Skip to main content
Log in

Cement-and-pebble nanofluidic membranes with stable acid resistance as osmotic energy generators

具有抗酸腐蚀的“水泥-鹅卵石”结构纳流体膜用于渗透能转换

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Osmotic energy between river water and seawater has attracted interest as a new source of sustainable energy. Nanofluidic membranes in a reverse electrodialysis configuration can capture energy from salinity gradients. However, current membrane materials suffer from high resistances, low stabilities, and low charge densities, which limit their further application. Here, we designed a high-performance nanofluidic membrane using carboxylic cellulose nanofibers functionalized with graphene oxide nanolamellas with cement-and-pebble microstructures and stable skeletons for enhanced ion transmembrane transport. By mixing artificial river water and seawater, the composite membrane achieved a high output power density up to 5.26 W m−2. Additionally, the membrane had an excellent acid resistance, which enabled long-term use with over 67 W m−2 of power density. The performance of this composite membrane benefited from the mechanically strong cellulose fibers and the bonding between nanofibers and nanolamellas. In this work, we highlight promising directions in industrial waste treatment using energy extracted from chemical potential gradients.

摘要

河水与海水之间存在的渗透能是一种新型、可持续的能源, 并引起了人们的广泛关注. 其中, 通过反向电渗析技术, 纳流体膜能够从盐度梯度中捕获这种能量. 然而, 目前的膜材料存在一些不足, 例如膜阻过高、稳定性差以及电荷密度低等, 这在很大程度上限制了它们的进一步应用. 在这项研究中, 我们设计了一种高性能的纳米复合膜, 该膜采用纤维素为主体并与氧化石墨烯复合, 具有类似“水泥-鹅卵石”结构的稳定骨架, 有利于增强离子跨膜传输. 在人工河水和海水环境中,复合膜的输出功率密度可达5.26 W m−2. 此外, 该膜在质子梯度条件下的功率密度超过67 W m−2, 且具有良好的耐酸性能, 可长期使用. 复合膜应用的多样性得益于机械强度高的纤维素与氧化石墨烯纳米结构间的结合作用. 在这项工作中, 我们展示了利用化学势梯度提取能量并且实现工业废水处理的前景.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Logan BE, Elimelech M. Membrane-based processes for sustainable power generation using water. Nature, 2012, 488: 313–319

    Article  CAS  Google Scholar 

  2. Jia Z, Wang B, Song S, et al. Blue energy: Current technologies for sustainable power generation from water salinity gradient. Renew Sustain Energy Rev, 2014, 31: 91–100

    Article  Google Scholar 

  3. Xin W, Jiang L, Wen L. Two-dimensional nanofluidic membranes toward harvesting salinity gradient power. Acc Chem Res, 2021, 54: 4154–4165

    Article  CAS  Google Scholar 

  4. Zhang Z, Wen L, Jiang L. Nanofluidics for osmotic energy conversion. Nat Rev Mater, 2021, 6: 622–639

    Article  CAS  Google Scholar 

  5. Kong XY, Wen L, Jiang L. Towards practical osmotic energy capture by a layer-by-layer membrane. Trends Chem, 2020, 2: 180–182

    Article  CAS  Google Scholar 

  6. Feng J, Graf M, Liu K, et al. Single-layer MoS2 nanopores as nanopower generators. Nature, 2016, 536: 197–200

    Article  CAS  Google Scholar 

  7. Siria A, Poncharal P, Biance AL, et al. Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube. Nature, 2013, 494: 455–458

    Article  CAS  Google Scholar 

  8. Guo Y, Huang H, Li Z, et al. Sulfonated sub-nanochannels in a robust MOF membrane: Harvesting salinity gradient power. ACS Appl Mater Interfaces, 2019, 11: 35496–35500

    Article  CAS  Google Scholar 

  9. Chen S, Zhu C, Xian W, et al. Imparting ion selectivity to covalent organic framework membranes using de Novo assembly for blue energy harvesting. J Am Chem Soc, 2021, 143: 9415–9422

    Article  CAS  Google Scholar 

  10. Liu YC, Yeh LH, Zheng MJ, et al. Highly selective and high-performance osmotic power generators in subnanochannel membranes enabled by metal-organic frameworks. Sci Adv, 2021, 7: eabe9924

