Skip to main content
Log in

Recent advances in metal-organic frameworks for catalytic CO2 hydrogenation to diverse products

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Selective hydrogenation of CO2 to high value-added chemicals, not only gives an effective way to reduce the concentration of CO2, but also provides the precursors to advance the industrial manufacturing of chemicals and fuels. With the well-defined reticular frameworks and flexible modifiability, metal-organic frameworks (MOFs) can be the ideal platform to construct the enabled catalysts for CO2 hydrogenation, because they have shown the great potential for the enhancement of catalytic activity, the precise control of selectivity, and the excellent stability. In this review, we systematically summarize the recent advances in MOFs based catalysts for CO2 hydrogenation towards diverse products. Firstly, synthesis strategies for different kinds of MOFs based catalysts are described. Secondly, selective hydrogenation of CO2 towards CO and methane is discussed over various metal nanoparticles/MOFs composites. Thirdly, heterogenization and isolation of molecular catalysts by MOFs are elaborated for producing formic acid. Fourthly, selective hydrogenation of CO2 toward methanol is discussed in terms of interface structures of Cu, Zn, and metal nodes of MOFs, the synergy between auxiliary sites and noble metal, and tandem catalytic systems of molecular catalysts and Lewis acid sites. Subsequently, the integration of multiple metal sites, promoters, and cocatalysts into MOFs is described for the selective hydrogenation of CO2 to C2+ products. After those, the key issue about the stability of MOFs based catalysts for CO2 hydrogenation reaction is discussed. Finally, the summary and perspective about MOFs based catalysts for selective CO2 hydrogenation and mechanism research are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Navarro-Jaén, S.; Virginie, M.; Bonin, J.; Robert, M.; Wojcieszak, R.; Khodakov, A. Y. Highlights and challenges in the selective reduction of carbon dioxide to methanol. Nat. Rev. Chem. 2021, 5, 564–579.

    Article  Google Scholar 

  2. Gao, W. L.; Liang, S. Y.; Wang, R. J.; Jiang, Q.; Zhang, Y.; Zheng, Q. W.; Xie, B. Q.; Toe, C. Y.; Zhu, X. C.; Wang, J. Y. et al. Industrial carbon dioxide capture and utilization: State of the art and future challenges. Chem. Soc. Rev. 2020, 49, 8584–8686.

    Article  CAS  Google Scholar 

  3. Bhanja, P.; Modak, A.; Bhaumik, A. Supported porous nanomaterials as efficient heterogeneous catalysts for CO2 fixation reactions. Chem. Eur. J. 2018, 24, 7278–7297.

    Article  CAS  Google Scholar 

  4. Trickett, C. A.; Helal, A.; Al-Maythalony, B. A.; Yamani, Z. H.; Cordova, K. E.; Yaghi, O. M. The chemistry of metal-organic frameworks for CO2 capture, regeneration and conversion. Nat. Rev. Mater. 2017, 2, 17045.

    Article  CAS  Google Scholar 

  5. Do, T. N.; You, C.; Kim, J. A CO2 utilization framework for liquid fuels and chemical production: Techno-economic and environmental analysis. Energy Environ. Sci. 2022, 15, 169–184.

    Article  CAS  Google Scholar 

  6. Rogelj, J.; Huppmann, D.; Krey, V.; Riahi, K.; Clarke, L.; Gidden, M.; Nicholls, Z.; Meinshausen, M. A new scenario logic for the Paris Agreement long-term temperature goal. Nature 2019, 573, 357–363.

    Article  CAS  Google Scholar 

  7. Schleussner, C. F.; Rogelj, J.; Schaeffer, M.; Lissner, T.; Licker, R.; Fischer, E. M.; Knutti, R.; Levermann, A.; Frieler, K.; Hare, W. Science and policy characteristics of the Paris Agreement temperature goal. Nat. Clim. Change 2016, 6, 827–835.

    Article  Google Scholar 

  8. Bhanja, P.; Modak, A.; Bhaumik, A. Porous organic polymers for CO2 storage and conversion reactions. ChemCatChem 2019, 11, 244–257.

    Article  CAS  Google Scholar 

  9. D’Alessandro, D. M.; Smit, B.; Long, J. R. Carbon dioxide capture: Prospects for new materials. Angew. Chem., Int. Ed. 2010, 49, 6058–6082.

    Article  Google Scholar 

  10. Wei, J.; Yao, R. W.; Han, Y.; Ge, Q. J.; Sun, J. Towards the development of the emerging process of CO2 heterogenous hydrogenation into high-value unsaturated heavy hydrocarbons. Chem. Soc. Rev. 2021, 50, 10764–10805.

    Article  CAS  Google Scholar 

  11. Aresta, M.; Dibenedetto, A.; Angelini, A. Catalysis for the valorization of exhaust carbon: From CO2 to chemicals, materials, and fuels. Technological use of CO2. Chem. Rev. 2014, 114, 1709–1742.

    Article  CAS  Google Scholar 

  12. Long, C.; Wan, K. W.; Qiu, X. Y.; Zhang, X. F.; Han, J. Y.; An, P. F.; Yang, Z. J.; Li, X.; Guo, J.; Shi, X. H. et al. Single site catalyst with enzyme-mimic micro-environment for electroreduction of CO2. Nano Res. 2022, 15, 1817–1823.

    Article  CAS  Google Scholar 

  13. Parkinson, B.; Balcombe, P.; Speirs, J. F.; Hawkes, A. D.; Hellgardt, K. Levelized cost of CO2 mitigation from hydrogen production routes. Energy Environ. Sci. 2019, 12, 19–40.

    Article  CAS  Google Scholar 

  14. Bai, S. T.; De Smet, G.; Liao, Y. H.; Sun, R. Y.; Zhou, C.; Beller, M.; Maes, B. U. W.; Sels, B. F. Homogeneous and heterogeneous catalysts for hydrogenation of CO2 to methanol under mild conditions. Chem. Soc. Rev. 2021, 50, 4259–4298.

    Article  CAS  Google Scholar 

  15. Li, Q.; Liu, K. S.; Gui, S. W.; Wu, J. B.; Li, X. G.; Li, Z. F.; Jin, H. R.; Yang, H.; Hu, Z. M.; Liang, W. X. et al. Cobalt doping boosted electrocatalytic activity of CaMn3O6 for hydrogen evolution reaction. Nano Res. 2022, 15, 2870–2876.

    Article  CAS  Google Scholar 

  16. Wu, J. B.; Li, Q.; Shuck, C. E.; Maleski, K.; Alshareef, H. N.; Zhou, J.; Gogotsi, Y.; Huang, L. An aqueous 2.1 V pseudocapacitor with MXene and V-MnO2 electrodes. Nano Res. 2022, 15, 535–541.

    Article  Google Scholar 

  17. Rönsch, S.; Schneider, J.; Matthischke, S.; Schlüter, M.; Götz, M.; Lefebvre, J.; Prabhakaran, P.; Bajohr, S. Review on methanation-from fundamentals to current projects. Fuel 2016, 166, 276–296.

    Article  Google Scholar 

  18. Hou, S. L.; Dong, J.; Zhao, B. Formation of C-X bonds in CO2 chemical fixation catalyzed by metal-organic frameworks. Adv. Mater. 2020, 32, 1806163.

    Article  CAS  Google Scholar 

  19. Liu, Q.; Wu, L. P.; Jackstell, R.; Beller, M. Using carbon dioxide as a building block in organic synthesis. Nat. Commun. 2015, 6, 5933.

    Article  Google Scholar 

  20. Sakakura, T.; Choi, J. C.; Yasuda, H. Transformation of carbon dioxide. Chem. Rev. 2007, 107, 2365–2387.

    Article  CAS  Google Scholar 

  21. Wang, H. Q. Nanostructure@metal-organic frameworks (MOFs) for catalytic carbon dioxide (CO2) conversion in photocatalysis, electrocatalysis, and thermal catalysis. Nano Res. 2022, 15, 2834–2854.

