Skip to main content
Log in

Recent advances in anode materials for potassium-ion batteries: A review

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Potassium-ion batteries (PIBs) are appealing alternatives to conventional lithium-ion batteries (LIBs) because of their wide potential window, fast ionic conductivity in the electrolyte, and reduced cost. However, PIBs suffer from sluggish K+ reaction kinetics in electrode materials, large volume expansion of electroactive materials, and the unstable solid electrolyte interphase. Various strategies, especially in terms of electrode design, have been proposed to address these issues. In this review, the recent progress on advanced anode materials of PIBs is systematically discussed, ranging from the design principles, and nanoscale fabrication and engineering to the structure-performance relationship. Finally, the remaining limitations, potential solutions, and possible research directions for the development of PIBs towards practical applications are presented. This review will provide new insights into the lab development and real-world applications of PIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

    Article  CAS  Google Scholar 

  2. Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

    Article  CAS  Google Scholar 

  3. Zhuang, Z. C.; Kang, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856–1866.

    Article  CAS  Google Scholar 

  4. Scrosati, B.; Garche, J. Lithium batteries: Status, prospects and future. J. Power Sources 2010, 195, 2419–2430.

    Article  CAS  Google Scholar 

  5. Reddy, M. V.; Rao, G. V. S.; Chowdari, B. V. R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 2013, 113, 5364–5457.

    Article  CAS  Google Scholar 

  6. Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem., Int. Ed. 2008, 47, 2930–2946.

    Article  CAS  Google Scholar 

  7. Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Challenges in the development of advanced Li-ion batteries: A review. Energy Environ. Sci. 2011, 4, 3243–3262.

    Article  CAS  Google Scholar 

  8. Li, X. R.; Yang, X. C.; Xue, H. G.; Pang, H.; Xu, Q. Metal-organic frameworks as a platform for clean energy applications. EnergyChem 2020, 2, 100027.

    Article  Google Scholar 

  9. Chen, Y.; Zhuo, S. M.; Li, Z. Y.; Wang, C. L. Redox polymers for rechargeable metal-ion batteries. EnergyChem 2020, 2, 100030.

    Article  Google Scholar 

  10. Cheng, Y.; Xiao, X.; Pan, K. M.; Pang, H. Development and application of self-healing materials in smart batteries and supercapacitors. Chem. Eng. J. 2020, 380, 122565.

    Article  CAS  Google Scholar 

  11. Yang, S. N.; Cheng, Y.; Xiao, X.; Pang, H. Development and application of carbon fiber in batteries. Chem. Eng. J. 2020, 384, 123294.

    Article  CAS  Google Scholar 

  12. Chen, M. Z.; Wang, E. H.; Liu, Q. N.; Guo, X. D.; Chen, W. H.; Chou, S. L.; Dou, S. X. Recent progress on iron- and manganese-based anodes for sodium-ion and potassium-ion batteries. Energy Storage Mater. 2019, 19, 163–178.

    Article  Google Scholar 

  13. Li, Y. M.; Lu, Y. X.; Zhao, C. L.; Hu, Y. S.; Titirici, M. M.; Li, H.; Huang, X. J.; Chen, L. Q. Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage. Energy Storage Mater. 2017, 7, 130–151.

    Article  Google Scholar 

  14. Chen, M. Z.; Cortie, D.; Hu, Z.; Jin, H. L.; Wang, S.; Gu, Q. F.; Hua, W. B.; Wang, E. H.; Lai, W. H.; Chen, L. N. et al. A novel graphene oxide wrapped Na2Fe2(SO4)3/C cathode composite for long life and high energy density sodium-ion batteries. Adv. Energy Mater. 2018, 8, 1800944.

    Article  Google Scholar 

  15. Xu, Y. S.; Duan, S. Y.; Sun, Y. G.; Bin, D. S.; Tao, X. S.; Zhang, D.; Liu, Y.; Cao, A. M.; Wan, L. J. Recent developments in electrode materials for potassium-ion batteries. J. Mater. Chem. A 2019, 7, 4334–4352.

    Article  CAS  Google Scholar 

  16. Luo, W.; Wan, J. Y.; Ozdemir, B.; Bao, W. Z.; Chen, Y. N.; Dai, J. Q.; Lin, H.; Xu, Y.; Gu, F.; Barone, V. et al. Potassium ion batteries with graphitic materials. Nano Lett. 2015, 15, 7671–7677.

