Skip to main content
Log in

Carbon nanofibers embedded with Fe–Co alloy nanoparticles via electrospinning as lightweight high-performance electromagnetic wave absorbers

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

As a lot of electromagnetic pollution and interference issues have emerged, to overcome electromagnetic interference, prevent electromagnetic hazards, and develop new high-performance electromagnetic wave (EMW) absorbers have become a significant task in the field of materials science. In this paper, a three-dimensional (3D) carbon nanofibers network with core–shell structure, embedded with varied molar ratios of iron and cobalt (4:0, 3:1, 2:2, 1:3, 0:4), was effectively synthesized (Fe/Co@C-CNFs) via electrospinning. The phase, microstructure, magnetic and EMW absorption properties were studied. It is discovered that Fe/Co@C-CNFs doped with iron: cobalt = 1:1 have excellent EMW absorption capacity. When the matching thickness is 1.08 mm, the minimum reflection loss (RL) value is − 18.66 dB, while the maximum effective absorption bandwidth (EAB) reaches 4.2 GHz (13.9–18 GHz) at a thickness of 1.22 mm. This is owing to the absorbers' superior impedance matching and multiple reflections as well as the conductivity, dielectric, and magnetic losses of carbon nanofibers embedded with Fe–Co alloy particles. In addition, the radar cross section (RCS) of the absorbers has been calculated by CST Studio Suite, showing that the absorbing coating can effectively reduce the RCS at various angles, especially for Fe/Co@C-CNFs doped with iron:cobalt = 1:1. These findings not only provide new insights for the preparation of lightweight and high-performance electromagnetic wave absorbers, but also contribute to energy storage and conversion.

Graphical abstract

摘要

随着大量电磁污染和干扰问题的出现,克服电磁干扰,防止电磁危害,开发新型高性能电磁波吸收剂已成为材料科学领域的重要任务。在本文中,通过静电纺丝技术有效地合成了具有核壳结构的三维碳纳米纤维网络(Fe/Co@C-CNFs),其中嵌入了不同摩尔比的铁和钴(4:0, 3:1, 2:2, 1:3, 0:4),并对其物相、微观结构、磁性和电磁波吸收性能进行了研究。研究发现,按照铁钴比为1:1掺杂的Fe/Co@C-CNFs具有更优异的电磁波吸收能力。当匹配厚度为1.08 mm时,最小反射损耗为-18.66 dB,而最大有效吸收带宽在厚度为1.22 mm时达到4.2 GHz (13.9-18 GHz)。这归因于吸波剂优异的阻抗匹配和多重反射以及嵌入Fe-Co合金颗粒的碳纳米纤维的导电、介电和磁损耗。此外,通过CST Studio Suite计算了吸波剂的雷达散射截面(RCS),表明吸波涂层可以有效地降低各个角度的RCS,尤其是掺杂铁钴比例为1:1的Fe/Co@C-CNFs。这些发现不仅为制备轻质高性能的电磁波吸收剂提供了新的见解,而且有助于能量存储和转换的研究。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhao B, Bai ZY, Lv HL, Yan ZK, Du Y, Guo XQ, Zhang JC, Wu LM, Deng JS, Zhang DW, Che RC. Self-healing liquid metal magnetic hydrogels for smart feedback sensors and high-performance electromagnetic shielding. Nano-Micro Lett. 2023;15(1):79. https://doi.org/10.1007/s40820-023-01043-3.

    Article  CAS  Google Scholar 

  2. Zhang ZD, Zhao YM, Fan GH, Zhang WJ, Liu Y, Liu JR, Fan RH. Paper-based flexible metamaterial for microwave applications. EPJ Appl Metamater. 2021;8:6. https://doi.org/10.1051/epjam/2020016.

    Article  Google Scholar 

  3. Zhao B, Li Y, Zeng QW, Wang L, Ding JJ, Zhang R, Che RC. Galvanic replacement reaction involving core–shell magnetic chains and orientation-tunable microwave absorption properties. Small. 2020;16(40):2003502. https://doi.org/10.1002/smll.202003502.

    Article  CAS  Google Scholar 

  4. Wang BL, Wu Q, Fu YG, Liu T. A review on carbon/magnetic metal composites for microwave absorption. J Mater Sci Technol. 2021;86:91. https://doi.org/10.1016/j.jmst.2020.12.078.

