Skip to main content
Log in

Cobalt doping boosted electrocatalytic activity of CaMn3O6 for hydrogen evolution reaction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The development of earth-abundant-metal-based electrocatalysts with high efficiency and long-term stability for hydrogen evolution reaction (HER) is crucial for the clean and renewable energy application. Herein, we report a molten-salt method to synthesize Co-doped CaMn3O6 (CMO) nanowires (NWs) as effective electrocatalyst for HER. The as-obtained CaMn3−xCoxO6 (CMCO) exhibits a small onset overpotential of 70 mV, a required overpotential of 140 mV at a current density of 10 mA·cm−2, a Tafel slope of 39 mV·dec−1 in 0.1 M HClO4, and a satisfying long-term stability. Experimental characterizations combined with density functional theory (DFT) calculations demonstrate that the obtained HER performance can be attributed to the Co-doping which altered CMO’ s surface electronic structures and properties. Considering the simplicity of synthesis route and the abundance of the pertinent elements, the synthesized CMCO shows a promising prospect as a candidate for the development of earth-abundant, metal-based, and cost-effective electrocatalyst with superior HER activity. Our results also establish a strategy of rational design and construction of novel electrocatalyst toward HER by tailoring band structures of transition metal oxides (TMOs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blankenship, R. E.; Tiede, D. M.; Barber, J.; Brudvig, G. W.; Fleming, G.; Ghirardi, M.; Gunner, M. R.; Junge, W.; Kramer, D. M.; Melis, A. et al. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 2011, 332, 805–809.

    Article  CAS  Google Scholar 

  2. Niu, S. W.; Cai, J. Y.; Wang, G. M. Two-dimensional MoS2 for hydrogen evolution reaction catalysis: The electronic structure regulation. Nano Res. 2021, 14, 1985–2002.

    Article  CAS  Google Scholar 

  3. Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature 2001, 414, 332–337.

    Article  CAS  Google Scholar 

  4. Jiang, K.; Luo, M.; Liu, Z. X.; Peng, M.; Chen, D. C.; Lu, Y. R.; Chan, T. S.; de Groot, F. M. F.; Tan, Y. W. Rational strain engineering of single-atom ruthenium on nanoporous MoS2 for highly efficient hydrogen evolution. Nat. Commun. 2021, 12, 1687.

    Article  CAS  Google Scholar 

  5. Han, L. L.; Guo, L. M.; Dong, C. Q.; Zhang, C.; Gao, H.; Niu, J. Z.; Peng, Z. Q.; Zhang, Z. H. Ternary mesoporous cobalt-iron-nickel oxide efficiently catalyzing oxygen/hydrogen evolution reactions and overall water splitting. Nano Res. 2019, 12, 2281–2287.

    Article  CAS  Google Scholar 

  6. Li, S. W.; Yang, C.; Yin, Z.; Yang, H. J.; Chen, Y. F.; Lin, L. L.; Li, M. Z.; Li, W. Z.; Hu, G.; Ma, D. Wet-chemistry synthesis of cobalt carbide nanoparticles as highly active and stable electrocatalyst for hydrogen evolution reaction. Nano Res. 2017, 10, 1322–1328.

    Article  CAS  Google Scholar 

  7. Zheng, Y.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z. Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory. Angew. Chem., Int. Ed. 2015, 54, 52–65.

    Article  CAS  Google Scholar 

  8. Sultan, S.; Tiwari, J. N.; Singh, A. N.; Zhumagali, S.; Ha, M. R.; Myung, C. W.; Thangavel, P.; Kim, K. S. Single atoms and clusters based nanomaterials for hydrogen evolution, oxygen evolution reactions, and full water splitting. Adv. Energy Mater. 2019, 9, 1900624.

    Article  Google Scholar 

  9. Zhu, B. J.; Zou, R. Q.; Xu, Q. Metal-organic framework based catalysts for hydrogen evolution. Adv. Energy Mater. 2018, 8, 1801193.

    Article  Google Scholar 

  10. Huang, X.; Zeng, Z. Y.; Bao, S. Y.; Wang, M. F.; Qi, X. Y.; Fan, Z. X.; Zhang, H. Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nat. Commun. 2013, 4, 1444.

    Article  Google Scholar 

  11. Wu, J. B.; Li, Q.; Shuck, C. E.; Maleski, K.; Alshareef, H. N.; Zhou J.; Gogotsi, Y.; Huang L. An aqueous 2.1 V pseudocapacitor with MXene and V-MnO2 electrodes. Nano Res., in press, DOI: https://doi.org/10.1007/s12274-021-3513-x.