    Article  CAS  Google Scholar 

  17. Wu, X.; Chen, Y. L.; Xing, Z.; Lam, C. W. K.; Pang, S. S.; Zhang, W.; Ju, Z. C. Advanced carbon-based anodes for potassium-ion batteries. Adv. Energy Mater. 2019, 9, 1900343.

    Article  Google Scholar 

  18. Ma, L. B.; Cui, J.; Yao, S. S.; Liu, X. M.; Luo, Y. S.; Shen, X. P.; Kim, J. K. Dendrite-free lithium metal and sodium metal batteries. Energy Storage Mater. 2020, 27, 522–554.

    Article  Google Scholar 

  19. Ma, L. B.; Zhu, G. Y.; Wang, D. D.; Chen, H. X.; Lv, Y. H.; Zhang, Y. Z.; He, X. J.; Pang, H. Emerging metal single atoms in electrocatalysts and batteries. Adv. Funct. Mater. 2020, 30, 2003870.

    Article  CAS  Google Scholar 

  20. Sultana, I.; Rahman, M. M.; Chen, Y.; Glushenkov, A. M. Potassium-ion battery anode materials operating through the alloying-dealloying reaction mechanism. Adv. Funct. Mater. 2018, 28, 1703857.

    Article  Google Scholar 

  21. Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero-González, J.; Rojo, T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 2012, 5, 5884–5901.

    Article  CAS  Google Scholar 

  22. Su, D. W.; Wang, G. X. Single-crystalline bilayered V2O5 nanobelts for high-capacity sodium-ion batteries. ACS Nano 2013, 7, 11218–11226.

    Article  CAS  Google Scholar 

  23. An, Y. L.; Fei, H. F.; Zeng, G. F.; Ci, L. J.; Xi, B. J.; Xiong, S. L.; Feng, J. K. Commercial expanded graphite as a low-cost, long-cycling life anode for potassium-ion batteries with conventional carbonate electrolyte. J. Power Sources 2018, 378, 66–72.

    Article  CAS  Google Scholar 

  24. Jian, Z. L.; Luo, W.; Ji, X. L. Carbon electrodes for K-ion batteries. J. Am. Chem. Soc. 2015, 137, 11566–11569.

    Article  CAS  Google Scholar 

  25. Zhang, W. C.; Mao, J. F.; Li, S.; Chen, Z. X.; Guo, Z. P. Phosphorus-based alloy materials for advanced potassium-ion battery anode. J. Am. Chem. Soc. 2017, 139, 3316–3319.

    Article  CAS  Google Scholar 

  26. Zhu, B.; Wang, X. Y.; Yao, P. C.; Li, J. L.; Zhu, J. Towards high energy density lithium battery anodes: Silicon and lithium. Chem. Sci. 2019, 10, 7132–7148.

    Article  CAS  Google Scholar 

  27. Wu, J. X.; Qin, X. Y.; Zhang, H. R.; He, Y. B.; Li, B. H.; Ke, L.; Lv, W.; Du, H. D.; Yang, Q. H.; Kang, F. Y. Multilayered silicon embedded porous carbon/graphene hybrid film as a high performance anode. Carbon 2015, 84, 434–443.

    Article  CAS  Google Scholar 

  28. Wu, J. X.; Qin, X. Y.; Miao, C.; He, Y. B.; Liang, G. M.; Zhou, D.; Liu, M.; Han, C. P.; Li, B. H.; Kang, F. Y. A honeycomb-cobweb inspired hierarchical core-shell structure design for electrospun silicon/carbon fibers as lithium-ion battery anodes. Carbon 2016, 98, 582–591.

    Article  CAS  Google Scholar 

  29. Ren, X. D.; Wu, Y. Y. A low-overpotential potassium-oxygen battery based on potassium superoxide. J. Am. Chem. Soc. 2013, 135, 2923–2926.

    Article  CAS  Google Scholar 

  30. Komaba, S.; Hasegawa, T.; Dahbi, M.; Kubota, K. Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors. Electrochem. Commun. 2015, 60, 172–175.

    Article  CAS  Google Scholar 

  31. Frackowiak, E.; Béguin, F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon 2001, 39, 937–950.

    Article  CAS  Google Scholar 

  32. Pandolfo, A. G.; Hollenkamp, A. F. Carbon properties and their role in supercapacitors. J. Power Sources 2006, 157, 11–27.

    Article  CAS  Google Scholar 

  33. Zhu, Y. W.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W. W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M. et al. Carbon-based supercapacitors produced by activation of graphene. Science 2011, 332, 1537–1541.

