Skip to main content
Log in

Carbon nanofibers membrane bridged with graphene nanosheet and hyperbranched polymer for high-performance osmotic energy harvesting

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Reverse electrodialysis (RED), based on ion-selective membranes, is one of the most promising technologies for capturing osmotic energy. As key elements of the RED system, ion-selective membranes must meet the crucial demands of mechanical stability, anti-fouling characteristics, easy fabrication, and high power density; however, this still remains a challenge. In this study, we demonstrated a large-scale, mechanically stable, and high-porosity membrane obtained by combining carbon nanomaterials and hyperbranched polyethyleneimine (h-PEI), thereby achieving a high power density of 5.0 W·m−2 with seawater and river water. Carbon nanofibers (CNFs) were subsequently bridged with graphene and h-PEI to strengthen the interaction between the CNFs, reduce the channel size and increase the space charge density, mechanical strength, and toughness. The large-scale and mechanically stable membrane fabricated using the modified CNFs exhibited anion selectivity and high ionic conductivity, thereby achieving a high-performance osmotic energy conversion. Furthermore, the anti-fouling property of the membrane was confirmed by the stability of the osmotic energy conversion in a solution with algae, which can be attributed to the high porosity of carbon nanomaterials. This economic and convenient method for the ion-selective membrane preparation is believed to be promising for large-scale osmotic energy harvesting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armaroli, N.; Balzani, V. The future of energy supply: Challenges and opportunities. Angew. Chem., Int. Ed. 2007, 46, 52–66.

    Article  CAS  Google Scholar 

  2. Griggs, D.; Stafford-Smith, M.; Gaffney, O.; Rockström, J.; Öhman, M. C.; Shyamsundar, P.; Steffen, W.; Glaser, G.; Kanie, N.; Noble, I. Sustainable development goals for people and planet. Nature 2013, 495, 305–307.

    Article  CAS  Google Scholar 

  3. Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.

    Article  Google Scholar 

  4. Crittenden, J. C.; White, H. S. Harnessing energy for a sustainable world. J. Am. Chem. Soc. 2010, 132, 4503–4505.

    Article  CAS  Google Scholar 

  5. Siria, A.; Bocquet, M. L.; Bocquet, L. New avenues for the large-scale harvesting of blue energy. Nat. Rev. Chem. 2017, 1, 0091.

    Article  CAS  Google Scholar 

  6. Yip, N. Y.; Brogioli, D.; Hamelers, H. V. M.; Nijmeijer, K. Salinity gradients for sustainable energy: Primer, progress, and prospects. Environ. Sci. Technol. 2016, 50, 12072–12094.

    Article  CAS  Google Scholar 

  7. Wang, Z. L.; Jiang, T.; Xu, L. Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy 2017, 39, 9–23.

    Article  Google Scholar 

  8. La Mantia, F.; Pasta, M.; Deshazer, H. D.; Logan, B. E.; Cui, Y. Batteries for efficient energy extraction from a water salinity difference. Nano Lett. 2011, 11, 1810–1813.

    Article  CAS  Google Scholar 

  9. Tian, H. L.; Wang, Y.; Pei, Y. S.; Crittenden, J. C. Unique applications and improvements of reverse electrodialysis: A review and outlook. Appl. Energy 2020, 262, 114482.

    Article  CAS  Google Scholar 

  10. Tristán, C.; Rumayor, M.; Dominguez-Ramos, A.; Fallanza, M.; Ibáñez, R.; Ortiz, I. Life cycle assessment of salinity gradient energy recovery by reverse electrodialysis in a seawater reverse osmosis desalination plant. Sustainable Energy Fuels 2020, 4, 4273–4284.

    Article  Google Scholar 

  11. Logan, B. E.; Elimelech, M. Membrane-based processes for sustainable power generation using water. Nature 2012, 488, 313–319.

    Article  CAS  Google Scholar 

  12. Long, R.; Li, M. L.; Chen, X.; Liu, Z. C.; Liu, W. Synergy analysis for ion selectivity in nanofluidic salinity gradient energy harvesting. Int. J. Heat Mass Transf. 2021, 171, 121126.