    Article  CAS  Google Scholar 

  5. Qi GY, Liu Y, Chen LL, Xie PT, Pan D, Shi ZC, Quan B, Zhong YM, Liu CZ, Fan RH, Guo ZH. Lightweight Fe3C@Fe/C nanocomposites derived from wasted cornstalks with high-efficiency microwave absorption and ultrathin thickness. Adv Compos Hybrid Mater. 2021;4(4):1226. https://doi.org/10.1007/s42114-021-00368-0.

    Article  CAS  Google Scholar 

  6. Zhang HY, Li JY, Pan Y, Liu YF, Mahmood N, Jian X. Flexible carbon fiber-based composites for electromagnetic interference shielding. Rare Met. 2022;41(11):3612. https://doi.org/10.1007/s12598-022-02057-3.

    Article  CAS  Google Scholar 

  7. Zhang J, Shao LD, Li ZF, Zhang CB, Zhu WR. Graphene-based optically transparent metasurface capable of dual-polarized modulation for electromagnetic stealth. ACS Appl Mater Interfaces. 2022;14(27):31075. https://doi.org/10.1021/acsami.2c04414.

    Article  CAS  PubMed  Google Scholar 

  8. Lan D, Qin M, Liu JL, Wu GL, Zhang Y, Wu HJ. Novel binary cobalt nickel oxide hollowed-out spheres for electromagnetic absorption applications. Chem Eng J. 2020;382: 122797. https://doi.org/10.1016/j.cej.2019.122797.

    Article  CAS  Google Scholar 

  9. Xie PT, Liu Y, Feng M, Niu M, Liu CZ, Wu NN, Sui KY, Patil RR, Pan D, Guo ZH, Fan RH. Hierarchically porous Co/C nanocomposites for ultralight high-performance microwave absorption. Adv Compos Hybrid Mater. 2021;4(1):173. https://doi.org/10.1007/s42114-020-00202-z.

    Article  CAS  Google Scholar 

  10. Huidobro PA, Maier SA, Pendry JB. Tunable plasmonic metasurface for perfect absorption. EPJ Appl Metamater. 2017;4:6. https://doi.org/10.1051/epjam/2017001.

    Article  Google Scholar 

  11. Lu C, Mei ZL, Tang WX, Cui TJ. Manipulating scattering features by metamaterials. EPJ Appl Metamater. 2016;3:3. https://doi.org/10.1051/epjam/2016005.

    Article  Google Scholar 

  12. Chen X, Wang YQ, Guo Z, Wu X, Yang FQ, Sun Y, Li Y, Jiang HT, Chen H. Significant enhancement of magnetic shielding effect by using the composite metamaterial composed of mu-near-zero media and ferrite. EPJ Appl Metamater. 2021;8:13. https://doi.org/10.1051/epjam/2021008.

    Article  Google Scholar 

  13. Wang YM, Li TX, Zhao LF, Hu ZW, Gu YJ. Research progress on nanostructured radar absorbing materials. Energy Power Eng. 2011;03:580. https://doi.org/10.4236/epe.2011.34072.

    Article  CAS  Google Scholar 

  14. Liu PB, Gao S, Wang Y, Huang Y, He WJ, Huang WH, Luo JH. Carbon nanocages with N-doped carbon inner shell and Co/N-doped carbon outer shell as electromagnetic wave absorption materials. Chem Eng J. 2020;381:122653. https://doi.org/10.1016/j.cej.2019.122653.

    Article  CAS  Google Scholar 

  15. Zhao B, Liang LY, Bai ZY, Guo XQ, Zhang R, Jiang QL, Guo ZH. Poly(vinylidene fluoride)/Cu@Ni anchored reduced-graphene oxide composite films with folding movement to boost microwave absorption properties. ES Energy Environ. 2021;14:79. https://doi.org/10.30919/esee8c488.

    Article  CAS  Google Scholar 

  16. Han MR, Yang YF, Liu W, Zeng ZH, Liu JR. Recent advance in three-dimensional porous carbon materials for electromagnetic wave absorption. Sci China Mater. 2022;65(11):2911. https://doi.org/10.1007/s40843-022-2153-7.