    Article  CAS  Google Scholar 

  34. Huang, X.; Zeng, Z. Y.; Fan, Z. X.; Liu, J. Q.; Zhang, H. Graphene-based electrodes. Adv. Mater. 2012, 24, 5979–6004.

    Article  CAS  Google Scholar 

  35. Deng, S. K.; Berry, V. Wrinkled, rippled and crumpled graphene: An overview of formation mechanism, electronic properties, and applications. Mater. Today 2016, 19, 197–212.

    Article  CAS  Google Scholar 

  36. Liu, L. Y.; Lin, Z. F.; Chane-Ching, J. Y.; Shao, H.; Taberna, P. L.; Simon, P. 3D rGO aerogel with superior electrochemical performance for K-ion battery. Energy Storage Mater. 2019, 19, 306–313.

    Article  Google Scholar 

  37. Chen, Y. C.; Qin, L.; Lei, Y.; Li, X. J.; Dong, J. H.; Zhai, D. Y.; Li, B. H.; Kang, F. Y. Correlation between microstructure and potassium storage behavior in reduced graphene oxide materials. ACS Appl. Mater. Inter. 2019, 11, 45578–45585.

    Article  CAS  Google Scholar 

  38. Wang, X. W.; Sun, G. Z.; Routh, P.; Kim, D. H.; Huang, W.; Chen, P. Heteroatom-doped graphene materials: Syntheses, properties and applications. Chem. Soc. Rev. 2014, 43, 7067–7098.

    Article  CAS  Google Scholar 

  39. Xue, Y. Z.; Wu, B.; Bao, Q. L.; Liu, Y. Q. Controllable synthesis of doped graphene and its applications. Small 2014, 10, 2975–2991.

    Article  CAS  Google Scholar 

  40. Wen, Y. Y.; Huang, C. C.; Wang, L. Z.; Hulicova-Jurcakova, D. Heteroatom-doped graphene for electrochemical energy storage. Chin. Sci. Bull. 2014, 59, 2102–2121.

    Article  CAS  Google Scholar 

  41. Ju, Z. C.; Li, P. Z.; Ma, G. Y.; Xing, Z.; Zhuang, Q. C.; Qian, Y. T. Few layer nitrogen-doped graphene with highly reversible potassium storage. Energy Storage Mater. 2018, 11, 38–46.

    Article  Google Scholar 

  42. Qiu, W. D.; Xiao, H. B.; Li, Y.; Lu, X. H.; Tong, Y. X. Nitrogen and phosphorus codoped vertical graphene/carbon cloth as a binder-free anode for flexible advanced potassium ion full batteries. Small 2019, 15, 1901285.

    Article  Google Scholar 

  43. Ju, Z. C.; Zhang, S.; Xing, Z.; Zhuang, Q. C.; Qiang, Y. H.; Qian, Y. T. Direct synthesis of few-layer F-doped graphene foam and its lithium/potassium storage properties. ACS Appl. Mater. Inter. 2016, 8, 20682–20690.

    Article  CAS  Google Scholar 

  44. Tang, Y. F.; Zhao, Y.; Burkert, S. C.; Ding, M. N.; Ellis, J. E.; Star, A. Efficient separation of nitrogen-doped carbon nanotube cups. Carbon 2014, 80, 583–590.

    Article  Google Scholar 

  45. Tang, Y. F.; Burkert, S. C.; Zhao, Y.; Saidi, W. A.; Star, A. The effect of metal catalyst on the electrocatalytic activity of nitrogen-doped carbon nanotubes. J. Phys. Chem. C 2013, 117, 25213–25221.

    Article  CAS  Google Scholar 

  46. Li, J. C.; Kaur, A. P.; Meier, M. S.; Cheng, Y. T. Stacked-cup-type MWCNTs as highly stable lithium-ion battery anodes. J. Appl. Electrochem. 2014, 44, 179–187.

    Article  CAS  Google Scholar 

  47. Wang, B.; Yuan, F.; Wang, W.; Zhang, D.; Sun, H. L.; Xi, K.; Wang, D. L.; Chu, J. H.; Wang, Q. J.; Li, W. A carbon microtube array with a multihole cross profile: Releasing the stress and boosting long-cycling and high-rate potassium ion storage. J. Mater. Chem. A 2019, 7, 25845–25852.