  12. Wu, J. B.; Zhou, H.; Li, Q.; Chen, M.; Wan, J.; Zhang, N.; Xiong, L. K.; Li, S.; Xia, B. Y.; Feng, G. et al. Densely-populated isolated single Co-N site for efficient oxygen electrocatalysis. Adv. Energy Mater. 2019, 9, 1900149.

    Article  Google Scholar 

  13. Wu, J. B.; Xiong, L. K.; Zhao, B. T.; Liu, M. L.; Huang, L. Densely populated single atom catalysts. Small Methods 2020, 4, 1900540.

    Article  CAS  Google Scholar 

  14. Voiry, D.; Yamaguchi, H.; Li, J. W.; Silva, R.; Alves, D. C. B.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 2013, 12, 850–855.

    Article  CAS  Google Scholar 

  15. Shi, Y. M.; Zhang, B. Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 2016, 45, 1529–1541.

    Article  CAS  Google Scholar 

  16. Maiyalagan, T.; Jarvis, K. A.; Therese, S.; Ferreira, P. J.; Manthiram, A. Spinel-type lithium cobalt oxide as a bifunctional electrocatalyst for the oxygen evolution and oxygen reduction reactions. Nat. Commun. 2014, 5, 3949.

    Article  CAS  Google Scholar 

  17. Gorlin, Y.; Jaramillo, T. F. A bifunctional nonprecious metal catalyst for oxygen reduction and water oxidation. J. Am. Chem. Soc. 2010, 132, 13612–13614.

    Article  CAS  Google Scholar 

  18. Ong, W. J.; Tan, L. L.; Chai, S. P.; Yong, S. T.; Mohamed, A. R. Facet-dependent photocatalytic properties of TiO2-based composites for energy conversion and environmental remediation. ChemSusChem 2014, 7, 690–719.

    Article  CAS  Google Scholar 

  19. Sun, Y.; Zhou, Y. J.; Liu, Y.; Wu, Q. Y.; Zhu, M. M.; Huang, H.; Liu, Y.; Shao, M. W.; Kang, Z. H. A photoactive process cascaded electrocatalysis for enhanced methanol oxidation over Pt-MXene-TiO2 composite. Nano Res. 2020, 13, 2683–2690.

    Article  CAS  Google Scholar 

  20. Wang, J. M.; Guo, L. L.; Xu, L.; Zeng, P.; Li, R. J.; Peng, T. Y. Zscheme photocatalyst based on porphyrin derivative decorated fewlayer BiVO4 nanosheets for efficient visible-light-driven overall water splitting. Nano Res. 2021, 14, 1294–1304.

    Article  CAS  Google Scholar 

  21. Yang, M. Q.; Wang, J.; Wu, H.; Ho, G. W. Noble metal-free nanocatalysts with vacancies for electrochemical water splitting. Small 2018, 14, 1703323.

    Article  Google Scholar 

  22. Hadermann, J.; Abakumov, A. M.; Gillie, L. J.; Martin, C.; Hervieu, M. Coupled cation and charge ordering in the CaMn3O6 tunnel structure. Chem. Mater. 2006, 18, 5530–5536.

    Article  CAS  Google Scholar 

  23. Fukabori, A.; Awaka, J.; Takahashi, Y.; Kijima, N.; Hayakawa, H.; Akimoto, J. Single crystal growth of CaMn2O4 and CaMn3O6 in molten CaCl2. Chem. Lett. 2008, 37, 978–979.

    Article  CAS  Google Scholar 

  24. Li, M. F.; Zhao, Z. P.; Cheng, T.; Fortunelli, A.; Chen, C. Y.; Yu, R.; Zhang, Q. H.; Gu, L.; Merinov, B. V,; Lin, Z. Y. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 2016, 354, 1414–1419.

    Article  CAS  Google Scholar 

  25. Xu, J.; Lai, S. H.; Qi, D. F.; Hu, M.; Peng, X. Y.; Liu, Y. F.; Liu, W.; Hu, G. Z.; Xu, H.; Li, F. et al. Atomic Fe-Zn dual-metal sites for high-efficiency pH-universal oxygen reduction catalysis. Nano Res. 2021, 14, 1374–1381.

