Scale-up synthesis of monolayer layered double hydroxide nanosheets via separate nucleation and aging steps method for efficient CO2 photoreduction. Chem. Eng. J. 2021, 419, 129390.

    CAS  Google Scholar 

  121. Hao, X. J.; Tan, L.; Xu, Y. Q.; Wang, Z. L.; Wang, X.; Bai, S.; Ning, C. J.; Zhao, J. W.; Zhao, Y. F.; Song, Y. F. Engineering active Ni sites in ternary layered double hydroxide nanosheets for a highly selective photoreduction of CO2 to CH4 under irradiation above 500 nm. Ind. Eng. Chem. Res. 2020, 59, 3008–3015.

    CAS  Google Scholar 

  122. Xiong, X. Y.; Zhao, Y. F.; Shi, R.; Yin, W. J.; Zhao, Y. X.; Waterhouse, G. I. N.; Zhang, T. R. Selective photocatalytic CO2 reduction over Zn-based layered double hydroxides containing tri or tetravalent metals. Sci. Bull. 2020, 65, 987–994.

    CAS  Google Scholar 

  123. Tan, L.; Peter, K.; Ren, J.; Du, B. Y.; Hao, X. J.; Zhao, Y. F.; Song, Y. F. Photocatalytic syngas synthesis from CO2 and H2O using ultrafine CeO2-decorated layered double hydroxide nanosheets under visible-light up to 600 nm. Front. Chem. Sci. Eng. 2020, 15, 99–108.

    Google Scholar 

  124. Chen, W. Y.; Han, B.; Xie, Y. L.; Liang, S. J.; Deng, H.; Lin, Z. Ultrathin Co-Co LDHs nanosheets assembled vertically on MXene: 3D nanoarrays for boosted visible-light-driven CO2 reduction. Chem. Eng. J. 2020, 391, 123519.

    CAS  Google Scholar 

  125. Zhao, S.; Pan, D.; Liang, Q.; Zhou, M.; Yao, C.; Xu, S.; Li, Z. Y. Ultrathin NiAl-layered double hydroxides grown on 2D Ti3C2Tx MXene to construct core-shell heterostructures for enhanced photocatalytic CO2 reduction. J. Phys. Chem. C 2021, 125, 10207–10218.

    CAS  Google Scholar 

  126. Ali Khan, A.; Tahir, M. Construction of an S-scheme heterojunction with oxygen-vacancy-rich trimetallic CoAlLa-LDH anchored on titania-sandwiched Ti3C2 multilayers for boosting photocatalytic CO2 reduction under visible light. Ind. Eng. Chem. Res. 2021, 60, 16201–16223.

    CAS  Google Scholar 

  127. Xu, J.; Liu, X. W.; Zhou, Z. J.; Deng, L. D.; Liu, L.; Xu, M. H. Platinum nanoparticles with low content and high dispersion over exfoliated layered double hydroxide for photocatalytic CO2 reduction. Energy Fuels 2021, 35, 10820–10831.

    CAS  Google Scholar 

  128. Jo, W. K.; Kumar, S.; Tonda, S. N-doped C dot/CoAl-layered double hydroxide/g-C3N4 hybrid composites for efficient and selective solar-driven conversion of CO2 into CH4. Compos. Part B: Eng. 2019, 176, 107212.

    CAS  Google Scholar 

  129. Wang, K. F.; Zhang, L.; Su, Y.; Shao, D. K.; Zeng, S. W.; Wang, W. Z. Photoreduction of carbon dioxide of atmospheric concentration to methane with water over CoAl-layered double hydroxide nanosheets. J. Mater. Chem. A 2018, 6, 8366–8373.

    CAS  Google Scholar 

  130. Kipkorir, P.; Tan, L.; Ren, J.; Zhao, Y. F.; Song, Y. F. Intercalation effect in NiAl-layered double hydroxide nanosheets for CO2 reduction under visible light. Chem. Res. Chin. Univ. 2020, 36, 127–133.

    CAS  Google Scholar 

  131. Ji, X. Y.; Guo, R. T.; Tang, J. Y.; Miao, Y. F.; Lin, Z. D.; Hong, L. F.; Yuan, Y.; Li, Z. S.; Pan, W. P. Construction of full solar-spectrum-driven Cu2−xS/Ni-Al-LDH heterostructures for efficient photocatalytic CO2 reduction. ACS Appl. Energy Mater. 2022, 5, 2862–2872.

