Skip to main content
Log in

In situ assembly of well-dispersed Fe0.64Ni0.36 nanoparticles on electro-spun carbon nanofibers (CNFs) for efficient microwave absorption

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The rapid development of electronic information technology makes the impact of electromagnetic waves on human life more and more prominent. Through electrospinning and high-temperature carbonization processes, we composited magnetic nanoparticles and carbon fibers and successfully embedded Fe–Ni nanoparticles into nanofibers uniformly. Through the comparative study of the alloy particle concentration in the composite material, we found that the Fe0.64Ni0.36@CNF composite material with an appropriate composition exhibits excellent microwave absorption performance. When the matching thickness is 4 mm, the minimum reflection loss can reach − 34.21 dB at 8.6 GHz frequency, the maximum EAB reaches 5 GHz (11.9–16.9 GHz), and the comprehensive EAB is 10.8 GHz. Our results show that magnetic nanoparticles can regulate the electromagnetic parameters of carbon materials to a certain extent, and reasonable compounding can make them have better impedance matching and attenuation characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Zhao B, Li Y, Zeng Q, Wang L, Ding J, Zhang R (2020) Galvanic replacement reaction involving core-shell magnetic chains and orientation-tunable microwave absorption properties. Small 16:2003502. https://doi.org/10.1002/smll.202003502

    Article  CAS  Google Scholar 

  2. Huang W, Tong Z, Wang R, Liao Z, Bi Y, Chen Y, Ma M, Lyu P, Ma Y (2020) A review on electrospinning nanofibers in the field of microwave absorption. Ceram Int 46:26441–26453. https://doi.org/10.1016/j.ceramint.2020.07.193

    Article  CAS  Google Scholar 

  3. Arief I, Biswas S, Bose S (2017) FeCo-anchored reduced graphene oxide framework-based soft composites containing carbon nanotubes as highly efficient microwave absorbers with excellent heat dissipation ability. ACS Appl Mater Interfaces 9:19202–19214. https://doi.org/10.1021/acsami.7b04053

    Article  CAS  Google Scholar 

  4. Bao S, Tang W, Song Z, Jiang Q, Jiang Z, Xie Z (2020) Synthesis of sandwich-like Co15Fe85@C/RGO multicomponent composites with tunable electromagnetic parameters and microwave absorption performance. Nanoscale 12:18790–18799. https://doi.org/10.1039/D0NR04615A

    Article  CAS  Google Scholar 

  5. Wang L, Huang Y, Sun X, Huang H, Liu P, Zong M, Wang Y (2014) Synthesis and microwave absorption enhancement of graphene@Fe3O4@SiO2@NiO nanosheet hierarchical structures. Nanoscale 6:3157–3164. https://doi.org/10.1039/C3NR05313J

    Article  CAS  Google Scholar 

  6. Gupta S, Tai N-H (2019) Carbon materials and their composites for electromagnetic interference shielding effectiveness in X-band. Carbon 152:159–187. https://doi.org/10.1016/j.carbon.2019.06.002

    Article  CAS  Google Scholar 

  7. Jinxiao W, Jianfeng Y, Jun Y, Hui Z (2020) Design of novel CNT/RGO/ZIF-8 ternary hybrid structure for lightweight and highly effective microwave absorption. Nanotechnology 31:414001

    Article  Google Scholar 

  8. Guo R, Su D, Chen F, Cheng Y, Wang X, Gong R, Luo H (2022) Hollow beaded Fe3C/N-doped carbon fibers toward broadband microwave absorption. ACS Appl Mater Interfaces 14:3084–3094. https://doi.org/10.1021/acsami.1c21272

    Article  CAS  Google Scholar 

  9. Feng Y, Xia L, Ding C, Yang H, Xu G, Zhang T, Xiong L, Qin C, Wen G (2021) Boosted multi-polarization from silicate-glass@rGO doped with modifier cations for superior microwave absorption. J Colloid Interface Sci 593:96–104. https://doi.org/10.1016/j.jcis.2021.03.007

    Article  CAS  Google Scholar 

  10. Kang Y, Jiang Z, Ma T, Chu Z, Li G (2016) Hybrids of reduced graphene oxide and hexagonal boron nitride: lightweight absorbers with tunable and highly efficient microwave attenuation properties. ACS Appl Mater Interfaces 8:32468–32476. https://doi.org/10.1021/acsami.6b11843