    Article  CAS  Google Scholar 

  22. Wang, L. X.; Wang, L.; Xiao, F. S. Tuning product selectivity in CO2 hydrogenation over metal-based catalysts. Chem. Sci. 2021, 12, 14660–14673.

    Article  CAS  Google Scholar 

  23. Kattel, S.; Liu, P.; Chen, J. G. Tuning selectivity of CO2 hydrogenation reactions at the metal/oxide interface. J. Am. Chem. Soc. 2017, 139, 9739–9754.

    Article  CAS  Google Scholar 

  24. Have, I. C. T.; Kromwijk, J. J. G.; Monai, M.; Ferri, D.; Sterk, E. B.; Meirer, F.; Weckhuysen, B. M. Uncovering the reaction mechanism behind CoO as active phase for CO2 hydrogenation. Nat. Commun. 2022, 13, 324.

    Article  CAS  Google Scholar 

  25. Yao, B. Z.; Xiao, T. C.; Makgae, O. A.; Jie, X. Y.; Gonzalez-Cortes, S.; Guan, S. L.; Kirkland, A. I.; Dilworth, J. R.; Al-Megren, H. A.; Alshihri, S. M. et al. Transforming carbon dioxide into jet fuel using an organic combustion-synthesized Fe−Mn−K catalyst. Nat. Commun. 2020, 11, 6395.

    Article  CAS  Google Scholar 

  26. Asare Bediako, B. B.; Qian, Q. L.; Han, B. X. Synthesis of C2+ chemicals from CO2 and H2 via C−C bond formation. Acc. Chem. Res. 2021, 54, 2467–2476.

    Article  CAS  Google Scholar 

  27. An, B.; Li, Z.; Song, Y.; Zhang, J. Z.; Zeng, L. Z.; Wang, C.; Lin, W. B. Cooperative copper centres in a metal-organic framework for selective conversion of CO2 to ethanol. Nat. Catal. 2019, 2, 709–717.

    Article  CAS  Google Scholar 

  28. Xu, D.; Wang, Y. Q.; Ding, M. Y.; Hong, X. L.; Liu, G. L.; Tsang, S. C. E. Advances in higher alcohol synthesis from CO2 hydrogenation. Chem 2021, 7, 849–881.

    Article  CAS  Google Scholar 

  29. Fan, T.; Liu, H. L.; Shao, S. X.; Gong, Y. J.; Li, G. D.; Tang, Z. Y. Cobalt catalysts enable selective hydrogenation of CO2 toward diverse products: Recent progress and perspective. J. Phys. Chem. Lett. 2021, 12, 10486–10496.

    Article  CAS  Google Scholar 

  30. Liu, H. L.; Yin, L. L.; Chen, X. F.; Li, G. D. Recent advances in indium oxide based nanocatalysts for selective hydrogenation of CO2. Chem. J. Chin. Univ. 2021, 42, 1430–1445.

    Google Scholar 

  31. Zhao, M. T.; Yuan, K.; Wang, Y.; Li, G. D.; Guo, J.; Gu, L.; Hu, W. P.; Zhao, H. J.; Tang, Z. Y. Metal-organic frameworks as selectivity regulators for hydrogenation reactions. Nature 2016, 539, 76–80.

    Article  CAS  Google Scholar 

  32. Cai, G. R.; Yan, P.; Zhang, L. L.; Zhou, H. C.; Jiang, H. L. Metal-organic framework-based hierarchically porous materials: Synthesis and applications. Chem. Rev. 2021, 121, 12278–12326.

    Article  CAS  Google Scholar 

  33. Guo, J.; Qin, Y. T.; Zhu, Y. F.; Zhang, X. F.; Long, C.; Zhao, M. T.; Tang, Z. Y. Metal-organic frameworks as catalytic selectivity regulators for organic transformations. Chem. Soc. Rev. 2021, 50, 5366–5396.

    Article  CAS  Google Scholar 

  34. Zhang, X. F.; Chang, L.; Yang, Z. J.; Shi, Y. N.; Long, C.; Han, J. Y.; Zhang, B. H.; Qiu, X. Y.; Li, G. D.; Tang, Z. Y. Facile synthesis of ultrathin metal-organic framework nanosheets for Lewis acid catalysis. Nano Res. 2011, 12, 437–440.

    Article  Google Scholar 

  35. Guo, J.; Wan, Y.; Zhu, Y. F.; Zhao, M. T.; Tang, Z. Y. Advanced photocatalysts based on metal nanoparticle/metal-organic framework composites. Nano Res. 2021, 14, 2037–2052.

    Article  CAS  Google Scholar 

  36. Hu, X. J.; Li, Z. X.; Xue, H.; Huang, X. S.; Cao, R.; Liu, T. F. Designing a bifunctional Brønsted acid-base heterogeneous catalyst through precise installation of ligands on metal-organic frameworks. CCS Chem. 2020, 2, 616–622.

    Article  CAS  Google Scholar 

  37. He, C.; Liang, J.; Zou, Y. H.; Yi, J. D.; Huang, Y. B.; Cao, R. Metal-organic frameworks bonded with metal N-heterocyclic carbenes for efficient catalysis. Natl. Sci. Rev. 2021, nwab157.

  38. Ding, M. L.; Flaig, R. W.; Jiang, H. L.; Yaghi, O. M. Carbon capture and conversion using metal-organic frameworks and MOF-based materials. Chem. Soc. Rev. 2019, 48, 2783–2828.

    Article  CAS  Google Scholar 

  39. Liang, J.; Wu, Q.; Huang, Y. B.; Cao, R. Reticular frameworks and their derived materials for CO2 conversion by thermo-catalysis. EnergyChem 2021, 3, 100064.

    Article  CAS  Google Scholar 

  40. Gutterød, E. S.; Lazzarini, A.; Fjermestad, T.; Kaur, G.; Manzoli, M.; Bordiga, S.; Svelle, S.; Lillerud, K. P.; Skúlason, E.; Øien-Ødegaard, S. et al. Hydrogenation of CO2 to methanol by Pt nanoparticles encapsulated in UiO-67: Deciphering the role of the metal-organic framework. J. Am. Chem. Soc. 2020, 142, 999–1009.

    Article  Google Scholar 

  41. Gutterød, E. S.; Pulumati, S. H.; Kaur, G.; Lazzarini, A.; Solemsli, B. G.; Gunnæs, A. E.; Ahoba-Sam, C.; Kalyva, M. E.; Sannes, J. A.; Svelle, S. et al. Influence of defects and H2O on the hydrogenation of CO2 to methanol over Pt nanoparticles in UiO-67 metal-organic framework. J. Am. Chem. Soc. 2020, 142, 17105–17118.

    Article  Google Scholar 

  42. Fan, Y.; Zhang, J.; Shen, Y.; Zheng, B.; Zhang, W. N.; Huo, F. W. Emerging porous nanosheets: From fundamental synthesis to promising applications. Nano Res. 2021, 14, 1–28.

    Article  Google Scholar 

  43. Li, G. D.; Zhao, S. L.; Zhang, Y.; Tang, Z. Y. Metal-organic frameworks encapsulating active nanoparticles as emerging composites for catalysis: Recent progress and perspectives. Adv. Mater. 2018, 30, 1800702.

    Article  Google Scholar 

  44. Liu, W. X.; Huang, J. J.; Yang, Q.; Wang, S. J.; Sun, X. M.; Zhang, W. N.; Liu, J. F.; Huo, F. W. Multi-shelled hollow metal-organic frameworks. Angew. Chem., Int. Ed. 2017, 56, 5512–5516.

    Article  CAS  Google Scholar 

  45. Xu, Z. L.; Zhang, W. N.; Weng, J. N.; Huang, W.; Tian, D. B.; Huo, F. W. Encapsulation of metal layers within metal-organic frameworks as hybrid thin films for selective catalysis. Nano Res. 2016, 9, 158–164.