    CAS  Google Scholar 

  132. Wu, G.; Shen, H. C.; Li, J. M.; Guo, J. Q.; Yin, X. H.; Mu, M. M. Syntheses of ZnTi-LDH sensitized by tetra(4-carboxyphenyl) porphyrin for accerlating photocatalytic reduction of carbon dioxide. J. Solid State Chem. 2022, 309, 122955.

    CAS  Google Scholar 

  133. Ou, S. Y.; Zhou, M.; Chen, W.; Zhang, Y. Y.; Liu, Y. L. COF-5/CoAl-LDH nanocomposite heterojunction for enhanced visible-light-driven CO2 reduction. ChemSusChem 2022, 15, e202200184.

    CAS  Google Scholar 

  134. Zhao, X. Y.; Zhao, X. P.; Ullah, I.; Gao, L. N.; Zhang, J. Z.; Lu, J. The iriiSitu growth NiFe-layered double hydroxides/g-C3N4 nanocomposite 2D/2D heterojunction for enhanced photocatalytic CO2 reduction performance. Catal. Lett. 2021, 151, 1683–1692.

    CAS  Google Scholar 

  135. Hu, J. M.; Ding, J.; Zhong, Q. Ultrathin 2D Ti3C2 MXene Co-catalyst anchored on porous g-C3N4 for enhanced photocatalytic CO2 reduction under visible-light irradiation. J. Colloid Interface Sci. 2021, 582, 647–657.

    CAS  Google Scholar 

  136. Cao, S. W.; Shen, B. J.; Tong, T.; Fu, J. W.; Yu, J. G. 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction. Adv. Funct. Mater. 2018, 28, 1800136.

    Google Scholar 

  137. Chen, L. Y.; Huang, K. L.; Xie, Q. R.; Lam, S. M.; Sin, J. C.; Su, T. M.; Ji, H. B.; Qin, Z. Z. The enhancement of photocatalytic CO2 reduction by the in situ growth of TiO2 on Ti3C2 MXene. Catal. Sci. Technol. 2021, 11, 1602–1614.

    CAS  Google Scholar 

  138. Yang, Y. L.; Zhang, D. N.; Fan, J. J.; Liao, Y. L.; Xiang, Q. J. Construction of an ultrathin S-scheme heterojunction based on few-layer g-C3N4 and monolayer Ti3C2T. MXene for photocatalytic CO2 reduction. Sol. RRL 2021, 5, 2000351.

    CAS  Google Scholar 

  139. Yang, C.; Tan, Q. Y.; Li, Q.; Zhou, J.; Fan, J. J.; Li, B.; Sun, J.; Lv, K. L. 2D/2D Ti3C2 MXene/g-C3N4 nanosheets heterojunction for high efficient CO2 reduction photocatalyst:Dual effects of urea. Appl. Catal. B: Environ. 2020, 268, 118738.

    CAS  Google Scholar 

  140. Wang, H. Q.; Tang, Q. J.; Wu, Z. B. Construction of few-layer Ti3C2 MXene and boron-doped g-C3N4 for enhanced photocatalytic CO2 reduction. ACS Sustain. Chem. Eng. 2021, 9, 8425–8434.

    CAS  Google Scholar 

  141. Chen, C.; Hu, J. D.; Yang, X. G.; Yang, T. Y.; Qu, J. F.; Guo, C. X.; Li, C. M. Ambient-stable black phosphorus-based 2D/2D S-scheme heterojunction for efficient photocatalytic CO2 reduction to syngas. ACS Appl. Mater. Interfaces 2021, 13, 20162–20173.

    CAS  Google Scholar 

  142. Zhou, G. L.; Yang, J. M.; Zhu, X. W.; Li, Q. D.; Yu, Q.; El-Alami, W.; Wang, C. T.; She, Y. B.; Qian, J. C.; Xu, H. et al. Cryo-induced closely bonded heterostructure for effective CO2 conversion: The case of ultrathin BP nanosheets/g-C3N4. J. Energy Chem. 2020, 49, 89–95.

    Google Scholar 

  143. Xu, Y. M.; Zhang, W. N.; Zhou, G. F.; Jin, M. L.; Li, X. S. In-situ growth of metal phosphide-black phosphorus heterojunction for highly selective and efficient photocatalytic carbon dioxide conversion. J. Colloid Interface Sci. 2022, 616, 641–648.