    Article  Google Scholar 

  17. Zheng H, Nan K, Lu Z, Wang N, Wang Y. Core-shell FeCo@carbon nanocages encapsulated in biomass-derived carbon aerogel: Architecture design and interface engineering of lightweight, anti-corrosion and superior microwave absorption. J Colloid Interface Sci. 2023;646:555. https://doi.org/10.1016/j.jcis.2023.05.076.

    Article  CAS  PubMed  Google Scholar 

  18. Wu C, Wang J, Zhang XH, Kang L, Cao X, Zhang YY, Niu YT, Yu YY, Fu HL, Shen Z, Wu KJ, Yong Z, Zou JY, Wang B, Chen Z, Yang ZP, Li QW. Hollow gradient-structured iron-anchored carbon nanospheres for enhanced electromagnetic wave absorption. Nano-Micro Lett. 2022;15(1):7. https://doi.org/10.1007/s40820-022-00963-w.

    Article  CAS  Google Scholar 

  19. Du YC, Liu WW, Qiang R, Wang Y, Han XJ, Ma J, Xu P, et al. Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites. ACS Appl Mater Interfaces. 2014;6:12997. https://doi.org/10.1021/am502910d.

    Article  CAS  PubMed  Google Scholar 

  20. Park KY, Han JH, Lee SB, Kim JB, Yi JW, Lee SK. Fabrication and electromagnetic characteristics of microwave absorbers containing carbon nanofibers and NiFe particles. Compos Sci Technol. 2009;69(7):1271. https://doi.org/10.1016/j.compscitech.2009.02.033.

    Article  CAS  Google Scholar 

  21. Li JS, Huang H, Zhou YJ, Zhang CY, Li ZT. Research progress of graphene-based microwave absorbing materials in the last decade. J Mater Res. 2017;32(7):1213. https://doi.org/10.1557/jmr.2017.80.

    Article  CAS  Google Scholar 

  22. Zhang SL, Qi ZW, Zhao Y, Jiao Q, Ni X, Wang YJ, Chang Y, Ding C. Core/shell structured composites of hollow spherical CoFe2O4 and CNTs as absorbing materials. J Alloys Compd. 2017;694:309. https://doi.org/10.1016/j.jallcom.2016.09.324.

    Article  CAS  Google Scholar 

  23. Wang FY, Sun YQ, Li DR, Zhong B, Wu ZG, Zuo SY, Yan D, Zhuo RF, Feng JJ, Yan PX. Microwave absorption properties of 3D cross-linked Fe/C porous nanofibers prepared by electrospinning. Carbon. 2018;134:264. https://doi.org/10.1016/j.carbon.2018.03.081.

    Article  CAS  Google Scholar 

  24. Liu ZX, Zhang LJ, Zhao YH, Bi XR, Cai WJ, Tan LW, Liu Y, Liu D, Zhang ZD. Fe@Fe3C core-shell nanoparticles embedded in polyvinyl alcohol-derived porous carbon toward light and high-performance microwave absorption. ECS J Solid State Sci Technol. 2022;11(10): 101003. https://doi.org/10.1149/2162-8777/ac96a3.

    Article  CAS  Google Scholar 

  25. An Y, Qin JY, Sun K, Tian JH, Wang ZY, Zhao Y, Li XF, Fan RH. Carbon fiber skeleton/silver nanowires composites with tunable negative permittivity behavior. EPJ Appl Metamater. 2021;8:1. https://doi.org/10.1051/epjam/2020019.

    Article  Google Scholar 

  26. Gubin SP, Spichkin YuI, Koksharov YuA, Yurkov GY, Kozinkin AV, Nedoseikina TI, Korobov MS, Tishin AM. Magnetic and structural properties of Co nanoparticles in a polymeric matrix. J Magn Magn Mater. 2003;265(2):234. https://doi.org/10.1016/S0304-8853(03)00271-3.

    Article  CAS  Google Scholar 

  27. Tomita S, Hikita M, Fujii M, Hayashi S, Akamatsu K, Deki S, Yasuda H. Formation of Co filled carbon nanocapsules by metal-template graphitization of diamond nanoparticles. J Appl Phys. 2000;88(9):5452. https://doi.org/10.1063/1.1317242.