    Article  CAS  Google Scholar 

  46. Choe, K.; Zheng, F. B.; Wang, H.; Yuan, Y.; Zhao, W. S.; Xue, G. X.; Qiu, X. Y.; Ri, M.; Shi, X. H.; Wang, Y. L. et al. Fast and selective semihydrogenation of alkynes by palladium nanoparticles sandwiched in metal-organic frameworks. Angew. Chem., Int. Ed. 2020, 59, 3650–3657.

    Article  CAS  Google Scholar 

  47. Zhu, Y. F.; Qiu, X. Y.; Zhao, S. L.; Guo, J.; Zhang, X. F.; Zhao, W. S.; Shi, Y. N.; Tang, Z. Y. Structure regulated catalytic performance of gold nanocluster-MOF nanocomposites. Nano Res. 2020, 13, 1928–1932.

    Article  CAS  Google Scholar 

  48. Lu, G.; Li, S. Z.; Guo, Z.; Farha, O. K.; Hauser, B. G.; Qi, X. Y.; Wang, Y.; Wang, X.; Han, S. Y.; Liu, X. G. et al. Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. Nat. Chem. 2012, 4, 310–316.

    Article  CAS  Google Scholar 

  49. Howarth, A. J.; Liu, Y. Y.; Li, P.; Li, Z. Y.; Wang, T. C.; Hupp, J. T.; Farha, O. K. Chemical, thermal and mechanical stabilities of metal-organic frameworks. Nat. Rev. Mater. 2016, 1, 15018.

    Article  CAS  Google Scholar 

  50. Healy, C.; Patil, K. M.; Wilson, B. H.; Hermanspahn, L.; Harvey-Reid, N. C.; Howard, B. I.; Kleinjan, C.; Kolien, J.; Payet, F.; Telfer, S. G. et al. The thermal stability of metal-organic frameworks. Coord. Chem. Rev. 2020, 419, 213388.

    Article  CAS  Google Scholar 

  51. Ding, M. L.; Cai, X. C.; Jiang, H. L. Improving MOF stability: Approaches and applications. Chem. Sci. 2019, 10, 10209–10230.

    Article  CAS  Google Scholar 

  52. Zhen, W. L.; Li, B.; Lu, G. X.; Ma, J. T. Enhancing catalytic activity and stability for CO2 methanation on Ni@MOF-5 via control of active species dispersion. Chem. Commun. 2015, 51, 1728–1731.

    Article  CAS  Google Scholar 

  53. Van, N. T. T.; Loc, L. C.; Tri, N.; Cuong, H. T. Synthesis, characterisation, adsorption ability and activity of Cu, ZnO@UiO-66 in methanol synthesis. Int. J. Nanotechnol. 2015, 12, 405–415.

    Article  Google Scholar 

  54. Ye, J. Y.; Johnson, J. K. Screening Lewis pair moieties for catalytic hydrogenation of CO2 in functionalized UiO-66. ACS Catal. 2015, 5, 6219–6229.

    Article  CAS  Google Scholar 

  55. Din, I. U.; Usman, M.; Khan, S.; Helal, A.; Alotaibi, M. A.; Alharthi, A. I.; Centi, G. Prospects for a green methanol thermo-catalytic process from CO2 by using MOFs based materials: A mini-review. J. CO2Util. 2021, 43, 101361.

    Article  CAS  Google Scholar 

  56. Modak, A.; Ghosh, A.; Bhaumik, A.; Chowdhury, B. CO2 hydrogenation over functional nanoporous polymers and metal-organic frameworks. Adv. Colloid Interface Sci. 2021, 290, 102349.

    Article  CAS  Google Scholar 

  57. Shi, Y.; Hou, S. L.; Qiu, X. H.; Zhao, B. MOFs-based catalysts supported chemical conversion of CO2. Top. Curr. Chem. 2020, 378, 11.

    Article  CAS  Google Scholar 

  58. Zhang, J. Z.; An, B.; Li, Z.; Cao, Y. H.; Dai, Y. H.; Wang, W. Y.; Zeng, L. Z.; Lin, W. B.; Wang, C. Neighboring Zn-Zr sites in a metal-organic framework for CO2 hydrogenation. J. Am. Chem. Soc. 2021, 143, 8829–8837.

    Article  CAS  Google Scholar 

  59. Chen, Y. Z.; Li, H. L.; Zhao, W. H.; Zhang, W. B.; Li, J. W.; Li, W.; Zheng, X. S.; Yan, W. S.; Zhang, W. H.; Zhu, J. F. et al. Optimizing reaction paths for methanol synthesis from CO2 hydrogenation via metal-ligand cooperativity. Nat. Commun. 2019, 10, 1885.

    Article  Google Scholar 

  60. Zeng, L. Z.; Cao, Y. H.; Li, Z.; Dai, Y. H.; Wang, Y. K.; An, B.; Zhang, J. Z.; Li, H.; Zhou, Y.; Lin, W. B. et al. Multiple cuprous centers supported on a titanium-based metal-organic framework catalyze CO2 hydrogenation to ethylene. ACS Catal. 2021, 11, 11696–11705.

    Article  CAS  Google Scholar 

  61. An, B.; Zhang, J. Z.; Cheng, K.; Ji, P. F.; Wang, C.; Lin, W. B. Confinement of ultrasmall Cu/ZnOx nanoparticles in metal-organic frameworks for selective methanol synthesis from catalytic hydrogenation of CO2. J. Am. Chem. Soc. 2017, 139, 3834–3840.

    Article  CAS  Google Scholar 

  62. Wang, S. P.; Hou, S. H.; Wu, C.; Zhao, Y. J.; Ma, X. B. RuCl3 anchored onto post-synthetic modification MIL-101(Cr)−NH2 as heterogeneous catalyst for hydrogenation of CO2 to formic acid. Chin. Chem. Lett. 2019, 30, 398–402.

    Article  CAS  Google Scholar 

  63. Pan, X. B.; Xu, H. T.; Zhao, X.; Zhang, H. Q. Metal-organic framework-membranized bicomponent core-shell catalyst HZSM-5@UiO-66−NH2/Pd for CO2 selective conversion. ACS Sustainable Chem. Eng. 2020, 8, 1087–1094.

    Article  CAS  Google Scholar 

  64. Xu, H. T.; Li, Y. S.; Luo, X. K.; Xu, Z. L.; Ge, J. P. Monodispersed gold nanoparticles supported on a zirconium-based porous metal-organic framework and their high catalytic ability for the reverse water-gas shift reaction. Chem. Commun. 2017, 53, 7953–7956.

    Article  CAS  Google Scholar 

  65. Rungtaweevoranit, B.; Baek, J.; Araujo, J. R.; Archanjo, B. S.; Choi, K. M.; Yaghi, O. M.; Somorjai, G. A. Copper nanocrystals encapsulated in Zr-based metal-organic frameworks for highly selective CO2 hydrogenation to methanol. Nano Lett. 2016, 16, 7645–7649.

    Article  CAS  Google Scholar 

  66. Han, Y. Q.; Xu, H. T.; Su, Y. Q.; Xu, Z. L.; Wang, K. F.; Wang, W. Z. Noble metal (Pt, Au@Pd) nanoparticles supported on metal organic framework (MOF-74) nanoshuttles as high-selectivity CO2 conversion catalysts. J. Catal. 2019, 370, 70–78.

    Article  CAS  Google Scholar 

  67. Zhen, W. L.; Gao, F.; Tian, B.; Ding, P.; Deng, Y. B.; Li, Z.; Gao, H. B.; Lu, G. X. Enhancing activity for carbon dioxide methanation by encapsulating (1 1 1) facet Ni particle in metal-organic frameworks at low temperature. J. Catal. 2017, 348, 200–211.