    Article  CAS  Google Scholar 

  13. Pakulski, D.; Czepa, W.; Del Buffa, S.; Ciesielski, A.; Samorì, P. Atom-thick membranes for water purification and blue energy harvesting. Adv. Funct. Mater. 2020, 30, 1902394.

    Article  CAS  Google Scholar 

  14. Zhou, Y. H.; Jiang, L. Bioinspired nanoporous membrane for salinity gradient energy harvesting. Joule 2020, 4, 2244–2248.

    Article  Google Scholar 

  15. Vermaas, D. A.; Saakes, M.; Nijmeijer, K. Doubled power density from salinity gradients at reduced intermembrane distance. Environ. Sci. Technol. 2011, 45, 7089–7095.

    Article  CAS  Google Scholar 

  16. Tufa, R. A.; Pawlowski, S.; Veerman, J.; Bouzek, K.; Fontananova, E.; di Profio, G.; Velizarov, S.; Goulão Crespo, J.; Nijmeijer, K.; Curcio, E. Progress and prospects in reverse electrodialysis for salinity gradient energy conversion and storage. Appl. Energy 2018, 225, 290–331.

    Article  CAS  Google Scholar 

  17. Liu, Y. Q.; Ping, J. F.; Ying, Y. B. Anion-selective layered double hydroxide composites-based osmotic energy conversion for real-time nutrient solution detection. Adv. Sci. 2022, 9, 2103696.

    Article  CAS  Google Scholar 

  18. Hao, J. L.; Yang, T.; He, X. L.; Tang, H. Y.; Sui, X. Hierarchical nanochannels based on rod-coil block copolymer for ion transport and energy conversion. Giant 2021, 5, 100049.

    Article  CAS  Google Scholar 

  19. Hao, J. L.; Wang, W. J.; Zhao, J. W.; Che, H. L.; Chen, L.; Sui, X. Construction and application of bioinspired nanochannels based on two-dimensional materials. Chin. Chem. Lett. 2022, 33, 2291–2300.

    Article  CAS  Google Scholar 

  20. Xin, W. W.; Jiang, L.; Wen, L. P. Two-dimensional nanofluidic membranes toward harvesting salinity gradient power. Acc. Chem. Res. 2021, 54, 4154–4165.

    Article  CAS  Google Scholar 

  21. Sui, X.; Zhang, Z.; Zhang, Z. Y.; Wang, Z. W.; Li, C.; Yuan, H.; Gao, L. C.; Wen, L. P.; Fan, X.; Yang, L. J. et al. Biomimetic nanofluidic diode composed of dual amphoteric channels maintains rectification direction over a wide pH range. Angew. Chem., Int. Ed. 2016, 55, 13056–13060.

    Article  CAS  Google Scholar 

  22. Ma, H.; Wang, S.; Yu, B.; Sui, X.; Shen, Y. Q.; Cong, H. L. Bioinspired nanochannels based on polymeric membranes. Sci. China Mater. 2021, 64, 1320–1342.

    Article  CAS  Google Scholar 

  23. Zhang, Z.; Yang, S.; Zhang, P. P.; Zhang, J.; Chen, G. B.; Feng, X. L. Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators. Nat. Commun. 2019, 10, 2920.

    Article  Google Scholar 

  24. Sun, J.; Li, Q.; Zhu, H.; Liu, Z. N.; Lin, K.; Wang, N.; Zhang, Q. H.; Gu, L.; Deng, J. X.; Chen, J. et al. Negative-pressure-induced large polarization in nanosized PbTiO3. Adv. Mater. 2020, 32, 2002968.

    Article  CAS  Google Scholar 

  25. Güler, E.; Elizen, R.; Vermaas, D. A.; Saakes, M.; Nijmeijer, K. Performance-determining membrane properties in reverse electrodialysis. J. Membr. Sci. 2013, 446, 266–276.