    Article  CAS  Google Scholar 

  11. Li C, Wen L, Sui X, et al. Large-scale, robust mushroom-shaped nanochannel array membrane for ultrahigh osmotic energy conversion. Sci Adv, 2021, 7: eabg2183

    Article  CAS  Google Scholar 

  12. Bian G, Pan N, Luan Z, et al. Anti-swelling gradient polyelectrolyte hydrogel membranes as high-performance osmotic energy generators. Angew Chem Int Ed, 2021, 60: 20294–20300

    Article  CAS  Google Scholar 

  13. Ding L, Xiao D, Lu Z, et al. Oppositely charged Ti3C2Tx, MXene membranes with 2D nanofluidic channels for osmotic energy harvesting. Angew Chem Int Ed, 2020, 59: 8720–8726

    Article  CAS  Google Scholar 

  14. Wang C, Liu FF, Tan Z, et al. Fabrication of bio-inspired 2D MOFs/PAA hybrid membrane for asymmetric ion transport. Adv Funct Mater, 2020, 30: 1908804

    Article  CAS  Google Scholar 

  15. Man Z, Safaei J, Zhang Z, et al. Serosa-mimetic nanoarchitecture membranes for highly efficient osmotic energy generation. J Am Chem Soc, 2021, 143: 16206–16216

    Article  CAS  Google Scholar 

  16. Xie L, Zhou S, Liu J, et al. Sequential superassembly of nanofiber arrays to carbonaceous ordered mesoporous nanowires and their heterostructure membranes for osmotic energy conversion. J Am Chem Soc, 2021, 143: 6922–6932

    Article  CAS  Google Scholar 

  17. Zhu X, Hao J, Bao B, et al. Unique ion rectification in hypersaline environment: A high-performance and sustainable power generator system. Sci Adv, 2018, 4: eaau1665

    Article  CAS  Google Scholar 

  18. Xian W, Zhang P, Zhu C, et al. Bionic thermosensation inspired temperature gradient sensor based on covalent organic framework nanofluidic membrane with ultrahigh sensitivity. CCS Chem, 2021, 3: 2464–2472

    Article  CAS  Google Scholar 

  19. Siria A, Bocquet ML, Bocquet L. New avenues for the large-scale harvesting of blue energy. Nat Rev Chem, 2017, 1: 0091

    Article  CAS  Google Scholar 

  20. Chen C, Liu D, Yang G, et al. Bioinspired ultrastrong nanocomposite membranes for salinity gradient energy harvesting from organic solutions. Adv Energy Mater, 2020, 10: 1904098

    Article  CAS  Google Scholar 

  21. Xin W, Xiao H, Kong XY, et al. Biomimetic nacre-like silk-crosslinked membranes for osmotic energy harvesting. ACS Nano, 2020, 14: 9701–9710

    Article  CAS  Google Scholar 

  22. Chen J, Xin W, Chen W, et al. Biomimetic nanocomposite membranes with ultrahigh ion selectivity for osmotic power conversion. ACS Cent Sci, 2021, 7: 1486–1492

    Article  CAS  Google Scholar 

  23. Chen C, Liu D, He L, et al. Bio-inspired nanocomposite membranes for osmotic energy harvesting. Joule, 2020, 4: 247–261

    Article  CAS  Google Scholar 

  24. Abraham J, Vasu KS, Williams CD, et al. Tunable sieving of ions using graphene oxide membranes. Nat Nanotech, 2017, 12: 546–550

    Article  CAS  Google Scholar 

  25. Cheng C, Jiang G, Simon GP, et al. Low-voltage electrostatic modulation of ion diffusion through layered graphene-based nanoporous membranes. Nat Nanotech, 2018, 13: 685–690

    Article  CAS  Google Scholar 

  26. Chen L, Shi G, Shen J, et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature, 2017, 550: 380–383

    Article  CAS  Google Scholar 

  27. Xin W, Wen L. Two-dimensional materials for osmotic energy conversion. Chem J Chin Univ, 2021, 42: 445–455

    Google Scholar 

  28. Zhang Z, Yang S, Zhang P, et al. Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators. Nat Commun, 2019, 10: 2920–2928

    Article  CAS  Google Scholar 

  29. Xiong R, Kim HS, Zhang L, et al. Wrapping nanocellulose nets around graphene oxide sheets. Angew Chem Int Ed, 2018, 57: 8508–8513