    Article  CAS  Google Scholar 

  11. Guan G, Gao G, Xiang J, Yang J, Li X, Zhang K (2020) A novel three-dimensional Fe3SnC/C hybrid nanofiber absorber for lightweight and highly-efficient microwave absorption. Phys Chem Chem Phys 22:26104–26108. https://doi.org/10.1039/D0CP04594B

    Article  CAS  Google Scholar 

  12. Li WX, Guo F, Wei XQ, Du Y, Chen Y (2020) Preparation of Ni/C porous fibers derived from jute fibers for high-performance microwave absorption. RSC Adv 10:36644–36653. https://doi.org/10.1039/D0RA06817A

    Article  CAS  Google Scholar 

  13. Li X, You W, Xu C, Wang L, Yang L, Li Y, Che R (2021) 3D Seed-germination-like MXene with in situ growing CNTs/Ni heterojunction for enhanced microwave absorption via polarization and magnetization. Nanomicro Lett 13:157–171. https://doi.org/10.1007/s40820-021-00680-w

    Article  CAS  Google Scholar 

  14. Yang M, Yang Z, Lv C, Wang Z, Lu Z, Lu G, Jia X, Wang C (2022) Electrospun bifunctional MXene-based electronic skins with high performance electromagnetic shielding and pressure sensing. Composites Sci Technol 221:109313. https://doi.org/10.1016/j.compscitech.2022.109313

    Article  CAS  Google Scholar 

  15. Wang J, Han M, Liu Y, Xiang Y, Liang C, Su X, Liu Y (2023) Multifunctional microwave absorption materials of multiscale cobalt sulfide/diatoms co-doped carbon aerogel. J Colloid Interface Sci 646:970–979. https://doi.org/10.1016/j.jcis.2023.05.094

    Article  CAS  Google Scholar 

  16. Su X, Han M, Wang J, Wu Q, Duan H, Liang C, Zhang S, Pu Z, Liu Y (2022) Regulated dielectric loss based on core-sheath carbon-carbon hierarchical nanofibers toward the high-performance microwave absorption. J Colloid Interface Sci 624:619–628. https://doi.org/10.1016/j.jcis.2022.05.165

    Article  CAS  Google Scholar 

  17. Jagadale A, Zhou X, Blaisdell D, Yang S (2018) Carbon nanofibers (CNFs) supported cobalt- nickel sulfide (CoNi2S4) nanoparticles hybrid anode for high performance lithium ion capacitor. Sci Rep 8:1602–1613. https://doi.org/10.1038/s41598-018-19787-z

    Article  CAS  Google Scholar 

  18. Lee YI, Jang DH, Choa YH (2016) Synthesis, morphology control and electromagnetic wave absorption properties of electrospun FeCo alloy nanofibers. J Nanosci Nanotechnol 16:5190–5194. https://doi.org/10.1166/jnn.2016.12269

    Article  CAS  Google Scholar 

  19. Hou Z, Xiang J, Zhang X, Gong L, Mi J, Shen X, Zhang K (2018) Microwave absorption properties of single- and double-layer absorbers based on electrospun nickel–zinc spinel ferrite and carbon nanofibers. J Mater Sci Mater Electron 29:12258–12268. https://doi.org/10.1007/s10854-018-9338-z

    Article  CAS  Google Scholar 

  20. Samadi A, Hosseini SM, Mohseni M (2018) Investigation of the electromagnetic microwaves absorption and piezoelectric properties of electrospun Fe3O4-GO/PVDF hybrid nanocomposites. Org Electron 59:149–155. https://doi.org/10.1016/j.orgel.2018.04.037

    Article  CAS  Google Scholar 

  21. Huo Y, Zhao K, Peng M, Li F, Lu Z, Meng Q, Tang Y (2022) Anchoring of SiC and Fe3Si nanocrystallines in carbon nanofibers inducing interfacial polarization to promote microwave attenuation ability. J Alloys Comp 891:162006 https://doi.org/10.1016/j.jallcom.2021.162006

