Skip to main content
Log in

Carbon confinement synthesis of interlayer-expanded and sulfur-enriched MoS2+x nanocoating on hollow carbon spheres for advanced Li-S batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

High energy density and low-cost lithium-sulfur batteries have been considered as one of the most promising candidates for next-generation energy storage systems. However, the intrinsic problems of the sulfur cathode severely restrict their further practical application. Here, a unique double-shell architecture composed of hollow carbon spheres@interlayer-expanded and sulfur-enriched MoS2+x nanocoating composite has been developed as an efficient sulfur host. A uniform precursor coating derived from heteropolyanions-induced polymerization of pyrrole leads to space confinement effect during the in-situ sulfurization process, which generates the interlayer-expanded and sulfur-enriched MoS2+x nanosheets on amorphous carbon hollow spheres. This new sulfur host possesses multifarious merits including sufficient voids for loading sulfur active materials, high electronic conductivity, and fast lithium-ion diffusive pathways. In addition, additional active edge sites of MoS2+x accompanied by the nitrogen-doped carbon species endow the sulfur host with immobilizing and catalyzing effects on the soluble polysulfide species, dramatically accelerating their conversion kinetics and re-utilization. The detailed defect-induced interface catalytic reaction mechanism is firstly proposed. As expected, the delicately-designed sulfur host exhibits an outstanding initial discharge capacity of 1,249 mAh·g−1 at 0.2 C and a desirable rate performance (593 mAh·g−1 at 5.0 C), implying its great prospects in achieving superior electrochemical performances for advanced lithium sulfur batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pang, Q.; Liang, X.; Kwok, C. Y.; Nazar, L. F. Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy2016, 1, 16132.

    CAS  Google Scholar 

  2. Zhang, Y. J.; Liu, S. F.; Wang, X. L.; Zhong, Y.; Xia, X. H.; Wu, J. B.; Tu, J. P. Composite li metal anode with vertical graphene host for high performance Li-S batteries. J. Power Sources2018, 374, 205–210.

    CAS  Google Scholar 

  3. Liu, X. J.; Qian, T.; Liu, J.; Wang, M. F.; Chen, H. L.; Yan, C. L. High coulombic efficiency cathode with nitryl grafted sulfur for Li-S battery. Energy Storage Mater.2019, 17, 260–265.

    Google Scholar 

  4. Hong, X. J.; Tang, X. Y.; Wei, Q.; Song, C. L.; Wang, S. Y.; Dong, R. F.; Cai, Y. P.; Si, L. P. Efficient encapsulation of small S2–4 molecules in MOF-derived flowerlike nitrogen-doped microporous carbon nanosheets for high-performance Li-S batteries. ACS Appl. Mater. Interfaces2018, 10, 9435–9443.

    CAS  Google Scholar 

  5. Zhang, H.; Gao, Q. M.; Qian, W. W.; Xiao, H.; Li, Z. Y.; Ma, L.; Tian, X. H. Binary hierarchical porous graphene/pyrolytic carbon nanocomposite matrix loaded with sulfur as a high-performance Li-S battery cathode. ACS Appl. Mater. Interfaces2018, 10, 18726–18733.

    CAS  Google Scholar 

  6. Sun, Z. H.; Zhang, J. Q.; Yin, L. C.; Hu, G. J.; Fang, R. P.; Cheng, H. M.; Li, F. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat. Commun.2017, 8, 14627.

    Google Scholar 

  7. Li, G. X.; Sun, J. H.; Hou, W. P.; Jiang, S. D.; Huang, Y.; Geng, J. X. Three-dimensional porous carbon composites containing high sulfur nanoparticle content for high-performance lithium-sulfur batteries. Nat. Commun.2016, 7, 10601.

    CAS  Google Scholar 

  8. Song, J. X.; Gordin, M. L.; Xu, T.; Chen, S. R.; Yu, Z. X.; Sohn, H.; Lu, J.; Ren, Y.; Duan, Y. H.; Wang, D. H. Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for highperformance lithium-sulfur battery cathodes. Angew. Chem., Int. Ed.2015, 54, 4325–4329.

    CAS  Google Scholar 

  9. Yan, L. J.; Luo, N. N.; Kong, W. B.; Luo, S.; Wu, H. C.; Jiang, K. L.; Li, Q. Q.; Fan, S. S.; Duan, W. H.; Wang, J. P. Enhanced performance of lithium-sulfur batteries with an ultrathin and lightweight MoS2/carbon nanotube interlayer. J. Power Sources2018, 389, 169–177.