    Article  CAS  Google Scholar 

  68. Morabito, J. V.; Chou, L. Y.; Li, Z. H.; Manna, C. M.; Petroff, C. A.; Kyada, R. J.; Palomba, J. M.; Byers, J. A.; Tsung, C. K. Molecular encapsulation beyond the aperture size limit through dissociative linker exchange in metal-organic framework crystals. J. Am. Chem. Soc. 2014, 136, 12540–12543.

    Article  CAS  Google Scholar 

  69. Li, Z. H.; Rayder, T. M.; Luo, L. S.; Byers, J. A.; Tsung, C. K. Aperture-opening encapsulation of a transition metal catalyst in a metal-organic framework for CO2 hydrogenation. J. Am. Chem. Soc. 2018, 140, 8082–8085.

    Article  CAS  Google Scholar 

  70. Shen, Y. J.; Zheng, Q. S.; Chen, Z. N.; Wen, D. H.; Clark, J. H.; Xu, X.; Tu, T. Highly efficient and selective N-formylation of amines with CO2 and H2 catalyzed by porous organometallic polymers. Angew. Chem., Int. Ed. 2021, 60, 4125–4132.

    Article  CAS  Google Scholar 

  71. Zeng, F.; Mebrahtu, C.; Xi, X. Y.; Liao, L. F.; Ren, J.; Xie, J. X.; Heeres, H. J.; Palkovits, R. Catalysts design for higher alcohols synthesis by CO2 hydrogenation: Trends and future perspectives. Appl. Catal. B: Environ. 2021, 291, 120073.

    Article  CAS  Google Scholar 

  72. Yi, J. D.; Xie, R. K.; Xie, Z. L.; Chai, G. L.; Liu, T. F.; Chen, R. P.; Huang, Y. B.; Cao, R. Highly selective CO2 electroreduction to CH4 by in situ generated Cu2O single-type sites on a conductive MOF: Stabilizing key intermediates with hydrogen bonding. Angew. Chem., Int. Ed. 2020, 59, 23641–23648.

    Article  CAS  Google Scholar 

  73. Zhao, Z. Y.; Wang, M. Z.; Ma, P. J.; Zheng, Y. P.; Chen, J. Y.; Li, H. Q.; Zhang, X. B.; Zheng, K.; Kuang, Q.; Xie, Z. X. Atomically dispersed Pt/CeO2 catalyst with superior CO selectivity in reverse water gas shift reaction. Appl. Catal. B: Environ. 2021, 291, 120101.

    Article  CAS  Google Scholar 

  74. Chen, X. D.; Su, X.; Duan, H. M.; Liang, B. L.; Huang, Y. Q.; Zhang, T. Catalytic performance of the Pt/TiO2 catalysts in reverse water gas shift reaction: Controlled product selectivity and a mechanism study. Catal. Today 2017, 281, 312–318.

    Article  CAS  Google Scholar 

  75. Kattel, S.; Yan, B. H.; Chen, J. G.; Liu, P. CO2 hydrogenation on Pt, Pt/SiO2 and Pt/TiO2: Importance of synergy between Pt and oxide support. J. Catal. 2016, 343, 115–126.

    Article  CAS  Google Scholar 

  76. Wang, X.; Shi, H.; Szanyi, J. Controlling selectivities in CO2 reduction through mechanistic understanding. Nat. Commun. 2017, 8, 513.

    Article  Google Scholar 

  77. Wang, L. C.; Khazaneh, M. T.; Widmann, D.; Behm, R. J. TAP reactor studies of the oxidizing capability of CO2 on a Au/CeO2 catalyst—A first step toward identifying a redox mechanism in the reverse water-gas shift reaction. J. Catal. 2013, 302, 20–30.

    Article  CAS  Google Scholar 

  78. Zhu, Y. F.; Yuk, S. F.; Zheng, J.; Nguyen, M. T.; Lee, M. S.; Szanyi, J.; Kovarik, L.; Zhu, Z. H.; Balasubramanian, M.; Glezakou, V. A. et al. Environment of metal−O−Fe bonds enabling high activity in CO2 reduction on single metal atoms and on supported nanoparticles. J. Am. Chem. Soc. 2021, 143, 5540–5549.

    Article  CAS  Google Scholar 

  79. Gu, M. W.; Dai, S.; Qiu, R. F.; Ford, M. E.; Cao, C. X.; Wachs, I. E.; Zhu, M. H. Structure-activity relationships of copper- and potassium-modified iron oxide catalysts during reverse water-gas shift reaction. ACS Catal. 2021, 11, 12609–12619.

    Article  CAS  Google Scholar 

  80. Wang, Y. N.; Winter, L. R.; Chen, J. G.; Yan, B. H. CO2 hydrogenation over heterogeneous catalysts at atmospheric pressure: From electronic properties to product selectivity. Green Chem. 2021, 23, 249–267.

    Article  CAS  Google Scholar 

  81. Yi, J. D.; Si, D. H.; Xie, R. K.; Yin, Q.; Zhang, M. D.; Wu, Q.; Chai, G. L.; Huang, Y. B.; Cao, R. Conductive two-dimensional phthalocyanine-based metal-organic framework nanosheets for efficient electroreduction of CO2. Angew. Chem., Int. Ed. 2021, 60, 17108–17114.

    Article  CAS  Google Scholar 

  82. Gutterød, E. S.; Øien-Ødegaard, S.; Bossers, K.; Nieuwelink, A. E.; Manzoli, M.; Braglia, L.; Lazzarini, A.; Borfecchia, E.; Ahmadigoltapeh, S.; Bouchevreau, B. et al. CO2 hydrogenation over Pt-containing UiO-67 Zr−MOFs—The base case. Ind. Eng. Chem. Res. 2017, 56, 13206–13218.

    Article  Google Scholar 

  83. Wu, Y.; Lan, D. P.; Liu, J. C.; Ge, J. P.; Xu, H. T.; Han, Y. Q.; Zhang, H. Q.; Pan, X. B.; Xu, Z. L.; Liu, J. K. UiO66-membranized SAPO-34 Pt catalyst for enhanced carbon dioxide conversion efficiency. Mater. Today 2021, 21, 100781.

    CAS  Google Scholar 

  84. Zhao, X.; Xu, H. T.; Wang, X. X.; Zheng, Z. Z.; Xu, Z. L.; Ge, J. P. Monodisperse metal-organic framework nanospheres with encapsulated core-shell nanoparticles Pt/Au@Pd@{Co2(oba)4(3-bpdh)2}4H2O for the highly selective conversion of CO2 to CO. ACS Appl. Mater. Interfaces 2018, 10, 15096–15103.

    Article  CAS  Google Scholar 

  85. Caballero, A.; Pérez, P. J. Methane as raw material in synthetic chemistry: The final frontier. Chem. Soc. Rev. 2013, 42, 8809–8820.

    Article  CAS  Google Scholar 

  86. Parastaev, A.; Muravev, V.; Osta, E. H.; Van Hoof, A. J. F.; Kimpel, T. F.; Kosinov, N.; Hensen, E. J. M. Boosting CO2 hydrogenation via size-dependent metal-support interactions in cobalt/ceria-based catalysts. Nat. Catal. 2020, 3, 526–533.

    Article  CAS  Google Scholar 

  87. Zhou, J.; Gao, Z.; Xiang, G. L.; Zhai, T. Y.; Liu, Z. K.; Zhao, W. X.; Liang, X.; Wang, L. Y. Interfacial compatibility critically controls Ru/TiO2 metal-support interaction modes in CO2 hydrogenation. Nat. Commun. 2022, 13, 327.

    Article  Google Scholar 

  88. Vogt, C.; Groeneveld, E.; Kamsma, G.; Nachtegaal, M.; Lu, L.; Kiely, C. J.; Berben, P. H.; Meirer, F.; Weckhuysen, B. M. Unravelling structure sensitivity in CO2 hydrogenation over nickel. Nat. Catal. 2018, 1, 127–134.