    Article  Google Scholar 

  26. Xie, L.; Zhou, S.; Liu, J. R.; Qiu, B. L.; Liu, T. Y.; Liang, Q. R.; Zheng, X. Z.; Li, B.; Zeng, J.; Yan, M. et al. Sequential superassembly of nanofiber arrays to carbonaceous ordered mesoporous nanowires and their heterostructure membranes for osmotic energy conversion. J. Am. Chem. Soc. 2021, 143, 6922–6932.

    Article  CAS  Google Scholar 

  27. Zhou, S.; Xie, L.; Li, X. F.; Huang, Y. N.; Zhang, L. P.; Liang, Q. R.; Yan, M.; Zeng, J.; Qiu, B. L.; Liu, T. Y. et al. Interfacial super-assembly of ordered mesoporous carbon-silica/AAO hybrid membrane with enhanced permselectivity for temperature- and pH-sensitive smart ion transport. Angew. Chem., Int. Ed. 2021, 60, 26167–26176.

    Article  CAS  Google Scholar 

  28. Fu, L.; Merabia, S.; Joly, L. Understanding fast and robust thermoosmotic flows through carbon nanotube membranes: Thermodynamics meets hydrodynamics. J. Phys. Chem. Lett. 2018, 9, 2086–2092.

    Article  CAS  Google Scholar 

  29. Sun, T. Y.; Yang, L. P.; Tang, J. B.; Li, N. B.; Chen, J. L.; Shen, A. Q.; Shao, Y.; Zhang, Y. F.; Liu, H.; Xue, G. B. Flocculating-filtration-processed mesoporous structure in laminar ion-selective membrane for osmosis energy conversion and desalination. Chem. Eng. J. 2022, 437, 135484.

    Article  CAS  Google Scholar 

  30. Zhang, Z. K.; Shen, W. H.; Lin, L. X.; Wang, M.; Li, N.; Zheng, Z. F.; Liu, F.; Cao, L. X. Vertically transported graphene oxide for highperformance osmotic energy conversion. Adv. Sci. 2020, 7, 2000286.

    Article  CAS  Google Scholar 

  31. Joly, L.; Meißner, R. H.; Iannuzzi, M.; Tocci, G. Osmotic transport at the aqueous graphene and hBN interfaces: Scaling laws from a unified, first-principles description. ACS Nano 2021, 15, 15249–15258.

    Article  CAS  Google Scholar 

  32. Ji, J. Z.; Kang, Q.; Zhou, Y.; Feng, Y. P.; Chen, X.; Yuan, J. Y.; Guo, W.; Wei, Y.; Jiang, L. Osmotic power generation with positively and negatively charged 2D nanofluidic membrane pairs. Adv. Funct. Mater. 2017, 27, 1603623.

    Article  Google Scholar 

  33. Hong, S.; Constans, C.; Surmani Martins, M. V.; Seow, Y. C.; Guevara Carrió, J. A.; Garaj, S. Scalable graphene-based membranes for ionic sieving with ultrahigh charge selectivity. Nano Lett. 2017, 17, 728–732.

    Article  CAS  Google Scholar 

  34. Raidongia, K.; Huang, J. X. Nanofluidic ion transport through reconstructed layered materials. J. Am. Chem. Soc. 2012, 134, 16528–16531.

    Article  CAS  Google Scholar 

  35. Liu, W. H.; Lin, Y. X.; Song, L. X.; Xiong, J. Research progress of flexible carbon based nanofibers films. Silk 2020, 57, 1–8.

    CAS  Google Scholar 

  36. Yu, Q. Q.; Chen, G.; Wang, Q. F.; Chong, L.; Wang, Z. Y.; Wu, Z. Q.; Wang, Z.; Huang, C. X. Research progress on properties and applications of PAN-based carbon nanofiber films based on electrospinning technology. Eng. Plast. Appl. 2021, 49, 166–174.

    CAS  Google Scholar 

  37. Sparreboom, W.; van den Berg, A.; Eijkel, J. C. T. Principles and applications of nanofluidic transport. Nat. Nanotechnol. 2009, 4, 713–720.