    Article  CAS  Google Scholar 

  26. Tian, X. L.; Zhao, X.; Su, Y. Q.; Wang, L. J.; Wang, H. M.; Dang, D.; Chi, B.; Liu, H. F.; Hensen, E. J. M.; Lou, X. W. D. et al. Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 2019, 366, 850–856.

    Article  CAS  Google Scholar 

  27. Xiong, Q. Z.; Zhang, X.; Cheng, Q. P.; Liu, G. Q.; Xu, G.; Li, J. L.; Ye, X. X.; Gao, H. J. Highly selective electrocatalytic Cl- oxidation reaction by oxygen-modified cobalt nanoparticles immobilized carbon nanofibers for coupling with brine water remediation and H2 production. Nano Res. 2021, 14, 1443–1449.

    Article  CAS  Google Scholar 

  28. Huang, B. B.; Chen, L. Y.; Wang, Y.; Ouyang, L. Z.; Ye, J. S. Paragenesis of palladium-cobalt nanoparticle in nitrogen-rich carbon nanotubes as a bifunctional electrocatalyst for hydrogen-evolution reaction and oxygen-reduction reaction. Chem. -Eur. J. 2017, 23, 7710–7718.

    Article  CAS  Google Scholar 

  29. Huang, N.; Yang, L.; Zhang, M. Y.; Yan, S. F.; Ding, Y. Y.; Sun, P. P.; Sun, X. H. Cobalt-embedded N-doped carbon arrays derived in situ as trifunctional catalyst toward hydrogen and oxygen evolution, and oxygen reduction. ChemElectroChem 2019, 6, 4522–4532.

    Article  CAS  Google Scholar 

  30. Kim, T. S.; Song, H. J.; Dar, M. A.; Shim, H. W.; Kim, D. W. Thermally reduced rGO-wrapped CoP/Co2P hybrid microflower as an electrocatalyst for hydrogen evolution reaction. J. Am. Ceram. Soc. 2018, 101, 3749–3754.

    Article  CAS  Google Scholar 

  31. Yu, J. Y.; Huang, K.; Wu, H. Y.; Feng, Y.; Wang, L.; Tang, Z.; Zhang, L. Exchange bias and magnetic properties induced by intrinsic structural distortion in CaMn3O6 nanoribbons. Appl. Phys. Lett. 2014, 104, 022407.

    Article  Google Scholar 

  32. Najafpour, M. M. Mixed-valence manganese calcium oxides as efficient catalysts for water oxidation. Dalton Trans. 2011, 40, 3793–3795.

    Article  CAS  Google Scholar 

  33. Yang, Y.; Fei, H. L.; Ruan, G. D.; Tour, J. M. Porous cobalt-based thin film as a bifunctional catalyst for hydrogen generation and oxygen generation. Adv. Mater. 2015, 27, 3175–3180.

    Article  CAS  Google Scholar 

  34. Russell, A. E. Electrocatalysis: Theory and experiment at the interface. Preface. Faraday Discuss. 2008, 140, 9–10.

    Article  CAS  Google Scholar 

  35. Sun, H. N.; Xu, X. M.; Hu, Z. W.; Tjeng, L. H.; Zhao, J.; Zhang, Q.; Lin, H. J.; Chen, C. T.; Chan, T. S.; Zhou, W. et al. Boosting the oxygen evolution reaction activity of a perovskite through introducing multi-element synergy and building an ordered structure. J. Mater. Chem. A 2019, 7, 9924–9932.

    Article  CAS  Google Scholar 

  36. McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 2013, 135, 16977–16987.

    Article  CAS  Google Scholar 

  37. Zhang, H. J.; Guan, D. Q.; Gao, X. C.; Yu, J.; Chen, G.; Zhou, W.; Shao, Z. P. Morphology, crystal structure and electronic state onestep co-tuning strategy towards developing superior perovskite electrocatalysts for water oxidation. J. Mater. Chem. A 2019, 7, 19228–19233.

    Article  CAS  Google Scholar 

  38. Qiao, R. M.; Chin, T.; Harris, S. J.; Yan, S. S.; Yang, W. L. Spectroscopic fingerprints of valence and spin states in manganese oxides and fluorides. Curr. Appl. Phys. 2013, 13, 544–548.

    Article  Google Scholar 

  39. Suntivich, J.; Hong, W. T.; Lee, Y. L.; Rondinelli, J. M.; Yang, W. L.; Goodenough, J. B.; Dabrowski, B.; Freeland, J. W.; Shao-Horn, Y. Estimating hybridization of transition metal and oxygen states in perovskites from O K-edge X-ray absorption spectroscopy. J. Phys. Chem. C 2014, 118, 1856–1863.