    CAS  Google Scholar 

  144. Liu, W. B.; Li, X. K.; Wang, C. M.; Pan, H. H.; Liu, W. P.; Wang, K.; Zeng, Q. D.; Wang, R. M.; Jiang, J. Z. A scalable general synthetic approach toward ultrathin imine-linked two-dimensional covalent organic framework nanosheets for photocatalytic CO2 reduction. J. Am. Chem. Soc. 2019, 141, 17431–17440.

    CAS  Google Scholar 

  145. Yang, S. Z.; Hu, W. H.; Zhang, X.; He, P. L.; Pattengale, B.; Liu, C. M.; Cendejas, M.; Hermans, I.; Zhang, X. Y.; Zhang, J. R. et al. 2D covalent organic frameworks as intrinsic photocatalysts for visible light-driven CO2 reduction. J. Am. Chem. Soc. 2018, 140, 14614–14618.

    CAS  Google Scholar 

  146. Qamar, S.; Lei, F. C.; Liang, L.; Gao, S.; Liu, K. T.; Sun, Y. F.; Ni, W. X.; Xie, Y. Ultrathin TiO2 flakes optimizing solar light driven CO2 reduction. Nano Energy 2016, 26, 692–698.

    CAS  Google Scholar 

  147. Shi, W. N.; Guo, X. W.; Cui, C. X.; Jiang, K.; Li, Z. J.; Qu, L. B.; Wang, J. C. Controllable synthesis of Cu2O decorated WO3 nanosheets with dominant (001) facets for photocatalytic CO2 reduction under visible-light irradiation. Appl. Catal. B: Environ. 2019, 243, 236–242.

    CAS  Google Scholar 

  148. Chen, W. Y.; Han, B.; Tian, C.; Liu, X. M.; Liang, S. J.; Deng, H.; Lin, Z. MOFs-derived ultrathin holey Co3O4 nanosheets for enhanced visible light CO2 reduction. Appl. Catal. B: Environ. 2019, 244, 996–1003.

    CAS  Google Scholar 

  149. Xin, C. Y.; Hu, M. C.; Wang, K.; Wang, X. T. Significant enhancement of photocatalytic reduction of CO2 with H2O over ZnO by the formation of basic zinc carbonate. Langmuir 2017, 33, 6667–6676.

    CAS  Google Scholar 

  150. J Jana, P.; de la Pena O’Shea, V. A.; Montero, C. M.; Gálvez, P.; Pizarro, P.; Coronado, J. M.; Serrano, D. P. Mixed NaNbxTa1−xO3 perovskites as photocatalysts for H2 production. Green Chem. 2015, 17, 1735–1743.

    Google Scholar 

  151. You, H. L.; Wu, Z.; Wang, L.; Jia, Y. M.; Li, S.; Zou, J. Highly efficient pyrocatalysis of pyroelectric NaNbO3 shape-controllable nanoparticles for room-temperature dye decomposition. Chemosphere 2018, 199, 531–537.

    CAS  Google Scholar 

  152. Shi, R.; Waterhouse, G. I. N.; Zhang, T. R. Recent progress in photocatalytic CO2 reduction over perovskite oxides. Sol. RRL 2017, 1, 1700126.

    Google Scholar 

  153. Xu, X. X.; Wang, X. Perovskite nano-heterojunctions: Synthesis, structures, properties, challenges, and prospects. Small Struct. 2020, 1, 2000009.

    Google Scholar 

  154. Shao, X.; Xin, W. Y.; Yin, X. H. Hydrothermal synthesis of ZnO quantum dot/KNb3O8 nanosheet photocatalysts for reducing carbon dioxide to methanol. Beilstein J. Nanotechnol. 2017, 8, 2264–2270.

    CAS  Google Scholar 

  155. Kumar, D. P.; Rangappa, A. P.; Do, K. H.; Hong, Y.; Gopannagari, M.; Reddy, K. A. J.; Bhavani, P.; Reddy, D. A.; Kim, T. K. Noble metal free few-layered perovskite-based Ba2NbFeO6 nanostructures on exfoliated g-C3N4 layers as highly efficient catalysts for enhanced solar fuel production. Appl. Surf. Sci. 2022, 572, 151406.

    Google Scholar 

  156. Mao, L. L.; Ke, W. J.; Pedesseau, L.; Wu, Y. L.; Katan, C.; Even, J.; Wasielewski, M. R.; Stoumpos, C. C.; Kanatzidis, M. G. Hybrid dion-jacobson 2D lead iodide perovskites. J. Am. Chem. Soc. 2018, 140, 3775–3783.