    Article  CAS  Google Scholar 

  28. Xiang J, Li JL, Zhang XH, Ye Q, Xu JH, Shen XQ. Magnetic carbon nanofibers containing uniformly dispersed Fe/Co/Ni nanoparticles as stable and high-performance electromagnetic wave absorbers. J Mater Chem A. 2014;2(40):16905.

    Article  CAS  Google Scholar 

  29. Izadshenas S, Masłowski P, Herr T, Słowik K. Multiresonant metasurface for Raman spectroscopy beyond single molecule detection level. EPJ Appl Metamater. 2022;9:11. https://doi.org/10.1051/epjam/2022009.

    Article  Google Scholar 

  30. Yin YC, Liu XF, Wei XJ, Yu RH, Shui JL. Porous CNTs/Co composite derived from zeolitic imidazolate framework: a lightweight, ultrathin, and highly efficient electromagnetic wave absorber. ACS Appl Mater Interfaces. 2016;8(50):34686. https://doi.org/10.1021/acsami.6b12178.

    Article  CAS  PubMed  Google Scholar 

  31. Fan GH, Jiang YL, Hou CX, Deng XR, Liu ZX, Zhang LJ, Zhang ZD, Fan RH. Extremely facile and green synthesis of magnetic carbon composites drawn from natural bulrush for electromagnetic wave absorbing. J Alloys Compd. 2020;835: 155345. https://doi.org/10.1016/j.jallcom.2020.155345.

    Article  CAS  Google Scholar 

  32. Zhao YY, Yang XB, Yan LL, Bai YP, Li SW, Sorokin P, Shao L. Biomimetic nanoparticle-engineered superwettable membranes for efficient oil/water separation. J Membr Sci. 2021;618: 118525. https://doi.org/10.1016/j.memsci.2020.118525.

    Article  CAS  Google Scholar 

  33. Yin Y, Jiang B, Zhu XF, Meng LH, Huang YD. Investigation of thermostability of modified graphene oxide/methylsilicone resin nanocomposites. Eng Sci. 2018;5(7):73. https://doi.org/10.30919/es8d762.

    Article  Google Scholar 

  34. Wang ZX, Li XF, Wang LY, Li YP, Qin JY, Xie PT, Qu YP, Sun K, Fan RH. Flexible multi-walled carbon nanotubes/polydimethylsiloxane membranous composites toward high-permittivity performance. Adv Compos Hybrid Mater. 2020;3(1):1. https://doi.org/10.1007/s42114-020-00144-6.

    Article  CAS  Google Scholar 

  35. Wu NN, Xu DM, Wang Z, Wang F, Liu JR, Liu W, Shao Q, Liu H, Gao Q, Guo ZH. Achieving superior electromagnetic wave absorbers through the novel metal-organic frameworks derived magnetic porous carbon nanorods. Carbon. 2019;145:433. https://doi.org/10.1016/j.carbon.2019.01.028.

    Article  CAS  Google Scholar 

  36. Deng WB, Li TH, Li H, Liu X, Dang AL, Liu Y, Wu HJ. Controllable graphitization degree of carbon foam bulk toward electromagnetic wave attenuation loss behavior. J Colloid Interface Sci. 2022;618:129. https://doi.org/10.1016/j.jcis.2022.03.071.

    Article  CAS  PubMed  Google Scholar 

  37. Deng WB, Li TH, Li H, Dang AL, Liu X, Zhai JH, Wu HJ. Morphology modulated defects engineering from MnO2 supported on carbon foam toward excellent electromagnetic wave absorption. Carbon. 2023;206:192. https://doi.org/10.1016/j.carbon.2023.02.039.

    Article  CAS  Google Scholar 

  38. Yang ML, Yuan Y, Li Y, Sun XX, Wang S, Liang L, Ning YH, Li JJ, Yin W, Che RC, Li YB. Dramatically enhanced electromagnetic wave absorption of hierarchical CNT/Co/C fiber derived from cotton and metal-organic-framework. Carbon. 2020;161:517. https://doi.org/10.1016/j.carbon.2020.01.073.

    Article  CAS  Google Scholar 

  39. Zhang CL, Nie YG, Shi HF, Ye EJ, Zhao JQ, Han ZD, Xuan HC, Wang DH. Tunable magnetostructural coupling and large magnetocaloric effect in Mn1−xNi1−xFe2xSi1−xGax. J Magn Magn Mater. 2017;432:527. https://doi.org/10.1016/j.jmmm.2017.02.046.