    CAS  Google Scholar 

  10. Ma, Z. L.; Li, Z.; Hu, K.; Liu, D. D.; Huo, J.; Wang, S. Y. The enhancement of polysulfide absorbsion in Li-S batteries by hierarchically porous CoS2/carbon paper interlayer. J. Power Sources2016, 325, 71–78.

    CAS  Google Scholar 

  11. Chen, A.; Liu, W. F.; Hu, H.; Chen, T.; Ling, B. L.; Liu, K. Y. Three-dimensional TiO2-B nanotubes/carbon nanotubes intertwined network as sulfur hosts for high performance lithium-sulfur batteries. J. Power Sources2018, 400, 23–30.

    CAS  Google Scholar 

  12. Hou, D.; Zhu, S. Y.; Tian, H.; Wei, H.; Feng, X. L.; Mai, Y. Y. Two-dimensional sandwich-structured mesoporous Mo2C/carbon/graphene nanohybrids for efficient hydrogen production electrocatalysts. ACS Appl. Mater. Interfaces2018, 10, 40800–40807.

    CAS  Google Scholar 

  13. Papandrea, B.; Xu, X.; Xu, Y. X.; Chen, C. Y.; Lin, Z. Y.; Wang, G. M.; Luo, Y. Z.; Liu, M.; Huang, Y.; Mai, L. Q. et al. Three-dimensional graphene framework with ultra-high sulfur content for a robust lithium-sulfur battery. Nano Res.2016, 9, 240–248.

    Google Scholar 

  14. Zhang, X. Q.; He, B.; Li, W. C.; Lu, A. H. Hollow carbon nanofibers with dynamic adjustable pore sizes and closed ends as hosts for high-rate lithium-sulfur battery cathodes. Nano Res.2018, 11, 1238–1246.

    CAS  Google Scholar 

  15. Tang, H. T.; Yang, J. L.; Zhang, G. X.; Liu, C. K.; Wang, H.; Zhao, Q. H.; Hu, J. T.; Duan, Y. D.; Pan, F. Self-assembled N-graphene nanohollows enabling ultrahigh energy density cathode for Li-S batteries. Nanoscale2018, 10, 386–395.

    CAS  Google Scholar 

  16. Liu, Y. Q.; Yan, Y.; Li, K.; Yu, Y.; Wang, Q. H.; Liu, M. K. A high-areal-capacity lithium-sulfur cathode achieved by a boron-doped carbon-sulfur aerogel with consecutive core-shell structures. Chem. Commun.2019, 55, 1084–1087.

    CAS  Google Scholar 

  17. Zang, J.; An, T. H.; Dong, Y. J.; Fang, X. L.; Zheng, M. S.; Dong, Q. F.; Zheng, N. F. Hollow-in-hollow carbon spheres with hollow foam-like cores for lithium-sulfur batteries. Nano Res.2015, 8, 2663–2675.

    CAS  Google Scholar 

  18. Xu, F.; Tang, Z. W.; Huang, S. Q.; Chen, L. Y.; Liang, Y. R.; Mai, W. C.; Zhong, H.; Fu, R. W.; Wu, D. C. Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres for enhanced adsorption and energy storage. Nat. Commun.2015, 6, 7221.

    Google Scholar 

  19. Liao, Y. Q.; Xiang, J. W.; Yuan, L. X.; Hao, Z. X.; Gu, J. F.; Chen, X.; Yuan, K.; Kalambate, P. K.; Huang, Y. H. Biomimetic root-like TiN/C@S nanofiber as a freestanding cathode with high sulfur loading for lithium-sulfur batteries. ACS Appl. Mater. Interfaces2018, 10, 37955–37962.

    CAS  Google Scholar 

  20. Yang, Y.; Wang, S. T.; Lin, S.; Li, Y. T.; Zhang, W. Y.; Chao, Y. G.; Luo, M. C.; Xing, Y.; Wang, K.; Yang, C. et al. Rational design of hierarchical TiO2/epitaxially aligned MoS2-carbon coupled interface nanosheets core/shell architecture for ultrastable sodium-ion and lithium-sulfur batteries. Small Methods2018, 2, 1800119.

    Google Scholar 

  21. Kim, A. Y.; Kim, M. K.; Kim, J. Y.; Wen, Y. R.; Gu, L.; Dao, V. D.; Choi, H. S.; Byun, D.; Lee, J. K. Ordered SnO nanoparticles in MWCNT as a functional host material for high-rate lithium-sulfur battery cathode. Nano Res.2017, 10, 2083–2095.