    CAS  Google Scholar 

  157. Chen, W.; Wang, Y. H.; Shangguan, W. Metal (oxide) modified (M = Pd, Ag, Au and Cu) H2SrTa2O7 for photocatalytic CO2 reduction with H2O: The effect of cocatalysts on promoting activity toward CO and H2 evolution. Int. J. Hydrogen Energy 2019, 44, 4123–4132.

    CAS  Google Scholar 

  158. Iizuka, K.; Wato, T.; Miseki, Y.; Saito, K.; Kudo, A. Photocatalytic reduction of carbon dioxide over Ag cocatalyst-loaded ALa4Ti4O15 (A = Ca, Sr, and Ba) using water as a reducing reagent. J. Am. Chem. Soc. 2011, 133, 20863–20868.

    CAS  Google Scholar 

  159. Wang, Z.; Teramura, K.; Hosokawa, S.; Tanaka, T. Photocatalytic conversion of CO2 in water over Ag-modified La2Ti2O7. Appl. Catal. B: Environ. 2015, 163, 241–247.

    CAS  Google Scholar 

  160. Qu, Y. J.; Kwok, C. T.; Shao, Y. F.; Shi, X. Q.; Kawazoe, Y.; Pan, H. Pentagonal transition-metal (group X) chalcogenide monolayers: Intrinsic semiconductors for photocatalysis. Int. J. Hydrogen Energy 2021, 46, 9371–9379.

    CAS  Google Scholar 

  161. Lin, J. H.; Zhang, Y. Y.; Zhou, W.; Pantelides, S. T. Structural flexibility and alloying in ultrathin transition-metal chalcogenide nanowires. ACS Nano 2016, 10, 2782–2790.

    CAS  Google Scholar 

  162. Choudhary, N.; Islam, A.; Kim, J. H.; Ko, T. J.; Schropp, A.; Hurtado, L.; Weitzman, D.; Zhai, L.; Jung, Y. Two-dimensional transition metal dichalcogenide hybrid materials for energy applications. Nano Today 2018, 19, 16–40.

    CAS  Google Scholar 

  163. Wu, J. J.; Lee, G. J. Advanced nanomaterials for water splitting and hydrogen generation. In Nanomaterials for Green Energy; Bhanvase, B. A.; Pawade, V. B.; Dhoble, S. J.; Sonawane, S. H.; Ashokkumar, M., Eds.; Elsevier: Amsterdam, 2018; pp 145–167.

    Google Scholar 

  164. Hasani, A.; Tekalgne, M.; Van Le, Q.; Jang, H. W.; Kim, S. Y. Two-dimensional materials as catalysts for solar fuels: Hydrogen evolution reaction and CO2 reduction. J. Mater. Chem. A 2019, 7, 430–454.

    CAS  Google Scholar 

  165. Liu, R.; Wang, F. K.; Liu, L. X.; He, X. Y.; Chen, J. Z.; Li, Y.; Zhai, T. Y. Band alignment engineering in two-dimensional transition metal dichalcogenide-based heterostructures for photodetectors. Small Struct. 2021, 2, 2000136.

    CAS  Google Scholar 

  166. Zhang, Z. F.; Qian, Q. K.; Li, B. K.; Chen, K. J. Interface engineering of monolayer MoS2/GaN hybrid heterostructure: Modified band alignment for photocatalytic water splitting application by nitridation treatment. ACS Appl. Mater. Interfaces 2018, 10, 17419–17426.

    CAS  Google Scholar 

  167. Chu, H. P.; Lei, W. Y.; Liu, X. J.; Li, J. L.; Zheng, W.; Zhu, G.; Li, C.; Pan, L. K.; Sun, C. Q. Synergetic effect of TiO2 as co-catalyst for enhanced visible light photocatalytic reduction of Cr(VI) on MoSe2. Appl. Catal. A: Gen. 2016, 521, 19–25.

    CAS  Google Scholar 

  168. Sun, S. M.; Li, X. M.; Wang, W. Z.; Zhang, L.; Sun, X. Photocatalytic robust solar energy reduction of dinitrogen to ammonia on ultrathin MoS2. Appl. Catal. B 2017, 200, 323–329.

    CAS  Google Scholar 

  169. Wang, J. J.; Lin, S.; Tian, N.; Ma, T. Y.; Zhang, Y. H.; Huang, H. W. Nanostructured metal sulfides: Classification, modification strategy, and solar-driven CO2 reduction application. Adv. Funct. Mater. 2021, 31, 2008008.