    Article  CAS  Google Scholar 

  40. Liu PJ, Yao ZJ, Zhou JT, Yang ZH, Kong LB. Small magnetic Co-doped NiZn ferrite/graphene nanocomposites and their dual-region microwave absorption performance. J Mater Chem C. 2016;4(41):9738. https://doi.org/10.1039/C6TC03518C.

    Article  CAS  Google Scholar 

  41. Zhao B, Yan ZK, Du YQ, Rao LJ, Chen GY, Wu YY, Yang LT, Zhang JC, Wu LM, Zhang DW, Che RC. High-entropy enhanced microwave attenuation in titanate perovskites. Adv Mater. 2023;35(11):2210243. https://doi.org/10.1002/adma.202210243.

    Article  CAS  Google Scholar 

  42. Du YQ, Yan ZK, You WB, Men QQ, Chen GY, Lv XW, Wu YY, Luo K, Zhao B, Zhang JC, Che RC. Balancing MXene surface termination and interlayer spacing enables superior microwave absorption. Adv Funct Mater. 2023;33(34):2301449. https://doi.org/10.1002/adfm.202301449.

    Article  CAS  Google Scholar 

  43. Wen CY, Li X, Zhang RX, Xu CY, You W, Liu ZW, Zhao B, Che RC. High-density anisotropy magnetism enhanced microwave absorption performance in Ti3C2Tx MXene@Ni microspheres. ACS Nano. 2022;16(1):1150. https://doi.org/10.1021/acsnano.1c08957.

    Article  CAS  PubMed  Google Scholar 

  44. Wu XM, Xie F, Yao YL, Sun Y, Hua ZS, Zhao Z, Yang YX. Template-free preparation of porous Co microfibers from spent lithium-ion batteries as a promising microwave absorber. Rare Met. 2022;41(10):3475. https://doi.org/10.1007/s12598-022-02034-w.

    Article  CAS  Google Scholar 

  45. Wang HC, Xiang L, Wei W, An J, He J, Gong CH, Hou YL. Efficient and lightweight electromagnetic wave absorber derived from metal organic framework-encapsulated cobalt nanoparticles. ACS Appl Mater Interfaces. 2017;9(48):42102. https://doi.org/10.1021/acsami.7b13796.

    Article  CAS  PubMed  Google Scholar 

  46. Zhao YH, Zhou Z, Chen GX, Li QF. Coaxial double-layer-coated multiwalled carbon nanotubes toward microwave absorption. Mater Lett. 2018;233:203. https://doi.org/10.1016/j.matlet.2018.09.010.

    Article  CAS  Google Scholar 

  47. Liu Y, Zeng ZH, Zheng SN, Qiao J, Liu W, Wu LL, Liu JR. Facile manufacturing of Ni/MnO nanoparticle embedded carbon nanocomposite fibers for electromagnetic wave absorption. Compos Part B Eng. 2022;235:109800. https://doi.org/10.1016/j.compositesb.2022.109800.

    Article  CAS  Google Scholar 

  48. Liang LY, Li QM, Yan X, Feng Y, Wang Y, Zhang HB, Zhou XP, Liu CT, Shen CY, Xie XL. Multifunctional magnetic Ti3C2Tx MXene/graphene aerogel with superior electromagnetic wave absorption performance. ACS Nano. 2021;15(4):6622. https://doi.org/10.1021/acsnano.0c09982.

    Article  CAS  PubMed  Google Scholar 

  49. Gao ZG, Yang K, Zhao ZH, Lan D, Zhou Q, Zhang JQ, Wu HJ. Design principles in MOF-derived electromagnetic wave absorption materials: review and perspective. Int J Miner Metall Mater. 2023;30(3):405. https://doi.org/10.1007/s12613-022-2555-8.

    Article  Google Scholar 

  50. Gao J, Ma ZJ, Liu FL, Weng XY. Synthesis and electromagnetic wave absorption properties of Gd-Co ferrite@carbon core–shell structure composites. Rare Met. 2022. https://doi.org/10.1007/s12598-022-02123-w.