    CAS  Google Scholar 

  22. Cha, E.; Patel, M. D.; Park, J.; Hwang, J.; Prasad, V.; Cho, K.; Choi, W. 2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li-S batteries. Nat. Nanotechnol.2018, 13, 337–344.

    CAS  Google Scholar 

  23. Guo, P. Q.; Liu, D. Q.; Liu, Z. J.; Shang, X. N.; Liu, Q. M.; He, D. Y. Dual functional MoS2/graphene interlayer as an efficient polysulfide barrier for advanced lithium-sulfur batteries. Electrochim. Acta2017, 256, 28–36.

    CAS  Google Scholar 

  24. Lin, H. B.; Yang, L. Q.; Jiang, X.; Li, G. C.; Zhang, T. R.; Yao, Q. F.; Zheng, G. W.; Lee, J. Y. Electrocatalysis of polysulfide conversion by sulfur-deficient MoS2 nanoflakes for lithium-sulfur batteries. Energy Environ. Sci.2017, 10, 1476–1486.

    CAS  Google Scholar 

  25. Wu, J. Y.; Li, X. W.; Zeng, H. X.; Xue, Y.; Chen, F. Y.; Xue, Z. G.; Ye, Y. S.; Xie, X. L. Fast electrochemical kinetics and strong polysulfide adsorption by a highly oriented MoS2 nanosheet@N-doped carbon interlayer for lithium-sulfur batteries. J. Mater. Chem. A2019, 7, 7897–7906.

    CAS  Google Scholar 

  26. Li, B.; Xu, H. F.; Ma, Y.; Yang, S. B. Harnessing the unique properties of 2D materials for advanced lithium-sulfur batteries. Nanoscale Horiz.2019, 4, 77–98.

    CAS  Google Scholar 

  27. Tang, W.; Chen, Z. X.; Tian, B. B.; Lee, H. W.; Zhao, X. X.; Fan, X. F.; Fan, Y. C.; Leng, K.; Peng, C. X.; Kim, M. H. et al. In situ observation and electrochemical study of encapsulated sulfur nanoparticles by MoS2 flakes. J. Am. Chem. Soc.2017, 139, 10133–10141.

    CAS  Google Scholar 

  28. Zhang, Y. L.; Mu, Z. J.; Yang, C.; Xu, Z. K.; Zhang, S.; Zhang, X. Y.; Li, Y. J.; Lai, J. P.; Sun, Z. H.; Yang, Y. et al. Rational design of mxene/1T-2H MoS2-C nanohybrids for high-performance lithium-sulfur batteries. Adv. Funct. Mater.2018, 28, 1707578.

    Google Scholar 

  29. Lv, J. L.; Yang, M.; Liang, T. X.; Ken, S.; Hideo, M. The effect of reduced graphene oxide on MoS2 for the hydrogen evolution reaction in acidic solution. Chem. Phys. Lett.2017, 678, 212–215.

    CAS  Google Scholar 

  30. Sánchez, V.; Benavente, E.; Ana, M. A.; González, G. High electronic conductivity molybdenum disulfide-dialkylamine nanocomposites. Chem. Mater.1999, 11, 2296–2298.

    Google Scholar 

  31. Xie, J. F.; Zhang, H.; Li, S.; Wang, R. X.; Sun, X.; Zhou, M.; Zhou, J. F.; Lou, X. W.; Xie, Y. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater.2013, 25, 5807–5813.

    CAS  Google Scholar 

  32. Shen, K.; Zhang, L.; Chen, X. D.; Liu, L. M.; Zhang, D. L.; Han, Y.; Chen, J. Y.; Long, J. L.; Luque, R.; Li, Y. W. et al. Ordered macro-microporous metal-organic framework single crystals. Science2018, 359, 206–210.

    CAS  Google Scholar 

  33. Zhong, Y.; Zhuang, Q. Y.; Mao, C. M.; Xu, Z. Y.; Guo, Z. Y.; Li, G. C. Vapor phase sulfurization synthesis of interlayer-expanded MoS2@C hollow nanospheres as a robust anode material for lithium-ion batteries. J. Alloys Compd.2018, 745, 8–15.