    Article  CAS  Google Scholar 

  40. Xu, X. M.; Chen, Y. B.; Zhou, W.; Zhu, Z. H.; Su, C.; Liu, M. L.; Shao, Z. P. A perovskite electrocatalyst for efficient hydrogen evolution reaction. Adv. Mater. 2016, 28, 6442–6448.

    Article  CAS  Google Scholar 

  41. Grinberg, I.; West, D. V.; Torres, M.; Gou, G. Y.; Stein, D. M.; Wu, L. Y.; Chen, G. N.; Gallo, E. M.; Akbashev, A. R.; Davies, P. K. et al. Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials. Nature 2013, 503, 509–512.

    Article  CAS  Google Scholar 

  42. Guan, D.; Zhou, J.; Huang, Y. C.; Dong, C. L.; Wang, J. Q.; Zhou, W.; Shao, Z. P. Screening highly active perovskites for hydrogenevolving reaction via unifying ionic electronegativity descriptor. Nat. Commun. 2019, 10, 1–8.

    Article  CAS  Google Scholar 

  43. Guan, D. Q.; Zhou, J.; Hu, Z. W.; Zhou, W.; Xu, X. M.; Zhong, Y. J.; Liu, B.; Chen, Y. H.; Xu, M. G.; Lin, H. J. et al. Searching general sufficient-and-necessary conditions for ultrafast hydrogenevolving electrocatalysis. Adv. Funct. Mater. 2019, 29, 1900704.

    Article  Google Scholar 

  44. Bennett, J. W.; Grinberg, I.; Rappe, A. M. New highly polar semiconductor ferroelectrics through d8 Cation-O vacancy substitution into PbTiO3: A theoretical study. J. Am. Chem. Soc. 2008, 130, 17409–17412.

    Article  CAS  Google Scholar 

  45. Li, Q.; Wu J. B.; Wu T.; Jin, H. R.; Zhang, N.; Li, J.; Liang, W. X.; Liu, M. L.; Huang, L.; Zhou, J. Phase engineering of atomically thin perovskite oxide for highly active oxygen evolution. Adv. Funct. Mater. 2021, 31, 2102002.

    Article  CAS  Google Scholar 

  46. Dong, H. F.; Liu, C. H.; Ye, H. T.; Hu, L. P.; Fugetsu, B.; Dai, W. H.; Cao, Y.; Qi, X. Q.; Lu, H. T.; Zhang, X. J. Three-dimensional nitrogen-doped graphene supported molybdenum disulfide nanoparticles as an advanced catalyst for hydrogen evolution reaction. Sci. Rep. 2015, 5, 17542.

    Article  CAS  Google Scholar 

  47. Greeley, J.; Nørskov, J. K. Large-scale, density functional theorybased screening of alloys for hydrogen evolution. Surf. Sci. 2007, 601, 1590–1598.

    Article  CAS  Google Scholar 

  48. Vij, V.; Sultan, S.; Harzandi, A. M.; Meena, A.; Tiwari, J. N.; Lee, W. G.; Yoon, T.; Kim, K. S. Nickel-based electrocatalysts for energyrelated applications: Oxygen reduction, oxygen evolution, and hydrogen evolution reactions. ACS Catal. 2017, 7, 7196–7225.

    Article  CAS  Google Scholar 

  49. Qu, K. G.; Zheng, Y.; Zhang, X. X.; Davey, K.; Dai, S.; Qiao, S. Z. Promotion of electrocatalytic hydrogen evolution reaction on nitrogen-doped carbon nanosheets with secondary heteroatoms. ACS Nano 2017, 11, 7293–7300.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2020YFB2008502), the National Natural Science Foundation of China (Nos. 51972124, 51872101, 51902115, and 12172143) and the Innovation Fund of Wuhan National Laboratory for Optoelectronics (WNLO). We wish to thank the facility support of the Center for Nanoscale Characterization & Devices, WNLO of Huazhong University of Science and Technology (HUST), and the Analytical and Testing Center of HUST.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zaifang Li, Hui Yang, Wenxi Liang or Liang Huang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Liu, K., Gui, S. et al. Cobalt doping boosted electrocatalytic activity of CaMn3O6 for hydrogen evolution reaction. Nano Res. 15, 2870–2876 (2022). https://doi.org/10.1007/s12274-021-3879-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3879-9

Keywords

Navigation