    CAS  Google Scholar 

  170. Khan, B.; Raziq, F.; Faheem, M. B.; Farooq, M. U.; Hussain, S.; Ali, F.; Ullah, A.; Mavlonov, A.; Zhao, Y.; Liu, Z. R. et al. Electronic and nanostructure engineering of bifunctional MoS2 towards exceptional visible-light photocatalytic CO2 reduction and pollutant degradation. J. Hazard. Mater. 2020, 381, 120972.

    CAS  Google Scholar 

  171. Tu, W. G.; Li, Y. C.; Kuai, L. B.; Zhou, Y.; Xu, Q. F.; Li, H. J.; Wang, X. Y.; Xiao, M.; Zou, Z. G. Construction of unique two-dimensional MoS2-TiO2 hybrid nanojunctions: MoS2 as a promising cost-effective cocatalyst toward improved photocatalytic reduction of CO2 to methanol. Nanoscale 2017, 9, 9065–9070.

    CAS  Google Scholar 

  172. Zhang, R.; Jian, W.; Yang, Z. D.; Bai, F. Q. Insights into the photocatalytic mechanism of the C4N/MoS2 heterostructure: A first-principle study. Chin. Chem. Lett. 2020, 31, 2319–2324.

    CAS  Google Scholar 

  173. Dai, W. L.; Yu, J. J.; Luo, S. L.; Hu, X.; Yang, L. X.; Zhang, S. Q.; Li, B.; Luo, X. B.; Zou, J. P. WS2 quantum dots seeding in Bi2S3 nanotubes:A novel Vis-NIR light sensitive photocatalyst with low-resistance junction interface for CO2 reduction. Chem. Eng. J. 2020, 389, 123430.

    CAS  Google Scholar 

  174. Wang, Q.; O’Hare, D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 2012, 112, 4124–4155.

    CAS  Google Scholar 

  175. Arif, M.; Yasin, G.; Luo, L.; Ye, W.; Mushtaq, M. A.; Fang, X. Y.; Xiang, X.; Ji, S. F.; Yan, D. P. Hierarchical hollow nanotubes of NiFeV-layered double hydroxides@CoVP heterostructures towards efficient, pH-universal electrocatalytical nitrogen reduction reaction to ammonia. Appl. Catal. B: Environ. 2020, 265, 118559.

    CAS  Google Scholar 

  176. Arif, M.; Yasin, G.; Shakeel, M.; Mushtaq, M. A.; Ye, W.; Fang, X. Y.; Ji, S. F.; Yan, D. P. Hierarchical CoFe-layered double hydroxide and g-C3N4 heterostructures with enhanced bifunctional photo/electrocatalytic activity towards overall water splitting. Mater. Chem. Front. 2019, 3, 520–531.

    CAS  Google Scholar 

  177. Mohapatra, L.; Parida, K. A review on the recent progress, challenges and perspective of layered double hydroxides as promising photocatalysts. J. Mater. Chem. A 2016, 4, 10744–10766.

    CAS  Google Scholar 

  178. Zhao, Y. F.; Jia, X. D.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; O’Hare, D.; Zhang, T. R. Layered double hydroxide nanostructured photocatalysts for renewable energy production. Adv. Energy Mater. 2016, 6, 1501974.

    Google Scholar 

  179. Cui, X. F.; Wang, J.; Liu, B.; Ling, S.; Long, R.; Xiong, Y. J. Turning Au nanoclusters catalytically active for visible-light-driven CO2 reduction through bridging ligands. J. Am. Chem. Soc. 2018, 140, 16514–16520.

    CAS  Google Scholar 

  180. Zhong, Q.; Li, Y.; Zhang, G. K. Two-dimensional MXene-based and MXene-derived photocatalysts: Recent developments and perspectives. Chem. Eng. J. 2021, 409, 128099.

    CAS  Google Scholar 

  181. Huang, P. F.; Zhang, S. L.; Ying, H. J.; Zhang, Z.; Han, W. Q. Few-layered Ti3C2 MXene anchoring bimetallic selenide NiCo2Se4 nanoparticles for superior Sodium-ion batteries. Chem. Eng. J. 2021, 417, 129161.

    CAS  Google Scholar 

  182. Cai, C. Y.; Zhou, W. B.; Fu, Y. Bioinspired MXene nacre with mechanical robustness for highly flexible all-solid-state photothermo-supercapacitor. Chem. Eng. J. 2021, 418, 129275.

    CAS  Google Scholar 

  183. Li, X. L.; Zhu, J. F.; Liang, W. Y.; Zhitomirsky, I. MXene (Ti3C2Tx) anodes for asymmetric supercapacitors with high active mass loading. Mater. Chem. Phys. 2021, 268, 124748.