    Article  CAS  Google Scholar 

  48. Moussa, M.; Al-Bataineh, S. A.; Losic, D.; Dubal, D. P. Engineering of high-performance potassium-ion capacitors using polyaniline-derived N-doped carbon nanotubes anode and laser scribed graphene oxide cathode. Appl. Mater. Today 2019, 16, 425–434.

    Article  Google Scholar 

  49. Yu, Y.; Luo, Y. F.; Wu, H. C.; Jiang, K. L.; Li, Q. Q.; Fan, S. S.; Li, J.; Wang, J. P. Ultrastretchable carbon nanotube composite electrodes for flexible lithium-ion batteries. Nanoscale 2018, 10, 19972–19978.

    Article  CAS  Google Scholar 

  50. Chew, S. Y.; Ng, S. H.; Wang, J. Z.; Novák, P.; Krumeich, F.; Chou, S. L.; Chen, J.; Liu, H. K. Flexible free-standing carbon nanotube films for model lithium-ion batteries. Carbon 2009, 47, 2976–2983.

    Article  CAS  Google Scholar 

  51. Zhao, X. X.; Tang, Y. F.; Ni, C. L.; Wang, J. W.; Star, A.; Xu, Y. H. Free-standing nitrogen-doped cup-stacked carbon nanotube mats for potassium-ion battery anodes. ACS Appl. Energy Mater. 2018, 1, 1703–1707.

    Article  CAS  Google Scholar 

  52. Shen, C.; Yuan, K.; Tian, T.; Bai, M. H.; Wang, J. G.; Li, X. F.; Xie, K. Y.; Fu, Q. G.; Wei, B. Q. Flexible sub-micro carbon fiber@CNTs as anodes for potassium-ion batteries. ACS Appl. Mater. Inter. 2019, 11, 5015–5021.

    Article  CAS  Google Scholar 

  53. Hu, Y. X.; Debnath, S.; Hu, H.; Luo, B.; Zhu, X. B.; Wang, S. C.; Hankel, M.; Searles, D. J.; Wang, L. Z. Unlocking the potential of commercial carbon nanofibers as free-standing positive electrodes for flexible aluminum ion batteries. J. Mater. Chem. A 2019, 7, 15123–15130.

    Article  CAS  Google Scholar 

  54. Wang, Y. W.; Xiao, N.; Wang, Z. Y.; Tang, Y. C.; Li, H. Q.; Yu, M. L.; Liu, C.; Zhou, Y.; Qiu, J. S. Ultrastable and high-capacity carbon nanofiber anodes derived from pitch/polyacrylonitrile for flexible sodium-ion batteries. Carbon 2018, 135, 187–194.

    Article  CAS  Google Scholar 

  55. Li, W. H.; Li, M. S.; Adair, K. R.; Sun, X. L.; Yu, Y. Carbon nanofiber-based nanostructures for lithium-ion and sodium-ion batteries. J. Mater. Chem. A 2017, 5, 13882–13906.

    Article  CAS  Google Scholar 

  56. Xu, Y.; Zhang, C. L.; Zhou, M.; Fu, Q.; Zhao, C. X.; Wu, M. H.; Lei, Y. Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nat. Commun. 2018, 9, 1720.

    Article  Google Scholar 

  57. Zhang, M.; Shoaib, M.; Fei, H. L.; Wang, T.; Zhong, J.; Fan, L.; Wang, L.; Luo, H. Y.; Tan, S.; Wang, Y. Y. et al. Hierarchically porous N-doped carbon fibers as a free-standing anode for high-capacity potassium-based dual-ion battery. Adv. Energy Mater. 2019, 9, 1901663.

    Article  CAS  Google Scholar 

  58. Xu, Y.; Yuan, T.; Zhao, Y. H.; Yao, H. F.; Yang, J. H.; Zheng, S. Y. Constructing multichannel carbon fibers as freestanding anodes for potassium-ion battery with high capacity and long cycle life. Adv. Mater. Inter. 2020, 7, 1901829.

    Article  CAS  Google Scholar 

  59. Xie, Y. H.; Chen, Y.; Liu, L.; Tao, P.; Fan, M. P.; Xu, N.; Shen, X. W.; Yan, C. L. Ultra-high pyridinic N-doped porous carbon monolith enabling high-capacity K-ion battery anodes for both half-cell and full-cell applications. Adv. Mater. 2017, 29, 1702268.