    Article  Google Scholar 

  51. Yuan MY, Lv HL, Cheng HW, Zhao B, Chen GY, Zhang JC, Che RC. Atomic and electronic reconstruction in defective 0D molybdenum carbide heterostructure for regulating lower-frequency microwaves. Adv Funct Mater. 2023;33(33):2302003. https://doi.org/10.1002/adfm.202302003.

    Article  CAS  Google Scholar 

  52. Xing Y, Fan YC, Yan ZK, Zhao B, Huang YJ, Pan W. Core-shell LaOCl/LaFeO3 nanofibers with matched impedance for high-efficiency electromagnetic wave absorption. Sci China-Mater. 2023;66(4):1587. https://doi.org/10.1007/s40843-022-2264-9.

    Article  CAS  Google Scholar 

  53. Yu D, Shi GM, Shi FN, Bao XK, Li ST, Li Q. N-doped carbon nanofiber embedded with TiN nanoparticles: a type of efficient microwave absorbers with lightweight and wide-bandwidth. J Alloys Compd. 2022;920:165791. https://doi.org/10.1016/j.jallcom.2022.165791.

    Article  CAS  Google Scholar 

  54. Deng WB, Li TH, Li H, Niu RP, Dang AL, Cheng YL, Wu HJ. In situ construction of hierarchical core-shell SiCnws@SiO2-carbon foam hybrid composites with enhanced polarization loss for highly efficient electromagnetic wave absorption. Carbon. 2023;202:103. https://doi.org/10.1016/j.carbon.2022.10.081.

    Article  CAS  Google Scholar 

  55. Zhao B, Du Y, Lv H, Yan Z, Jian H, Chen G, Wu Y, Fan B, Zhang J, Wu L, Zhang DW, Che R. Liquid-metal-assisted programmed galvanic engineering of core–shell nanohybrids for microwave absorption. Adv Funct Mater. 2023;33(34):2302172. https://doi.org/10.1002/adfm.202302172.

    Article  CAS  Google Scholar 

  56. Wang P, Liu PA, Ye S. Preparation and microwave absorption properties of Ni(Co/Zn/Cu)Fe2O4/SiC@SiO2 composites. Rare Met. 2019;38(1):59. https://doi.org/10.1007/s12598-016-0752-1.

    Article  CAS  Google Scholar 

  57. Cui XQ, Liang XH, Liu W, Gu WH, Ji GB, Du YW. Stable microwave absorber derived from 1D customized heterogeneous structures of Fe3N@C. Chem Eng J. 2020;381: 122589. https://doi.org/10.1016/j.cej.2019.122589.

    Article  CAS  Google Scholar 

  58. Zheng XL, Feng J, Zong Y, Miao H, Hu XY, Bai JT, Li XH. Hydrophobic graphene nanosheets decorated by monodispersed superparamagnetic Fe3O4 nanocrystals as synergistic electromagnetic wave absorbers. J Mater Chem C. 2015;3(17):4452. https://doi.org/10.1039/C5TC00313J.

    Article  CAS  Google Scholar 

  59. Zhang ZD, Li ZH, Zhao YH, Bi XR, Zhang ZY, Long ZK, Liu ZX, Zhang LJ, Cai WJ, Liu Y, Fan RH. Dielectric enhancement effect in biomorphic porous carbon-based iron@iron carbide ‘meta-powder’ for light-weight microwave absorption material design. Adv Compos Hybrid Mater. 2022;5(4):3176. https://doi.org/10.1007/s42114-022-00445-y.

    Article  CAS  Google Scholar 

  60. Guo SN, Zhang YQ, Chen JB, Wu Y, Cao JM, Tang SL, Ji GB. The excellent electromagnetic wave absorbing properties of carbon fiber composites: the effect of metal content. Inorg Chem Front. 2022;9(13):3244. https://doi.org/10.1039/D2QI00854H.

    Article  CAS  Google Scholar 

  61. Shen YQ, Zhang F, Song PF, Zhang YC, Zhang T, Wen XQ, Ma JQ, Zhang D, Du XY. Design and synthesis of magnetic porous carbon nanofibers with excellent microwave absorption. J Alloys Compd. 2022;903: 163971. https://doi.org/10.1016/j.jallcom.2022.163971.