    CAS  Google Scholar 

  184. Shi, Q. R.; Zhang, X. Y.; Yang, Y.; Huang, J. J.; Fu, X. L.; Wang, T. Y.; Liu, X. D.; Sun, A. W.; Ge, J. H.; Shen, J. Y. et al. 3D hierarchical architecture collaborating with 2D/2D interface interaction in NiAl-LDH/Ti3C2 nanocomposite for efficient and selective photoconversion of CO2. J. Energy Chem. 2021, 59, 9–18.

    CAS  Google Scholar 

  185. Que, M. D.; Cai, W. H.; Zhao, Y.; Yang, Y. W.; Zhang, B. Y.; Yun, S.; Chen, J.; Zhu, G. 2D/2D schottky heterojunction of in-situ growth FAPbBr3/Ti3C2 composites for enhancing photocatalytic CO2 reduction. J. Colloid. Interface Sci. 2022, 610, 538–545.

    CAS  Google Scholar 

  186. Zhang, J. Z.; Shi, J. J.; Tao, S.; Wu, L.; Lu, J. Cu2O/Ti3C2 MXene heterojunction photocatalysts for improved CO2 photocatalytic reduction performance. Appl. Surf. Sci. 2021, 542, 148685.

    CAS  Google Scholar 

  187. Baboukani, A. R.; Khakpour, I.; Drozd, V.; Wang, C. L. Liquid-based exfoliation of black phosphorus into phosphorene and its application for energy storage devices. Small Struct. 2021, 2, 2000148.

    Google Scholar 

  188. He, Z. Z.; Goulas, J.; Parker, E.; Sun, Y. Q.; Zhou, X. D.; Fei, L. Review on covalent organic frameworks and derivatives for electrochemical and photocatalytic CO2 reduction. Catal. Today, in press, https://doi.org/10.1016/j.cattod.2022.04.021.

  189. Xu, N. F.; Diao, Y. X.; Qin, X. H.; Xu, Z. T.; Ke, H. Z.; Zhu, X. J. Donor–acceptor covalent organic frameworks of nickel(II) porphyrin for selective and efficient CO2 reduction into CO. Dalton Trans. 2020, 49, 15587–15591.

    CAS  Google Scholar 

  190. Wang, S. Z.; Xu, X. Y.; Yue, Y.; Yu, K. S.; Shui, Q. J.; Huang, N.; Chen, H. Z. Semiconductive covalent organic frameworks: Structural design, synthesis, and application. Small Struct. 2020, 1, 2000021.

    Google Scholar 

  191. Wang, S. B.; Han, X.; Zhang, Y. H.; Tian, N.; Ma, T. Y.; Huang, H. W. Inside-and-out semiconductor engineering for CO2 photoreduction: From recent advances to new trends. Small Struct. 2021, 2, 2000061.

    CAS  Google Scholar 

  192. Zhao, Y. X.; Zhang, S.; Shi, R.; Waterhouse, G. I. N.; Tang, J. W.; Zhang, T. R. Two-dimensional photocatalyst design: A critical review of recent experimental and computational advances. Mater. Today 2020, 34, 78–91.

    CAS  Google Scholar 

  193. Chen, S. C.; Wang, H.; Kang, Z. X.; Jin, S.; Zhang, X. D.; Zheng, X. S.; Qi, Z. M.; Zhu, J. F.; Pan, B. C.; Xie, Y. Oxygen vacancy associated single-electron transfer for photofixation of CO2 to long-chain chemicals. Nat. Commun. 2019, 10, 788.

    CAS  Google Scholar 

  194. Yu, H. J.; Chen, F.; Li, X. W.; Huang, H. W.; Zhang, Q. Y.; Su, S. Q.; Wang, K. Y.; Mao, E. Y.; Mei, B.; Mul, G. et al. Synergy of ferroelectric polarization and oxygen vacancy to promote CO2 photoreduction. Nat. Commun. 2021, 12, 4594.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was jointly supported by the National Natural Science Foundations of China (Nos. 52272244 and 51972288) and the Fundamental Research Funds for the Central Universities (No. 2652022202).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongwei Huang, Shuobo Wang or Yan Mi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., Huang, H., Wang, S. et al. Recent advances in 2D semiconductor nanomaterials for photocatalytic CO2 reduction. Nano Res. 16, 8542–8569 (2023). https://doi.org/10.1007/s12274-022-5234-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-5234-1

Keywords

Navigation