    Article  CAS  Google Scholar 

  22. Liu H, Li Y, Yuan M, Sun G, Li H, Ma S, Liao Q, Zhang Y (2018) In situ preparation of cobalt nanoparticles decorated in N-doped carbon nanofibers as excellent electromagnetic wave absorbers. ACS Appl Mater Interfaces 10:22591–22601. https://doi.org/10.1021/acsami.8b05211

    Article  CAS  Google Scholar 

  23. Wang L, Yu Y, Chen P-C, Chen C-H (2008) Electrospun carbon–cobalt composite nanofiber as an anode material for lithium ion batteries. Scripta Mater 58:405–408. https://doi.org/10.1016/j.scriptamat.2007.10.024

    Article  CAS  Google Scholar 

  24. Barakat NAM, Abadir MF, Nam KT, Hamza AM, Al-Deyab SS, Baek W-i, Kim HY (2011) Synthesis and film formation of iron–cobalt nanofibers encapsulated in graphite shell: magnetic, electric and optical properties study. J Mater Chem 21:10957–10964. https://doi.org/10.1039/C1JM00052G

    Article  CAS  Google Scholar 

  25. Abdalla I, Yu J, Li Z, Ding B (2018) Nanofibrous membrane constructed magnetic materials for high-efficiency electromagnetic wave absorption. Compos B Eng 155:397–404. https://doi.org/10.1016/j.compositesb.2018.09.026

    Article  CAS  Google Scholar 

  26. Yang M, Yuan Y, Li Y, Sun X, Wang S, Liang L, Ning Y, Li J, Yin W, Che R et al (2020) Dramatically enhanced electromagnetic wave absorption of hierarchical CNT/Co/C fiber derived from cotton and metal-organic-framework. Carbon 161:517–527. https://doi.org/10.1016/j.carbon.2020.01.073

    Article  CAS  Google Scholar 

  27. Liu Q, Liu X, Feng H, Shui H, Yu R (2017) Metal organic framework-derived Fe/carbon porous composite with low Fe content for lightweight and highly efficient electromagnetic wave absorber. Chem Eng J 314:320–327. https://doi.org/10.1016/j.cej.2016.11.089

    Article  CAS  Google Scholar 

  28. Li Z, Deng L, Kinloch IA, Young RJ (2023) Raman spectroscopy of carbon materials and their composites: Graphene, nanotubes and fibres. Progress Mater Sci 135:101089

    Article  CAS  Google Scholar 

  29. Guan G, Yan L, Zhou Y, Xiang J, Gao G, Zhang H, Gai Z, Zhang K (2022) Composition design and performance regulation of three-dimensional interconnected FeNi@carbon nanofibers as ultra-lightweight and high efficiency electromagnetic wave absorbers. Carbon 197:494–507. https://doi.org/10.1016/j.carbon.2022.07.005

    Article  CAS  Google Scholar 

  30. Chen F, Zhang S, Ma B, Xiong Y, Luo H, Cheng Y, Li X, Wang X, Gong R (2022) Bimetallic CoFe-MOF@Ti3C2Tx MXene derived composites for broadband microwave absorption. Chem Eng J 31:134007. https://doi.org/10.1016/j.cej.2021.134007

    Article  CAS  Google Scholar 

  31. Wei Y, Yue J, Tang X, Huang X (2017) Enhanced microwave-absorbing properties of FeCo magnetic film-functionalized silicon carbide fibers fabricated by a radio frequency magnetron method. Ceram Int 43:16371–16375. https://doi.org/10.1016/j.ceramint.2017.09.011

    Article  CAS  Google Scholar 

  32. Ouyang J, He Z, Zhang Y, Yang H, Zhao Q (2019) Trimetallic FeCoNi@C nanocomposite hollow spheres derived from metal-organic frameworks with superior electromagnetic wave absorption ability. ACS Appl Mater Interfaces 11:39304–39314. https://doi.org/10.1021/acsami.9b11430

    Article  CAS  Google Scholar 

  33. Wang P, Cheng L, Zhang Y, Zhang L (2017) Synthesis of SiC nanofibers with superior electromagnetic wave absorption performance by electrospinning. J Alloy Compd 716:306–320. https://doi.org/10.1016/j.jallcom.2017.05.059