    Article  Google Scholar 

  60. Sun, X. Z.; Wang, C. L.; Gong, Y.; Gu, L.; Chen, Q. W.; Yu, Y. A flexible sulfur-enriched nitrogen doped multichannel hollow carbon nanofibers film for high performance sodium storage. Small 2018, 14, 1802218.

    Article  Google Scholar 

  61. Hao, R.; Lan, H.; Kuang, C. W.; Wang, H.; Guo, L. Superior potassium storage in chitin-derived natural nitrogen-doped carbon nanofibers. Carbon 2018, 128, 224–230.

    Article  CAS  Google Scholar 

  62. Zhai, Y. P.; Dou, Y. Q.; Zhao, D. Y.; Fulvio, P. F.; Mayes, R. T.; Dai, S. Carbon materials for chemical capacitive energy storage. Adv. Mater. 2011, 23, 4828–4850.

    Article  CAS  Google Scholar 

  63. Liang, C. D.; Li, Z. J.; Dai, S. Mesoporous carbon materials: Synthesis and modification. Angew. Chem., Int. Ed. 2008, 47, 3696–3717.

    Article  CAS  Google Scholar 

  64. Dutta, S.; Bhaumik, A.; Wu, K. C. W. Hierarchically porous carbon derived from polymers and biomass: Effect of interconnected pores on energy applications. Energy Environ. Sci. 2014, 7, 3574–3592.

    Article  CAS  Google Scholar 

  65. Zhou, X. F.; Chen, L. L.; Zhang, W. H.; Wang, J. W.; Liu, Z. J.; Zeng, S. F.; Xu, R.; Wu, Y.; Ye, S. F.; Feng, Y. Z. et al. Three-dimensional ordered macroporous metal-organic framework single crystal-derived nitrogen-doped hierarchical porous carbon for high-performance potassium-ion batteries. Nano Lett. 2019, 19, 4965–4973.

    Article  CAS  Google Scholar 

  66. Wang, G.; Xiong, X. H.; Xie, D.; Lin, Z. H.; Zheng, J.; Zheng, F. H.; Li, Y. P.; Liu, Y. Z.; Yang, C. H.; Liu, M. L. Chemically activated hollow carbon nanospheres as a high-performance anode material for potassium ion batteries. J. Mater. Chem. A 2018, 6, 24317–24323.

    Article  CAS  Google Scholar 

  67. Ruan, J. F.; Wu, X.; Wang, Y.; Zheng, S. Y.; Sun, D. L.; Song, Y.; Chen, M. Nitrogen-doped hollow carbon nanospheres towards the application of potassium ion storage. J. Mater. Chem. A 2019, 7, 19305–19315.

    Article  CAS  Google Scholar 

  68. Yang, W. X.; Zhou, J. H.; Wang, S.; Zhang, W. Y.; Wang, Z. C.; Lv, F.; Wang, K.; Sun, Q.; Guo, S. J. Freestanding film made by necklace-like N-doped hollow carbon with hierarchical pores for high-performance potassium-ion storage. Energy Environ. Sci. 2019, 12, 1605–1612.

    Article  CAS  Google Scholar 

  69. Zhang, Y.; Yang, L.; Tian, Y.; Li, L.; Li, J. Y.; Qiu, Y. Y.; Zou, G. Q.; Hou, H. S.; Ji, X. B. Honeycomb hard carbon derived from carbon quantum dots as anode material for K-ion batteries. Mater. Chem. Phys. 2019, 229, 303–309.

    Article  CAS  Google Scholar 

  70. Hong, W. W.; Zhang, Y.; Yang, L.; Tian, Y.; Ge, P.; Hu, J. G.; Wei, W. F.; Zou, G. Q.; Hou, H. S.; Ji, X. B. Carbon quantum dot micelles tailored hollow carbon anode for fast potassium and sodium storage. Nano Energy 2019, 65, 104038.

    Article  CAS  Google Scholar 

  71. Hu, X.; Liu, Y. J.; Chen, J. X.; Yi, L. C.; Zhan, H. B.; Wen, Z. H. Fast redox kinetics in Bi-heteroatom doped 3D porous carbon nanosheets for high-performance hybrid potassium-ion battery capacitors. Adv. Energy Mater. 2019, 9, 1901533.

    Article  CAS  Google Scholar 

  72. Qin, J.; Sari, H. M. K.; He, C. N.; Li, X. F. A hybrid energy storage mechanism of carbonous anodes harvesting superior rate capability and long cycle life for sodium/potassium storage. J. Mater. Chem. A 2019, 7, 3673–3681.