    Article  CAS  Google Scholar 

  38. Luo, Q. X.; Liu, P.; Fu, L.; Hu, Y. H.; Yang, L. S.; Wu, W. W.; Kong, X. Y.; Jiang, L.; Wen, L. P. Engineered cellulose nanofiber membranes with ultrathin low-dimensional carbon material layers for photothermal-enhanced osmotic energy conversion. ACS Appl. Mater. Interfaces 2022, 14, 13223–13230.

    Article  CAS  Google Scholar 

  39. Zeng, J.; Ji, X. X.; Ma, Y. H.; Zhang, Z. X.; Wang, S. G.; Ren, Z. H.; Zhi, C. Y.; Yu, J. 3D graphene fibers grown by thermal chemical vapor deposition. Adv. Mater. 2018, 30, 1705380.

    Article  Google Scholar 

  40. Zhang, Z.; Sui, X.; Li, P.; Xie, G. H.; Kong, X. Y.; Xiao, K.; Gao, L. C.; Wen, L. P.; Jiang, L. Ultrathin and ion-selective Janus membranes for high-performance osmotic energy conversion. J. Am. Chem. Soc. 2017, 139, 8905–8914.

    Article  CAS  Google Scholar 

  41. Cheng, P.; Chen, S.; Li, X.; Xu, Y. L.; Xu, F.; Ragauskas, A. J. Tree-inspired lignin microrods-based composite heterogeneous nanochannels for ion transport and osmotic energy harvesting. Energy Convers. Manag. 2022, 255, 115321.

    Article  CAS  Google Scholar 

  42. Bian, G. S.; Pan, N.; Luan, Z. H.; Sui, X.; Fan, W. X.; Xia, Y. Z.; Sui, K. Y.; Jiang, L. Anti-swelling gradient polyelectrolyte hydrogel membranes as high-performance osmotic energy generators. Angew. Chem., Int. Ed. 2021, 60, 20294–20300.

    Article  CAS  Google Scholar 

  43. Ulbricht, M.; Belfort, G. Surface modification of ultrafiltration membranes by low temperature plasma II. Graft polymerization onto polyacrylonitrile and polysulfone.. J. Membr. Sci. 1996, 111, 193–215.

    Article  CAS  Google Scholar 

  44. Harada, R.; Kojima, T. A porphyrin nanochannel: Formation of cationic channels by a protonated saddle-distorted porphyrin and its inclusion behavior. Chem. Commun. 2005, 716–718.

  45. Liu, Q.; Wen, L. P.; Xiao, K.; Lu, H.; Zhang, Z.; Xie, G. H.; Kong, X. Y.; Bo, Z. S.; Jiang, L. A biomimetic voltage-gated chloride nanochannel. Adv. Mater. 2016, 28, 3181–3186.

    Article  CAS  Google Scholar 

  46. Freger, V.; Bason, S. Characterization of ion transport in thin films using electrochemical impedance spectroscopy: I. Principles and theory. J. Membr. Sci. 2007, 302, 1–9.

    Article  CAS  Google Scholar 

  47. Zhang, Z.; He, L.; Zhu, C. C.; Qian, Y. C.; Wen, L. P.; Jiang, L. Improved osmotic energy conversion in heterogeneous membrane boosted by three-dimensional hydrogel interface. Nat. Commun. 2020, 11, 875.

    Article  Google Scholar 

  48. Schoch, R. B.; Han, J.; Renaud, P. Transport phenomena in nanofluidics. Rev. Mod. Phys. 2008, 80, 839–883.

    Article  CAS  Google Scholar 

  49. Constantin, D.; Siwy, Z. S. Poisson-Nernst-Planck model of ion current rectification through a nanofluidic diode. Phys. Rev. E 2007, 76, 041202.

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (No. 22005162), the Natural Science Foundation of Shandong Province (No. ZR2020QE093) and the Special Financial Aid to Post-doctor Research Fellow (No. 2020T130330).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chao Li or Xin Sui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Hao, J., Sun, Q. et al. Carbon nanofibers membrane bridged with graphene nanosheet and hyperbranched polymer for high-performance osmotic energy harvesting. Nano Res. 16, 1205–1211 (2023). https://doi.org/10.1007/s12274-022-4634-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4634-6

Keywords

Navigation