    Article  CAS  Google Scholar 

  30. Ries L, Petit E, Michel T, et al. Enhanced sieving from exfoliated MoS2 membranes via covalent functionalization. Nat Mater, 2019, 18: 1112–1117

    Article  CAS  Google Scholar 

  31. Xin W, Zhang Z, Huang X, et al. High-performance silk-based hybrid membranes employed for osmotic energy conversion. Nat Commun, 2019, 10: 3876–3885

    Article  CAS  Google Scholar 

  32. Gao J, Guo W, Feng D, et al. High-performance ionic diode membrane for salinity gradient power generation. J Am Chem Soc, 2014, 136: 12265–12272

    Article  CAS  Google Scholar 

  33. Li R, Jiang J, Liu Q, et al. Hybrid nanochannel membrane based on polymer/MOF for high-performance salinity gradient power generation. Nano Energy, 2018, 53: 643–649

    Article  CAS  Google Scholar 

  34. Zhu C, Liu P, Niu B, et al. Metallic two-dimensional MoS2 composites as high-performance osmotic energy conversion membranes. J Am Chem Soc, 2021, 143: 1932–1940

    Article  CAS  Google Scholar 

  35. Xin W, Lin C, Fu L, et al. Nacre-like mechanically robust heterojunction for lithium-ion extraction. Matter, 2021, 4: 737–754

    Article  CAS  Google Scholar 

  36. Zhang P, Chen S, Zhu C, et al. Covalent organic framework nanofluidic membrane as a platform for highly sensitive bionic thermosensation. Nat Commun, 2021, 12: 1844

    Article  CAS  Google Scholar 

  37. Liu P, Zhou T, Teng Y, et al. Light-induced heat driving active ion transport based on 2D MXene nanofluids for enhancing osmotic energy conversion. CCS Chem, 2021, 3: 1325–1335

    Article  CAS  Google Scholar 

  38. Chen K, Yao L, Su B. Bionic thermoelectric response with nanochannels. J Am Chem Soc, 2019, 141: 8608–8615

    Article  CAS  Google Scholar 

  39. Hong S, Ming F, Shi Y, et al. Two-dimensional Ti3C2Tx MXene membranes as nanofluidic osmotic power generators. ACS Nano, 2019, 13: 8917–8925

    Article  CAS  Google Scholar 

  40. Jones SF, Evans GM, Galvin KP. Bubble nucleation from gas cavities—A review. Adv Colloid Interface Sci, 1999, 80: 27–50

    Article  CAS  Google Scholar 

  41. Macha M, Marion S, Nandigana VVR, et al. 2D materials as an emerging platform for nanopore-based power generation. Nat Rev Mater, 2019, 4: 588–605

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2017YFA0206904 and 2017YFA0206900), and the National Natural Science Foundation of China (21625303, 22122207, 21905287, and 21988102).

Author information

Authors and Affiliations

Authors

Contributions

Wen L proposed the research direction and guided the project. Zhao Y and Xin W designed and performed the experiments. Wen L, Kong XY, Zhao Y, Xin W, Qian Y, Zhang Z, and Jiang L analyzed and discussed the experimental results and drafted the paper. Wu Y and Lin X joined the discussion of data and gave useful suggestions. All authors contributed to the writing of the paper.

Corresponding author

Correspondence to Liping Wen  (闻利平).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary information

Supporting data are available in the online version of the paper.

Yifei Zhao is currently a master’s degree candidate in physical chemistry at the Technical Institute of Physics and Chemistry (TIPC), Chinese Academy of Sciences (CAS) under the supervision of Prof. Liping Wen. Her current scientific interests are bioinspired nanochannel membranes and energy conversion.

Liping Wen is a professor at the TIPC, CAS. He received his PhD degree (2010) from the Institute of Chemistry CAS (ICCAS). He then worked as an associate professor at ICCAS. He obtained the the National Science Fund for Distinguished Young Scholars in China. His current scientific interests are the construction and application of bioinspired smart nanochannels and nanopores.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Xin, W., Qian, Y. et al. Cement-and-pebble nanofluidic membranes with stable acid resistance as osmotic energy generators. Sci. China Mater. 65, 2729–2736 (2022). https://doi.org/10.1007/s40843-022-2057-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2057-5

Keywords

Navigation