    CAS  Google Scholar 

  34. Sun, H. H.; Ji, X. Y.; Qiu, Y. F.; Zhang, Y. Y.; Ma, Z.; Gao, G. G.; Hu, P. A. Poor crystalline MoS2 with highly exposed active sites for the improved hydrogen evolution reaction performance. J. Alloys Compd.2019, 777, 514–523.

    CAS  Google Scholar 

  35. Guo, Y. X.; Zhang, X. Y.; Zhang, X. P.; You, T. Y. Defect- and S-rich ultrathin MoS2 nanosheet embedded N-doped carbon nanofibers for efficient hydrogen evolution. J. Mater. Chem. A2015, 3, 15927–15934.

    CAS  Google Scholar 

  36. Gao, M. R.; Chan, M. K. Y.; Sun, Y. G. Edge-terminated molybdenum disulfide with a 9.4-Å interlayer spacing for electrochemical hydrogen production. Nat. Commun.2015, 6, 7493.

    Google Scholar 

  37. Sun, Y. G.; Wang, L.; Liu, Y. Z.; Ren, Y. Birnessite-type MnO2 nanosheets with layered structures under high pressure: Elimination of crystalline stacking faults and oriented laminar assembly. Small2015, 11, 300–305.

    CAS  Google Scholar 

  38. Xie, K. Y.; Yuan, K.; Li, X.; Lu, W.; Shen, C.; Liang, C. L.; Vajtai, R.; Ajayan, P.; Wei, B. Q. Superior potassium ion storage via vertical MoS2 “nano-rose” with expanded interlayers on graphene. Small2017, 13, 1701471.

    Google Scholar 

  39. Jiang, S. X.; Chen, M. F.; Wang, X. Y.; Wu, Z. Y.; Zeng, P.; Huang, C.; Wang, Y. MoS2-coated N-doped mesoporous carbon spherical composite cathode and CNT/chitosan modified separator for advanced lithium sulfur batteries. ACS Sustainable Chem. Eng. 2018, 6, 16828–16837.

    CAS  Google Scholar 

  40. Wei, Y. J.; Kong, Z. K.; Pan, Y. K.; Cao, Y. Q.; Long, D. H.; Wang, J. T.; Qiao, W. M.; Ling, L. C. Sulfur film sandwiched between few-layered MoS2 electrocatalysts and conductive reduced graphene oxide as a robust cathode for advanced lithium-sulfur batteries. J. Mater. Chem. A2018, 6, 5899–5909.

    CAS  Google Scholar 

  41. Zhao, X.; Zhu, H.; Yang, X. R. Amorphous carbon supported MoS2 nanosheets as effective catalysts for electrocatalytic hydrogen evolution. Nanoscale2014, 6, 10680–10685.

    CAS  Google Scholar 

  42. Zhang, Z. H.; Xu, H. M.; Cui, Z. L.; Hu, P.; Chai, J. C.; Du, H. P.; He, J. J.; Zhang, J. J.; Zhou, X. H.; Han, P. X. et al. High energy density hybrid Mg2+/Li+ battery with superior ultra-low temperature performance. J. Mater. Chem. A2016, 4, 2277–2285.

    CAS  Google Scholar 

  43. Zhou, G. M.; Tian, H. Z.; Jin, Y.; Tao, X. Y.; Liu, B. F.; Zhang, R. F.; Seh, Z. W.; Zhuo, D.; Liu, Y. Y.; Sun, J. et al. Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries. Proc. Natl. Acad. Sci. USA2017, 114, 840–845.

    CAS  Google Scholar 

  44. Cañas, N. A.; Hirose, K.; Pascucci, B.; Wagner, N.; Friedrich, K. A.; Hiesgen, R. Investigations of lithium-sulfur batteries using electrochemical impedance spectroscopy. Electrochim. Acta2013, 97, 42–51.

    Google Scholar 

  45. Zhang, Z. W.; Peng, H. J.; Zhao, M.; Huang, J. Q. Heterogeneous/homogeneous mediators for high-energy-density lithium-sulfur batteries: Progress and prospects. Adv. Funct. Mater.2018, 28, 1707536.

    Google Scholar 

  46. Fang, R. P.; Zhao, S. Y.; Sun, Z. H.; Wang, D. W.; Amal, R.; Wang, S. G.; Cheng, H. M.; Li, F. Polysulfide immobilization and conversion on a conductive polar MoC@MoOx material for lithium-sulfur batteries. Energy Storage Mater.2018, 10, 56–61.