    Article  CAS  Google Scholar 

  89. Beuls, A.; Swalus, C.; Jacquemin, M.; Heyen, G.; Karelovic, A.; Ruiz, P. Methanation of CO2: Further insight into the mechanism over Rh/γ-Al2O3 catalyst. Appl. Catal. B: Environ. 2012, 113–114, 2–10.

    Article  Google Scholar 

  90. Cui, X. J.; Shyshkanov, S.; Nguyen, T. N.; Chidambaram, A.; Fei, Z. F.; Stylianou, K. C.; Dyson, P. J. CO2 methanation via amino alcohol relay molecules employing a ruthenium nanoparticle/metal organic framework catalyst. Angew. Chem., Int. Ed. 2020, 59, 16371–16375.

    Article  CAS  Google Scholar 

  91. Li, J.; Huang, H. L.; Xue, W. J.; Sun, K.; Song, X. H.; Wu, C. R.; Nie, L.; Li, Y.; Liu, C. Y.; Pan, Y. et al. Self-adaptive dual-metal-site pairs in metal-organic frameworks for selective CO2 photoreduction to CH4. Nat. Catal. 2021, 4, 719–729.

    Article  CAS  Google Scholar 

  92. Zhao, Z. W.; Zhou, X.; Liu, Y. N.; Shen, C. C.; Yuan, C. Z.; Jiang, Y. F.; Zhao, S. J.; Ma, L. B.; Cheang, T. Y.; Xu, A. W. Ultrasmall Ni nanoparticles embedded in Zr-based MOFs provide high selectivity for CO2 hydrogenation to methane at low temperatures. Catal. Sci. Technol. 2018, 8, 3160–3165.

    Article  CAS  Google Scholar 

  93. Zurrer, T.; Wong, K.; Horlyck, J.; Lovell, E. C.; Wright, J.; Bedford, N. M.; Han, Z. J.; Liang, K.; Scott, J.; Amal, R. Mixed-metal MOF-74 templated catalysts for efficient carbon dioxide capture and methanation. Adv. Funct. Mater. 2021, 31, 2007624.

    Article  CAS  Google Scholar 

  94. Xu, W. W.; Zhang, X. L.; Dong, M. Y.; Zhao, J.; Di, L. B. Plasmaassisted Ru/Zr−MOF catalyst for hydrogenation of CO2 to methane. Plasma Sci. Technol. 2019, 21, 044004.

    Article  CAS  Google Scholar 

  95. Xu, W. W.; Dong, M. Y.; Di, L. B.; Zhang, X. L. A facile method for preparing UiO-66 encapsulated Ru catalyst and its application in plasma-assisted CO2 methanation. Nanomaterials (Basel) 2019, 9, 1432.

    Article  CAS  Google Scholar 

  96. Li, Y. Q.; Zhao, J.; Bu, D. C.; Zhang, X. L.; Peng, T.; Di, L. B.; Zhang, X. L. Plasma-assisted Co/Zr-metal organic framework catalysis of CO2 hydrogenation: Influence of Co precursors. Plasma Sci. Technol. 2021, 23, 055503.

    Article  CAS  Google Scholar 

  97. Fan, L. P.; Zhang, J.; Ma, K. X.; Zhang, Y. S.; Hu, Y. M.; Kong, L. C.; Jia, A. P.; Zhang, Z. H.; Huang, W. X.; Lu, J. Q. Ceria morphology-dependent Pd-CeO2 interaction and catalysis in CO2 hydrogenation into formate. J. Catal. 2021, 397, 116–127.

    Article  CAS  Google Scholar 

  98. Yang, G. X.; Kuwahara, Y.; Mori, K.; Louis, C.; Yamashita, H. Ru complex and N, P-containing polymers confined within mesoporous hollow carbon spheres for hydrogenation of CO2 to formate. Nano Res., in press, https://doi.org/10.1007/s12274-021-3792-2.

  99. Mori, K.; Taga, T.; Yamashita, H. Isolated single-atomic Ru catalyst bound on a layered double hydroxide for hydrogenation of CO2 to formic acid. ACS Catal. 2017, 7, 3147–3151.

    Article  CAS  Google Scholar 

  100. Yoshio, I.; Hitoshi, I.; Yoshiyuki, S.; Harukichi, H. Catalytic fixation of carbon dioxide to formic acid by transition-metal complexes under mild conditions. Chem. Lett. 1976, 5, 863–864.

    Article  Google Scholar 

  101. Filonenko, G. A.; Van Putten, R.; Schulpen, E. N.; Hensen, E. J. M.; Pidko, E. A. Highly efficient reversible hydrogenation of carbon dioxide to formates using a ruthenium PNP-pincer catalyst. ChemCatChem 2014, 6, 1526–1530.

    Article  CAS  Google Scholar 

  102. Sordakis, K.; Tang, C. H.; Vogt, L. K.; Junge, H.; Dyson, P. J.; Beller, M.; Laurenczy, G. Homogeneous catalysis for sustainable hydrogen storage in formic acid and alcohols. Chem. Rev. 2018, 118, 372–433.

    Article  CAS  Google Scholar 

  103. Schmeier, T. J.; Dobereiner, G. E.; Crabtree, R. H.; Hazari, N. Secondary coordination sphere interactions facilitate the insertion step in an iridium(III) CO2 reduction catalyst. J. Am. Chem. Soc. 2011, 133, 9274–9277.

    Article  CAS  Google Scholar 

  104. Malaza, S. S. P.; Makhubela B. C. E. Direct and indirect CO2 hydrogenation catalyzed by Ir(III), Rh(III), Ru(II), and Os(II) half-sandwich complexes to generate formates and N,N-diethylformamide. J. CO2Util. 2020, 39, 101149.

    Article  CAS  Google Scholar 

  105. Yang, G. X.; Kuwahara, Y.; Mori, K.; Louis, C.; Yamashita, H. PdAg alloy nanoparticles encapsulated in N-doped microporous hollow carbon spheres for hydrogenation of CO2 to formate. Appl. Catal. B: Environ. 2021, 283, 119628.

    Article  CAS  Google Scholar 

  106. Mori, K.; Sano, T.; Kobayashi, H.; Yamashita, H. Surface engineering of a supported PdAg catalyst for hydrogenation of CO2 to formic acid: Elucidating the active Pd atoms in alloy nanoparticles. J. Am. Chem. Soc. 2018, 140, 8902–8909.

    Article  CAS  Google Scholar 

  107. Nascimento, D. L.; Foscato, M.; Occhipinti, G.; Jensen, V. R.; Fogg, D. E. Bimolecular coupling in olefin metathesis: Correlating structure and decomposition for leading and emerging ruthenium-carbene catalysts. J. Am. Chem. Soc. 2021, 143, 11072–11079.

    Article  CAS  Google Scholar 

  108. Azua, A.; Sanz, S.; Peris, E. Water-soluble IrIII N-heterocyclic carbene based catalysts for the reduction of CO2 to formate by transfer hydrogenation and the deuteration of aryl amines in water. Chem. Eur. J. 2011, 17, 3963–3967.

    Article  CAS  Google Scholar 

  109. Shao, X. Z.; Yang, X. F.; Xu, J. M.; Liu, S.; Miao, S.; Liu, X. Y.; Su, X.; Duan, H. M.; Huang, Y. Q.; Zhang, T. Iridium single-atom catalyst performing a quasi-homogeneous hydrogenation transformation of CO2 to formate. Chem 2019, 5, 693–705.

    Article  CAS  Google Scholar 

  110. Tshuma, P.; Makhubela, B. C. E.; Bingwa, N.; Mehlana, G. Palladium(II) immobilized on metal-organic frameworks for catalytic conversion of carbon dioxide to formate. Inorg. Chem. 2020, 59, 6717–6728.

    Article  CAS  Google Scholar 

  111. An, B.; Zeng, L. Z.; Jia, M.; Li, Z.; Lin, Z. K.; Song, Y.; Zhou, Y.; Cheng, J.; Wang, C.; Lin, W. B. Molecular iridium complexes in metal-organic frameworks catalyze CO2 hydrogenation via concerted proton and hydride transfer. J. Am. Chem. Soc. 2017, 139, 17747–17750.