    Article  CAS  Google Scholar 

  62. Zhang ZY, Zhao YH, Li ZH, Zhang LJ, Liu ZX, Long ZK, Li YJ, Liu Y, Fan RH, Sun K, Zhang ZD. Synthesis of carbon/SiO2 core-sheath nanofibers with Co-Fe nanoparticles embedded in via electrospinning for high-performance microwave absorption. Adv Compos Hybrid Mater. 2022;5(1):513. https://doi.org/10.1007/s42114-021-00350-w.

    Article  CAS  Google Scholar 

  63. Lv J, Liang XH, Ji GB, Quan B, Liu W, Du YW. Structural and carbonized design of 1D FeNi/C nanofibers with conductive network to optimize electromagnetic parameters and absorption abilities. ACS Sustain Chem Eng. 2018;6(6):7239. https://doi.org/10.1021/acssuschemeng.7b03807.

    Article  CAS  Google Scholar 

  64. Dong SX, Li J, Zhang S, Li N, Li B, Zhang QL, Ge LQ. Excellent microwave absorption of lightweight PAN-based carbon nanofibers prepared by electrospinning. Colloids Surf-Physicochem Eng Asp. 2022;651: 129670. https://doi.org/10.1016/j.colsurfa.2022.129670.

    Article  CAS  Google Scholar 

  65. Li Y, Liu XF, Nie XY, Yang W, Wang YD, Yu RH, Shui JL. Multifunctional organic–inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material. Adv Funct Mater. 2019;29(10):1807624. https://doi.org/10.1002/adfm.201807624.

    Article  CAS  Google Scholar 

  66. Chen JB, Zheng J, Wang F, Huang QQ, Ji GB. Carbon fibers embedded with FeIII-MOF-5-derived composites for enhanced microwave absorption. Carbon. 2021;174:509. https://doi.org/10.1016/j.carbon.2020.12.077.

    Article  CAS  Google Scholar 

  67. Zhao B, Du YQ, Yan ZK, Rao LJ, Chen GY, Yuan MY, Yang LT, Zhang JC, Che RC. Structural defects in phase-regulated high-entropy oxides toward superior microwave absorption properties. Adv Funct Mater. 2023;33(1):2209924. https://doi.org/10.1002/adfm.202209924.

    Article  CAS  Google Scholar 

  68. Zhao ZH, Zhang LM, Wu HJ. Hydro/organo/ionogels: “controllable” electromagnetic wave absorbers. Adv Mater. 2022;34(43):2205376. https://doi.org/10.1002/adma.202205376.

    Article  CAS  Google Scholar 

  69. Shen X, Yang SH, Yin PG, Li CQ, Ye JR, Wang GS. Enhancement in microwave absorption properties by adjusting the sintering conditions and carbon shell thickness of Ni@C submicrospheres. CrystEngComm. 2022;24(4):765. https://doi.org/10.1039/D1CE01525G.

    Article  CAS  Google Scholar 

  70. Huang LX, Duan YP, Pang HF. Thin layers of microwave absorbing metamaterials with carbon fibers and FeSi alloy ribbons to enhance the absorption properties. EPJ Appl Metamater. 2023;10:3. https://doi.org/10.1051/epjam/2022019.

    Article  Google Scholar 

  71. Liang HS, Chen G, Liu D, Li ZJ, Hui S, Yun JJ, Zhang LM, Wu HJ. Exploring the Ni 3d orbital unpaired electrons induced polarization loss based on Ni single-atoms model absorber. Adv Funct Mater. 2023;33(7):2212604. https://doi.org/10.1002/adfm.202212604.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 52272117), the National Key Research and Development Program of China (Nos. 2022YFB3505104 and 2022YFB3706604) and the Key Research and Development Program of Shandong Province (No. 2022TSGC2322). The authors would like to thank Shiyanjia Lab (www.shiyanjia.com) for the support of TEM/HRTEM/SAED tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zi-Dong Zhang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 467 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, WJ., Jiang, JG., Zhang, ZD. et al. Carbon nanofibers embedded with Fe–Co alloy nanoparticles via electrospinning as lightweight high-performance electromagnetic wave absorbers. Rare Met. 43, 2769–2783 (2024). https://doi.org/10.1007/s12598-023-02592-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02592-7

Keywords

Navigation