    Google Scholar 

  47. Hu, L. Y.; Dai, C. L.; Lim, J. M.; Chen, Y. M.; Lian, X.; Wang, M. Q.; Li, Y.; Xiao, P. H.; Henkelman, G.; Xu, M. W. A highly efficient double-hierarchical sulfur host for advanced lithium-sulfur batteries. Chem. Sci.2018, 9, 666–675.

    CAS  Google Scholar 

  48. Wang, J.; Xu, F.; Jin, H. Y.; Chen, Y. Q.; Wang, Y. Non-noble metal-based carbon composites in hydrogen evolution reaction: Fundamentals to applications. Adv. Mater.2017, 29, 1605838.

    Google Scholar 

  49. Zhang, H.; Tian, D. X.; Zhao, Z. B.; Liu, X. G.; Hou, Y. N.; Tang, Y. J.; Liang, J. J.; Zhang, Z. C.; Wang, X. Z.; Qiu, J. S. Cobalt nitride nanoparticles embedded in porous carbon nanosheet arrays propelling polysulfides conversion for highly stable lithium-sulfur batteries. Energy Storage Mater.2019, 21, 210–218.

    Google Scholar 

  50. Li, S.; Cen, Y.; Xiang, Q.; Aslam, M. K.; Hu, B. B.; Li, W.; Tang, Y.; Yu, Q.; Liu, Y. P.; Chen, C. G. Vanadium dioxide-reduced graphene oxide binary host as an efficient polysulfide plague for high-performance lithium-sulfur batteries. J. Mater. Chem. A2019, 7, 1658–1668.

    CAS  Google Scholar 

  51. Chang, Z.; Dou, H.; Ding, B.; Wang, J.; Wang, Y.; Hao, X. D.; MacFarlane, D. R. Co3O4 nanoneedle arrays as a multifunctional “super-reservoir” electrode for long cycle life Li-S batteries. J. Mater. Chem. A2017, 5, 250–257.

    CAS  Google Scholar 

  52. Gu, X. X.; Lai, C.; Liu, F.; Yang, W. L.; Hou, Y. L.; Zhang, S. Q. A conductive interwoven bamboo carbon fiber membrane for Li-S batteries. J. Mater. Chem. A2015, 3, 9502–9509.

    CAS  Google Scholar 

  53. Wang, Z. Y.; Dong, Y. F.; Li, H. J.; Zhao, Z. B.; Wu, H. B.; Hao, C.; Liu, S. H.; Qiu, J. S.; Lou, X. W. Enhancing lithium-sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide. Nat. Commun.2014, 5, 5002.

    CAS  Google Scholar 

  54. Zhang, Y. Z.; Zhang, Z.; Liu, S.; Li, G. R.; Gao, X. P. Free-standing porous carbon nanofiber/carbon nanotube film as sulfur immobilizer with high areal capacity for lithium-sulfur battery. ACS Appl. Mater. Interfaces2018, 10, 8749–8757.

    CAS  Google Scholar 

  55. Zhang, J.; Guo, J. X.; Xia, Y.; Gan, Y. P.; Huang, H.; Liang, C.; Du, G. H.; Tao, X. Y.; Zhang, W. K. Hierarchically assembled mesoporous carbon nanosheets with an ultra large pore volume for high-performance lithium-sulfur batteries. New J. Chem.2019, 43, 1380–1387.

    CAS  Google Scholar 

  56. Mi, Y. Y.; Liu, W.; Li, X. L.; Zhuang, J. L.; Zhou, H. H.; Wang, H. L. Highperformance Li-S battery cathode with catalyst-like carbon nanotube-MoP promoting polysulfide redox. Nano Res.2017, 10, 3698–3705.

    CAS  Google Scholar 

Download references

Acknowledgements

The work was financially supported by the National Natural Science Foundation of China (Nos. 51672146 and 21805157) and the Natural Science Foundation of Shandong Province (No. ZR2018BEM011).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhonghua Zhang or Guicun Li.

Electronic Supplementary Material

12274_2019_2536_MOESM1_ESM.pdf

Carbon confinement synthesis of interlayer-expanded and sulfur-enriched MoS2+x nanocoating on hollow carbon spheres for advanced Li-S batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Wang, D., Song, Z. et al. Carbon confinement synthesis of interlayer-expanded and sulfur-enriched MoS2+x nanocoating on hollow carbon spheres for advanced Li-S batteries. Nano Res. 12, 2908–2917 (2019). https://doi.org/10.1007/s12274-019-2536-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-019-2536-z

Keywords

Navigation