    Article  CAS  Google Scholar 

  112. Wu, C.; Irshad, F.; Luo, M. W.; Zhao, Y. J.; Ma, X. B.; Wang, S. P. Ruthenium complexes immobilized on an azolium based metal organic framework for highly efficient conversion of CO2 into formic acid. ChemCatChem 2019, 11, 1256–1263.

    Article  CAS  Google Scholar 

  113. Olah, G. A. Beyond oil and gas: The methanol economy. Angew. Chem., Int. Ed. 2005, 44, 2636–2639.

    Article  CAS  Google Scholar 

  114. Zhong, J. W.; Yang, X. F.; Wu, Z. L.; Liang, B. L.; Huang, Y. Q.; Zhang, T. State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol. Chem. Soc. Rev. 2020, 49, 1385–1413.

    Article  CAS  Google Scholar 

  115. Yue, W. Z.; Li, Y. H.; Wei, W.; Jiang, J. W.; Caro, J.; Huang, A. S. Highly selective CO2 conversion to methanol in a bifunctional zeolite catalytic membrane reactor. Angew. Chem., Int. Ed. 2021, 60, 18289–18294.

    Article  CAS  Google Scholar 

  116. Docherty, S. R.; Phongprueksathat, N.; Lam, E.; Noh, G.; Safonova, O. V.; Urakawa, A.; Copéret, C. Silica-supported PdGa nanoparticles: Metal synergy for highly active and selective CO2-to-CH3OH hydrogenation. JACS Au 2021, 1, 450–458.

    Article  CAS  Google Scholar 

  117. Tsoukalou, A.; Abdala, P. M.; Stoian, D.; Huang, X.; Willinger, M. G.; Fedorov, A.; Müller, C. R. Structural evolution and dynamics of an In2O3 catalyst for CO2 hydrogenation to methanol: An operando XAS-XRD and in situ TEM study. J. Am. Chem. Soc. 2019, 141, 13497–13505.

    Article  CAS  Google Scholar 

  118. Behrens, M.; Studt, F.; Kasatkin, I.; Kühl, S.; Hävecker, M.; Abild-Pedersen, F.; Zander, S.; Girgsdies, F.; Kurr, P.; Kniep, B. L. et al. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 2012, 336, 893–897.

    Article  CAS  Google Scholar 

  119. Kattel, S.; Ramírez, P. J.; Chen, J. G.; Rodriguez, J. A.; Liu, P. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science 2017, 355, 1296–1299.

    Article  CAS  Google Scholar 

  120. Li, H. Z.; Qiu, C. L.; Ren, S. J.; Dong, Q. B.; Zhang, S. X.; Zhou, F. L.; Liang, X. H.; Wang, J. G.; Li, S. G.; Yu, M. Na+-gated water-conducting nanochannels for boosting CO2 conversion to liquid fuels. Science 2020, 367, 667–671.

    Article  CAS  Google Scholar 

  121. Zabilskiy, M.; Sushkevich, V. L.; Newton, M. A.; Krumeich, F.; Nachtegaal, M.; Van Bokhoven, J. A. Mechanistic study of carbon dioxide hydrogenation over Pd/ZnO-based catalysts: The role of palladium-zinc alloy in selective methanol synthesis. Angew. Chem., Int. Ed. 2021, 60, 17053–17059.

    Article  CAS  Google Scholar 

  122. Cai, Z. J.; Dai, J. J.; Li, W.; Tan, K. B.; Huang, Z. L.; Zhan, G. W.; Huang, J. L.; Li, Q. B. Pd supported on MIL-68(In)-derived In2O3 nanotubes as superior catalysts to boost CO2 hydrogenation to methanol. ACS Catal. 2020, 10, 13275–13289.

    Article  CAS  Google Scholar 

  123. Xu, J. H.; Su, X.; Liu, X. Y.; Pan, X. L.; Pei, G. X.; Huang, Y. Q.; Wang, X. D.; Zhang, T.; Geng, H. R. Methanol synthesis from CO2 and H2 over Pd/ZnO/Al2O3: Catalyst structure dependence of methanol selectivity. Appl. Catal. A: Gen 2016, 514, 51–59.

    Article  CAS  Google Scholar 

  124. Abdel-Mageed, A. M.; Klyushin, A.; Knop-Gericke, A.; Schlögl, R.; Behm, R. J. Influence of CO on the activation, O-vacancy formation, and performance of Au/ZnO catalysts in CO2 hydrogenation to methanol. J. Phys. Chem. Lett. 2019, 10, 3645–3653.

    Article  CAS  Google Scholar 

  125. Abdel-Mageed, A. M.; Klyushin, A.; Rezvani, A.; Knop-Gericke, A.; Schlögl, R.; Behm, R. J. Negative charging of Au nanoparticles during methanol synthesis from CO2/H2 on a Au/ZnO catalyst: Insights from operando IR and near-ambient-pressure XPS and XAS measurements. Angew. Chem., Int. Ed. 2019, 58, 10325–10329.

    Article  CAS  Google Scholar 

  126. Zhu, Y. F.; Zheng, J.; Ye, J. Y.; Cui, Y. R.; Koh, K.; Kovarik, L.; Camaioni, D. M.; Fulton, J. L.; Truhlar, D. G.; Neurock, M. et al. Copper-zirconia interfaces in UiO-66 enable selective catalytic hydrogenation of CO2 to methanol. Nat. Commun. 2020, 11, 5849.

    Article  CAS  Google Scholar 

  127. Mitsuka, Y.; Ogiwara, N.; Mukoyoshi, M.; Kitagawa, H.; Yamamoto, T.; Toriyama, T.; Matsumura, S.; Haneda, M.; Kawaguchi, S.; Kubota, Y. et al. Fabrication of integrated copper-based nanoparticles/amorphous metal-organic framework by a facile spray-drying method: Highly enhanced CO2 hydrogenation activity for methanol synthesis. Angew. Chem., Int. Ed. 2021, 60, 22283–22288.

    Article  CAS  Google Scholar 

  128. Wang, J. J.; Li, G. N.; Li, Z. L.; Tang, C. Z.; Feng, Z. C.; An, H. Y.; Liu, H. L.; Liu, T. F.; Li, C. A highly selective and stable ZnO−ZrO2 solid solution catalyst for CO2 hydrogenation to methanol. Sci. Adv. 2017, 3, e1701290.

    Article  Google Scholar 

  129. Temvuttirojn, C.; Poo-Arporn, Y.; Chanlek, N.; Cheng, C. K.; Chong, C. C.; Limtrakul, J.; Witoon, T. Role of calcination temperatures of ZrO2 support on methanol synthesis from CO2 hydrogenation at high reaction temperatures over ZnOx/ZrO2 catalysts. Ind. Eng. Chem. Res. 2020, 59, 5525–5535.

    Article  CAS  Google Scholar 

  130. Zhou, C.; Shi, J. Q.; Zhou, W.; Cheng, K.; Zhang, Q. H.; Kang, J. C.; Wang, Y. Highly active ZnO−ZrO2 aerogels integrated with HZSM-5 for aromatics synthesis from carbon dioxide. ACS Catal. 2020, 10, 302–310.

    Article  CAS  Google Scholar 

  131. Zhang, J. Z.; An, B.; Cao, Y. H.; Li, Z.; Chen, J. W.; He, X. F.; Wang, C. ZnO supported on a Zr-based metal-organic framework for selective CO2 hydrogenation to methanol. ACS Appl. Energy Mater. 2021, 4, 13567–13574.