    Article  CAS  Google Scholar 

  73. Zhang, W. L.; Ming, J.; Zhao, W. L.; Dong, X. C.; Hedhili, M. N.; Costa, P. M. F. J.; Alshareef, H. N. Graphitic nanocarbon with engineered defects for high-performance potassium-ion battery anodes. Adv. Funct. Mater. 2019, 29, 1903641.

    Article  Google Scholar 

  74. Liu, S. T.; Yang, B. B.; Zhou, J. S.; Song, H. H. Nitrogen-rich carbononion-constructed nanosheets: An ultrafast and ultrastable dual anode material for sodium and potassium storage. J. Mater. Chem. A 2019, 7, 18499–18509.

    Article  CAS  Google Scholar 

  75. Cao, B.; Zhang, Q.; Liu, H.; Xu, B.; Zhang, S. L.; Zhou, T. F.; Mao, J. F.; Pang, W. K.; Guo, Z. P.; Li, A. et al. Graphitic carbon nanocage as a stable and high power anode for potassium-ion batteries. Adv. Energy Mater. 2018, 8, 1801149.

    Article  Google Scholar 

  76. Xiao, N.; Zhang, X. Y.; Liu, C.; Wang, Y. W.; Li, H. Q.; Qiu, J. S. Coal-based carbon anodes for high-performance potassium-ion batteries. Carbon 2019, 147, 574–581.

    Article  CAS  Google Scholar 

  77. Qian, Y.; Jiang, S.; Li, Y.; Yi, Z.; Zhou, J.; Li, T. Q.; Han, Y.; Wang, Y. S.; Tian, J.; Lin, N. et al. In situ revealing the electroactivity of P–O and P–C bonds in hard carbon for high-capacity and long-life Li/K-ion batteries. Adv. Energy Mater. 2019, 9, 1901676.

    Article  Google Scholar 

  78. Kamiyama, A.; Kubota, K.; Nakano, T.; Fujimura, S.; Shiraishi, S.; Tsukada, H.; Komaba, S. High-capacity hard carbon synthesized from macroporous phenolic resin for sodium-ion and potassium-ion battery. ACS Appl. Energy Mater. 2020, 3, 135–140.

    Article  CAS  Google Scholar 

  79. Qian, Y.; Jiang, S.; Li, Y.; Yi, Z.; Zhou, J.; Tian, J.; Lin, N.; Qian, Y. T. Water-induced growth of a highly oriented mesoporous graphitic carbon nanospring for fast potassium-ion adsorption/intercalation storage. Angew. Chem., Int. Ed. 2019, 58, 18108–18115.

    Article  CAS  Google Scholar 

  80. Mahmood, A.; Li, S.; Ali, Z.; Tabassum, H.; Zhu, B. J.; Liang, Z. B.; Meng, W.; Aftab, W.; Guo, W. H.; Zhang, H. et al. Ultrafast sodium/potassium-ion intercalation into hierarchically porous thin carbon shells. Adv. Mater. 2019, 31, 1805430.

    Article  Google Scholar 

  81. Li, Y. P.; Yang, C. H.; Zheng, F. H.; Ou, X.; Pan, Q. C.; Liu, Y. Z.; Wang, G. High pyridine N-doped porous carbon derived from metal-organic frameworks for boosting potassium-ion storage. J. Mater. Chem. A 2018, 6, 17959–17966.

    Article  CAS  Google Scholar 

  82. Jian, Z. L.; Hwang, S.; Li, Z. F.; Hernandez, A. S.; Wang, X. F.; Xing, Z. Y.; Su, D.; Ji, X. L. Hard-soft composite carbon as a long-cycling and high-rate anode for potassium-ion batteries. Adv. Funct. Mater. 2017, 27, 1700324.

    Article  Google Scholar 

  83. Zhang, W. L.; Cao, Z.; Wang, W. X.; Alhajji, E.; Emwas, A. H.; Costa, P. M. F. J.; Cavallo, L.; Alshareef, H. N. A site-selective doping strategy of carbon anodes with remarkable K-ion storage capacity. Angew. Chem., Int. Ed. 2020, 59, 4448–4455.

    Article  CAS  Google Scholar 

  84. Liu, Y.; Dai, H. D.; Wu, L.; Zhou, W. B.; He, L.; Wang, W. G.; Yan, W. Q.; Huang, Q. H.; Fu, L. J.; Wu, Y. P. A large scalable and low-cost sulfur/nitrogen dual-doped hard carbon as the negative electrode material for high-performance potassium-ion batteries. Adv. Energy Mater. 2019, 9, 1901379.