    Article  CAS  Google Scholar 

  34. Yang Z, You W, Xiong X, Zhang R, Wu Z, Zhao B, Wang M, Liu X, Zhang X, Che R (2022) Morphology-evolved succulent-like FeCo microarchitectures with magnetic configuration regulation for enhanced microwave absorption. ACS Appl Mater Interfaces 14(28):32369–32378. https://doi.org/10.1021/acsami.2c06767

    Article  CAS  Google Scholar 

  35. Huang X, Liu X, Jia Z, Wang B, Wu X, Wu G (2021) Synthesis of 3D cerium oxide/porous carbon for enhanced electromagnetic wave absorption performance. Adv Compos Hybrid Mater 4:1398–1412. https://doi.org/10.1007/s42114-021-00304-2

    Article  CAS  Google Scholar 

  36. Lu Y, Wang Y, Li H, Lin Y, Jiang Z, Xie Z, Kuang Q, Zheng L (2015) MOF-derived porous Co/C nanocomposites with excellent electromagnetic wave absorption properties. ACS Appl Mater Interfaces 7:13604–13611. https://doi.org/10.1021/acsami.5b03177

    Article  CAS  Google Scholar 

  37. Jiang J, Li D, Geng D, An J, He J, Liu W, Zhang Z (2014) Microwave absorption properties of core double-shell FeCo/C/BaTiO(3) nanocomposites. Nanoscale 6:3967–3971. https://doi.org/10.1039/C3NR04087A

    Article  CAS  Google Scholar 

  38. Wang Y, Chen D, Yin X, Xu P, Wu F, He M (2015) Hybrid of MoS2 and reduced graphene oxide: a lightweight and broadband electromagnetic wave absorber. ACS Appl Mater Interfaces 7:26226–26234. https://doi.org/10.1021/acsami.5b08410

    Article  CAS  Google Scholar 

  39. Wang G, Peng X, Yu L, Wan G, Lin S, Qin Y (2015) Enhanced microwave absorption of ZnO coated with Ni nanoparticles produced by atomic layer deposition. J Mater Chem A 3:2734–2740. https://doi.org/10.1039/C4TA06053A

    Article  CAS  Google Scholar 

  40. Zeng X, Cheng X, Yu R, Stucky GD (2020) Electromagnetic microwave absorption theory and recent achievements in microwave absorbers. Carbon 168:606–623. https://doi.org/10.1016/j.carbon.2020.07.028

    Article  CAS  Google Scholar 

  41. Duan MC, Yu LM, Sheng LM, An K, Ren W, Zhao XL (2014) Electromagnetic and microwave absorbing properties of SmCo coated single-wall carbon nanotubes/NiZn-ferrite nanocrystalline composite. J Appl Phy 115:174101. https://doi.org/10.1063/14873636

    Article  Google Scholar 

  42. Su X, Wang J, Han M, Liu Y, Zhang B, Huo S, Wu Q, Liu Y, Xu H-X (2023) Broadband electromagnetic wave absorption using pure carbon aerogel by synergistically modulating propagation path and carbonization degree. J Colloid Interface Sci 652:780–788. https://doi.org/10.1016/j.jcis.2023.08.113

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (NSFC No. 52170019), the Fundamental Research Funds for the Central Universities (No.06500100), the “Ten thousand plan”-National High-level personnel of special support program, the Equipment Comprehensive Research Project (JK20211A040541).

Author information

Authors and Affiliations

Authors

Contributions

GZ contributed to conceptualization, formal analysis, investigation, and writing—original draft. ST, XS, and YZ were involved in investigation and resources. YS, Pw, and Lq contributed to supervision and project administration. DX was involved in writing—review and editing and funding acquisition. LC contributed to funding acquisition.

Corresponding authors

Correspondence to Shuyan Yu, Xiaodong Dai or Congju Li.

Additional information

Handling Editor: Dale Huber.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Z., Shi, T., Yu, S. et al. In situ assembly of well-dispersed Fe0.64Ni0.36 nanoparticles on electro-spun carbon nanofibers (CNFs) for efficient microwave absorption. J Mater Sci 59, 1380–1397 (2024). https://doi.org/10.1007/s10853-023-09292-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-09292-8

Navigation