    Article  CAS  Google Scholar 

  132. Stolar, T.; Prašnikar, A.; Martinez, V.; Karadeniz, B.; Bjelić, A.; Mali, G.; Friščić, T.; Likozar, B.; Užarević, K. Scalable mechanochemical smorphization of bimetallic Cu−Zn MOF-74 catalyst for selective CO2 reduction reaction to methanol. ACS Appl. Mater. Interfaces 2021, 13, 3070–3077.

    Article  CAS  Google Scholar 

  133. Yang, Y.; Xu, Y. N.; Ding, H.; Yang, D.; Cheng, E. P.; Hao, Y. M.; Wang, H. T.; Hong, Y. Z.; Su, Y. Z.; Wang, Y. L. et al. Cu/ZnOx@UiO-66 synthesized from a double solvent method as an efficient catalyst for CO2 hydrogenation to methanol. Catal. Sci. Technol. 2021, 11, 4367–4375.

    Article  CAS  Google Scholar 

  134. Chen, W. Y.; Cao, J. B.; Fu, W. Z.; Zhang, J.; Qian, G.; Yang, J.; Chen, D.; Zhou, X. G.; Yuan, W. K.; Duan, X. Z. Molecular-level insights into the notorious CO poisoning of platinum catalyst. Angew. Chem., Int. Ed. 2022, 61, e202200190.

    CAS  Google Scholar 

  135. Noh, G.; Lam, E.; Bregante, D. T.; Meyet, J.; Šot, P.; Flaherty, D. W.; Copéret, C. Lewis acid strength of interfacial metal sites drives CH3OH selectivity and formation rates on Cu-based CO2 hydrogenation catalysts. Angew. Chem., Int. Ed. 2021, 60, 9650–9659.

    Article  CAS  Google Scholar 

  136. Wang, L. B.; Zhang, W. B.; Zheng, X. S.; Chen, Y. Z.; Wu, W. L.; Qiu, J. X.; Zhao, X. C.; Zhao, X.; Dai, Y. Z.; Zeng, J. Incorporating nitrogen atoms into cobalt nanosheets as a strategy to boost catalytic activity toward CO2 hydrogenation. Nat. Energy 2017, 2, 869–876.

    Article  CAS  Google Scholar 

  137. Peng, Y. H.; Wang, L. B.; Luo, Q. Q.; Cao, Y.; Dai, Y. Z.; Li, Z. L.; Li, H. L.; Zheng, X. S.; Yan, W. S.; Yang, J. L. et al. Molecular-level insight into how hydroxyl groups boost catalytic activity in CO2 hydrogenation into methanol. Chem 2018, 4, 613–625.

    Article  CAS  Google Scholar 

  138. Zhang, W. B.; Wang, L. B.; Wang, K. W.; Khan, M. U.; Wang, M. L.; Li, H. L.; Zeng, J. Integration of photothermal effect and heat insulation to efficiently reduce reaction temperature of CO2 hydrogenation. Small 2017, 13, 1602583.

    Article  Google Scholar 

  139. Cai, Z. J.; Huang, M.; Dai, J. J.; Zhan, G. W.; Sun, F. L.; Zhuang, G. L.; Wang, Y. Y.; Tian, P.; Chen, B.; Ullah, S. et al. Fabrication of Pd/In2O3 nanocatalysts derived from MIL-68(In) loaded with molecular metalloporphyrin (TCPP(Pd)) toward CO2 hydrogenation to methanol. ACS Catal. 2021, 12, 709–723.

    Article  Google Scholar 

  140. Rodriguez, J. A.; Goodman, D. W. The nature of the metal-metal bond in bimetallic surfaces. Science 1992, 257, 897–903.

    Article  CAS  Google Scholar 

  141. Bahruji, H.; Bowker, M.; Hutchings, G.; Dimitratos, N.; Wells, P.; Gibson, E.; Jones, W.; Brookes, C.; Morgan, D.; Lalev, G. Pd/ZnO catalysts for direct CO2 hydrogenation to methanol. J. Catal. 2016, 343, 133–146.

    Article  CAS  Google Scholar 

  142. Li, X. L.; Liu, G. L.; Xu, D.; Hong, X. L.; Tsang, S. C. E. Confinement of subnanometric PdZn at a defect enriched ZnO/ZIF-8 interface for efficient and selective CO2 hydrogenation to methanol. J. Mater. Chem. A 2019, 7, 23878–23885.

    Article  CAS  Google Scholar 

  143. Huff, C. A.; Sanford, M. S. Cascade catalysis for the homogeneous hydrogenation of CO2 to methanol. J. Am. Chem. Soc. 2011, 133, 18122–18125.

    Article  CAS  Google Scholar 

  144. Balaraman, E.; Gunanathan, C.; Zhang, J.; Shimon, L. J. W.; Milstein, D. Efficient hydrogenation of organic carbonates, carbamates and formates indicates alternative routes to methanol based on CO2 and CO. Nat. Chem. 2011, 3, 609–614.

    Article  CAS  Google Scholar 

  145. Wesselbaum, S.; Moha, V.; Meuresch, M.; Brosinski, S.; Thenert, K. M.; Kothe, J.; Stein, T. V.; Englert, U.; Hölscher, M.; Klankermayer, J. et al. Hydrogenation of carbon dioxide to methanol using a homogeneous ruthenium-triphos catalyst: From mechanistic investigations to multiphase catalysis. Chem. Sci. 2015, 6, 693–704.

    Article  CAS  Google Scholar 

  146. Wesselbaum, S.; Vom Stein, T.; Klankermayer, J.; Leitner, W. Hydrogenation of carbon dioxide to methanol by using a homogeneous ruthenium-phosphine catalyst. Angew. Chem., Int. Ed. 2012, 51, 7499–7502.

    Article  CAS  Google Scholar 

  147. Rayder, T. M.; Adillon, E. H.; Byers, J. A.; Tsung, C. K. A bioinspired multicomponent catalytic system for converting carbon dioxide into methanol autocatalytically. Chem 2020, 6, 1742–1754.

    Article  CAS  Google Scholar 

  148. Rayder, T. M.; Bensalah, A. T.; Li, B. R.; Byers, J. A.; Tsung, C. K. Engineering second sphere interactions in a host-guest multicomponent catalyst system for the hydrogenation of carbon dioxide to methanol. J. Am. Chem. Soc. 2021, 143, 1630–1640.

    Article  CAS  Google Scholar 

  149. Cui, M.; Qian, Q. L.; Zhang, J. J.; Wang, Y.; Asare Bediako, B. B.; Liu, H. Z.; Han, B. X. Liquid fuel synthesis via CO2 hydrogenation by coupling homogeneous and heterogeneous catalysis. Chem 2021, 7, 726–737.

    Article  CAS  Google Scholar 

  150. Ding, L. P.; Shi, T. T.; Gu, J.; Cui, Y.; Zhang, Z. Y.; Yang, C. J.; Chen, T.; Lin, M.; Wang, P.; Xue, N. H. et al. CO2 hydrogenation to ethanol over Cu@Na-Beta. Chem 2020, 6, 2673–2689.

    Article  CAS  Google Scholar 

  151. Wang, L. X.; Wang, L.; Zhang, J.; Liu, X. L.; Wang, H.; Zhang, W.; Yang, Q.; Ma, J. Y.; Dong, X.; Yoo, S. J. et al. Selective hydrogenation of CO2 to ethanol over cobalt catalysts. Angew. Chem., Int. Ed. 2018, 57, 6104–6108.

    Article  CAS  Google Scholar 

  152. Xu, Y.; Zhai, P.; Deng, Y. C.; Xie, J. L.; Liu, X.; Wang, S.; Ma, D. Highly selective olefin production from CO2 hydrogenation on iron catalysts: A subtle synergy between manganese and sodium additives. Angew. Chem., Int. Ed. 2020, 59, 21736–21744.

    Article  Google Scholar 

  153. Xu, D.; Ding, M. Y.; Hong, X. L.; Liu, G. L. Mechanistic aspects of the role of K promotion on Cu-Fe-based catalysts for higher alcohol synthesis from CO2 hydrogenation. ACS Catal. 2020, 10, 14516–14526.