    Article  Google Scholar 

  85. Lin, X. Y.; Huang, J. Q.; Zhang, B. Correlation between the microstructure of carbon materials and their potassium ion storage performance. Carbon 2019, 143, 138–146.

    Article  CAS  Google Scholar 

  86. Wang, W.; Zhou, J. H.; Wang, Z. P.; Zhao, L. Y.; Li, P. H.; Yang, Y.; Yang, C.; Huang, H. X.; Guo, S. J. Short-range order in mesoporous carbon boosts potassium-ion battery performance. Adv. Energy Mater. 2018, 8, 1701648.

    Article  Google Scholar 

  87. Yamamoto, H.; Muratsubaki, S.; Kubota, K.; Fukunishi, M.; Watanabe, H.; Kim, J.; Komaba, S. Synthesizing higher-capacity hard-carbons from cellulose for Na- and K-ion batteries. J. Mater. Chem. A 2018, 6, 16844–16848.

    Article  CAS  Google Scholar 

  88. Zhang, Z. L.; Jia, B. R.; Liu, L.; Zhao, Y. Z.; Wu, H. Y.; Qin, M. L.; Han, K.; Wang, W. A.; Xi, K.; Zhang, L. et al. Hollow multihole carbon bowls: A stress-release structure design for high-stability and high-volumetric-capacity potassium-ion batteries. ACS Nano 2019, 13, 11363–11371.

    Article  CAS  Google Scholar 

  89. Gao, C. L.; Wang, Q.; Luo, S. H.; Wang, Z. Y.; Zhang, Y. H.; Liu, Y. G.; Hao, A. M.; Guo, R. High performance potassium-ion battery anode based on biomorphic N-doped carbon derived from walnut septum. J. Power Sources 2019, 415, 165–171.

    Article  CAS  Google Scholar 

  90. Arnaiz, M.; Bothe, A.; Dsoke, S.; Balducci, A.; Ajuria, J. Aprotic and protic ionic liquids combined with olive pits derived hard carbon for potassium-ion batteries. J. Electrochem. Soc. 2019, 166, A3504–A3510.

    Article  CAS  Google Scholar 

  91. Chen, C. J.; Wang, Z. G.; Zhang, B.; Miao, L.; Cai, J.; Peng, L. F.; Huang, Y. Y.; Jiang, J. J.; Huang, Y. H.; Zhang, L. N. et al. Nitrogen-rich hard carbon as a highly durable anode for high-power potassium-ion batteries. Energy Storage Mater. 2017, 8, 161–168.

    Article  Google Scholar 

  92. Li, H. Y.; Cheng, Z.; Zhang, Q.; Natan, A.; Yang, Y.; Cao, D. X.; Zhu, H. L. Bacterial-derived, compressible, and hierarchical porous carbon for high-performance potassium-ion batteries. Nano Lett. 2018, 18, 7407–7413.

    Article  CAS  Google Scholar 

  93. Chen, C.; Wu, M. Q.; Wang, Y. S.; Zaghib, K. Insights into pseudographite-structured hard carbon with stabilized performance for high energy K-ion storage. J. Power Sources 2019, 444, 227310.

    Article  CAS  Google Scholar 

  94. Qi, X. J.; Huang, K. S.; Xu, X.; Zhao, W.; Wang, H.; Zhuang, Q. C.; Ju, Z. C. Novel fabrication of N-doped hierarchically porous carbon with exceptional potassium storage properties. Carbon 2018, 131, 79–85.

    Article  CAS  Google Scholar 

  95. Ma, H. L.; Qi, X. J.; Peng, D. Q.; Chen, Y. X.; Wei, D. H.; Ju, Z. C.; Zhuang, Q. C. Novel fabrication of N/S Co-doped hierarchically porous carbon for potassium-ion batteries. Chem. Select 2019, 4, 11488–11495.

    CAS  Google Scholar 

  96. Wu, X.; Lam, C. W. K.; Wu, N. Q.; Pang, S. S.; Xing, Z.; Zhang, W.; Ju, Z. C. Multiple templates fabrication of hierarchical porous carbon for enhanced rate capability in potassium-ion batteries. Mater. Today Energy 2019, 11, 182–191.