    Article  CAS  Google Scholar 

  154. Hu, S.; Liu, M.; Ding, F. S.; Song, C. S.; Zhang, G. L.; Guo, X. W. Hydrothermally stable MOFs for CO2 hydrogenation over iron-based catalyst to light olefins. J. CO2Util. 2016, 15, 89–95.

    Article  CAS  Google Scholar 

  155. Banerjee, D.; Kim, S. J.; Parise, J. B. Lithium based metal-organic framework with exceptional stability. Cryst. Growth Des. 2009, 9, 2500–2503.

    Article  CAS  Google Scholar 

  156. Ferey, G.; Mellot-Draznieks, C.; Serre, C.; Millange, F.; Dutour, J.; Surble, S.; Margiolaki, I. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 2005, 309, 2040–2042.

    Article  CAS  Google Scholar 

  157. Hall, J. N.; Bollini, P. Structure, characterization, and catalytic properties of open-metal sites in metal organic frameworks. React. Chem. Eng. 2019, 4, 207–222.

    Article  CAS  Google Scholar 

  158. DeCoste, J. B.; Peterson, G. W.; Schindler, B. J.; Killops, K. L.; Browe, M. A.; Mahle, J. J. The effect of water adsorption on the structure of the carboxylate containing metal-organic frameworks Cu-BTC, Mg−MOF-74, and UiO-66. J. Mater. Chem. A 2013, 1, 11922–11932.

    Article  CAS  Google Scholar 

  159. Qi, S. C.; Qian, X. Y.; He, Q. X.; Miao, K. J.; Jiang, Y.; Tan, P.; Liu, X. Q.; Sun, L. B. Generation of hierarchical porosity in metal-organic frameworks by the modulation of cation valence. Angew. Chem., Int. Ed. 2019, 58, 10104–10109.

    Article  CAS  Google Scholar 

  160. Chen, W. Y.; Liu, X. M.; Han, B.; Liang, S. J.; Deng, H.; Lin, Z. Boosted photoreduction of diluted CO2 through oxygen vacancy engineering in NiO nanoplatelets. Nano Res. 2021, 14, 730–737.

    Article  CAS  Google Scholar 

  161. Jiao, L.; Yang, W. J.; Wan, G.; Zhang, R.; Zheng, X. S.; Zhou, H.; Yu, S. H.; Jiang, H. L. Single-atom electrocatalysts from multivariate metal-organic frameworks for highly selective reduction of CO2 at low pressures. Angew. Chem., Int. Ed. 2020, 59, 20589–20595.

    Article  CAS  Google Scholar 

  162. Meng, D. L.; Zhang, M. D.; Si, D. H.; Mao, M. J.; Hou, Y.; Huang, Y. B.; Cao, R. Highly selective tandem electroreduction of CO2 to ethylene over atomically isolated nickel-nitrogen site/copper nanoparticle catalysts. Angew. Chem., Int. Ed. 2021, 60, 25485–25492.

    Article  CAS  Google Scholar 

  163. Wang, T. T.; Xu, M. T.; Jupp, A. R.; Qu, Z. W.; Grimme, S.; Stephan, D. W. Selective catalytic frustrated lewis pair hydrogenation of CO2 in the presence of silylhalides. Angew. Chem., Int. Ed. 2021, 60, 25771–25775.

    Article  CAS  Google Scholar 

  164. Zhang, Y.; Lan, P. C.; Martin, K.; Ma, S. Q. Porous frustrated Lewis pair catalysts: Advances and perspective. Chem Catal. 2022, 2, 439–457.

    Article  Google Scholar 

  165. Zhu, D. L.; Ao, S. S.; Deng, H. H.; Wang, M.; Qin, C. Q.; Zhang, J.; Jia, Y. R.; Ye, P.; Ni, H. G. Ordered coimmobilization of a multienzyme cascade system with a metal organic framework in a membrane: Reduction of CO2 to methanol. ACS Appl. Mater. Interfaces 2019, 11, 33581–33588.

    Article  CAS  Google Scholar 

  166. Wang, L. X.; Guan, E. J.; Wang, Z. Q.; Wang, L.; Gong, Z. M.; Cui, Y.; Yang, Z. Y.; Wang, C. T.; Zhang, J.; Meng, X. J. et al. Dispersed nickel boosts catalysis by copper in CO2 hydrogenation. ACS Catal. 2020, 10, 9261–9270.

    Article  CAS  Google Scholar 

  167. Zhang, X. B.; Han, S. B.; Zhu, B. E.; Zhang, G. H.; Li, X. Y.; Gao, Y.; Wu, Z. X.; Yang, B.; Liu, Y. F.; Baaziz, W. et al. Reversible loss of core-shell structure for Ni−Au bimetallic nanoparticles during CO2 hydrogenation. Nat. Catal. 2020, 3, 411–417.

    Article  CAS  Google Scholar 

  168. Studt, F.; Sharafutdinov, I.; Abild-Pedersen, F.; Elkjær, C. F.; Hummelshøj, J. S.; Dahl, S.; Chorkendorff, I.; Nørskov, J. K. Discovery of a Ni−Ga catalyst for carbon dioxide reduction to methanol. Nat. Chem. 2014, 6, 320–324.

    Article  CAS  Google Scholar 

  169. Khan, M. U.; Wang, L. B.; Liu, Z.; Gao, Z. H.; Wang, S. P.; Li, H. L.; Zhang, W. B.; Wang, M. L.; Wang, Z. F.; Ma, C. et al. Pt3Co octapods as superior catalysts of CO2 hydrogenation. Angew. Chem., Int. Ed. 2016, 55, 9548–9552.

    Article  Google Scholar 

  170. Bai, S. X.; Shao, Q.; Feng, Y. G.; Bu, L. Z.; Huang, X. Q. Highly efficient carbon dioxide hydrogenation to methanol catalyzed by zigzag platinum-cobalt nanowires. Small 2017, 13, 1604311.

    Article  Google Scholar 

  171. García-Trenco, A.; White, E. R.; Regoutz, A.; Payne, D. J.; Shaffer, M. S. P.; Williams, C. K. Pd2Ga-based colloids as highly active catalysts for the hydrogenation of CO2 to methanol. ACS Catal. 2017, 7, 1186–1196.

    Article  Google Scholar 

  172. Beck, A.; Zabilskiy, M.; Newton, M. A.; Safonova, O.; Willinger, M. G.; Van Bokhoven, J. A. Following the structure of copper-zinc-alumina across the pressure gap in carbon dioxide hydrogenation. Nat. Catal. 2021, 4, 488–497.

    Article  CAS  Google Scholar 

  173. Wang, Y. J.; Zhao, Y. S.; Ma, S. L.; Li, X.; Tan, D. Y.; Feng, J. J.; Liu, J. X.; Chen, B. Pressure dependence of structural behavior and electronic properties in double perovskite Ba2SmSbO6. J. Phys. Chem. C 2021, 125, 25253–25260.

    Article  CAS  Google Scholar 

  174. Yang, W.; Shang, Z. Z.; Jiang, J. R.; Zhu, H. Y.; Hou, X. M.; He, Z. J.; Zhang, J.; Cui, Q. L. High-pressure studies of trimethylsilane azide by Raman scattering and synchrotron X-ray diffraction. J. Phys. Chem. B 2021, 125, 12042–12046.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Key Research and Development Program of China (No. 2021YFA1500403), Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB36000000), the National Natural Science Foundation of China (Nos. 22173024, 21722102, and 51672053), Beijing Natural Science Foundation (No. 2182087), and Youth Innovation Promotion Association CAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guodong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, S., Cui, C., Tang, Z. et al. Recent advances in metal-organic frameworks for catalytic CO2 hydrogenation to diverse products. Nano Res. 15, 10110–10133 (2022). https://doi.org/10.1007/s12274-022-4576-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4576-z

Keywords

Navigation