    Article  CAS  Google Scholar 

  97. Zhang, R.; Li, H. B.; Li, R.; Wei, D. H.; Kang, W. J.; Ju, Z. C.; Xiong, S. L. Boosting the potassium-ion storage performance of a carbon anode by chemically regulating oxygen-containing species. Chem. Commun. 2019, 55, 14147–14150.

    Article  CAS  Google Scholar 

  98. Sun, Q.; Li, D. P.; Cheng, J.; Dai, L. N.; Guo, J. G.; Liang, Z.; Ci, L. J. Nitrogen-doped carbon derived from pre-oxidized pitch for surface dominated potassium-ion storage. Carbon 2019, 155, 601–610.

    Article  CAS  Google Scholar 

  99. Li, Y. P.; Zhong, W. T.; Yang, C. H.; Zheng, F. H.; Pan, Q. C.; Liu, Y. Z.; Wang, G.; Xiong, X. H.; Liu, M. L. N/S codoped carbon microboxes with expanded interlayer distance toward excellent potassium storage. Chem. Eng. J. 2019, 358, 1147–1154.

    Article  CAS  Google Scholar 

  100. Lu, G. F.; Wang, H. L.; Zheng, Y. L.; Zhang, H.; Yang, Y. P.; Shi, J.; Huang, M. H.; Liu, W. Metal-organic framework derived N-doped CNT@porous carbon for high-performance sodium- and potassium-ion storage. Electrochim. Acta 2019, 319, 541–551.

    Article  CAS  Google Scholar 

  101. Li, D. J.; Cheng, X. L.; Xu, R.; Wu, Y.; Zhou, X. F.; Ma, C.; Yu, Y. Manipulation of 2D carbon nanoplates with a core-shell structure for high-performance potassium-ion batteries. J. Mater. Chem. A 2019, 7, 19929–19938.

    Article  CAS  Google Scholar 

  102. Gabaudan, V.; Berthelot, R.; Stievano, L.; Monconduit, L. Inside the alloy mechanism of Sb and Bi electrodes for K-ion batteries. J. Phys. Chem. C 2018, 122, 18266–18273.

    Article  CAS  Google Scholar 

  103. Liu, Q.; Fan, L.; Ma, R. F.; Chen, S. H.; Yu, X. Z.; Yang, H. G.; Xie, Y.; Han, X.; Lu, B. G. Super long-life potassium-ion batteries based on an antimony@carbon composite anode. Chem. Commun. 2018, 54, 11773–11776.

    Article  CAS  Google Scholar 

  104. McCulloch, W. D.; Ren, X. D.; Yu, M. Z.; Huang, Z. J.; Wu, Y. Y. Potassium-ion oxygen battery based on a high capacity antimony anode. ACS Appl. Mater. Inter. 2015, 7, 26158–26166.

    Article  CAS  Google Scholar 

  105. Sultana, I.; Rahman, M. M.; Liu, J. N.; Sharma, N.; Ellis, A. V.; Chen, Y.; Glushenkov, A. M. Antimony-carbon nanocomposites for potassium-ion batteries: Insight into the failure mechanism in electrodes and possible avenues to improve cyclic stability. J. Power Sources 2019, 413, 476–484.

    Article  CAS  Google Scholar 

  106. Zhang, N.; Liu, Y. C.; Lu, Y. Y.; Han, X. P.; Cheng, F. Y.; Chen, J. Spherical nano-Sb@C composite as a high-rate and ultra-stable anode material for sodium-ion batteries. Nano Res. 2015, 8, 3384–3393.

    Article  CAS  Google Scholar 

  107. Gabaudan, V.; Touja, J.; Cot, D.; Flahaut, E.; Stievano, L.; Monconduit, L. Double-walled carbon nanotubes, a performing additive to enhance capacity retention of antimony anode in potassium-ion batteries. Electrochem. Commun. 2019, 105, 106493.

    Article  CAS  Google Scholar 

  108. Zhou, L.; Cao, Z.; Zhang, J.; Cheng, H.; Liu, G.; Park, G. T.; Cavallo, L.; Wang, L. M.; Alshareef, H. N.; Sun, Y. K. et al. Electrolyte-mediated stabilization of high-capacity micro-sized antimony anodes for potassium-ion batteries. Adv. Mater. 2021, 33, 2005993.

    Article  CAS  Google Scholar 

  109. Zhao, N.; Qin, J.; Chu, L. J.; Wang, L. Z.; Xu, D.; Wang, X. J.; Yang, H. J.; Zhang, J. J.; Li, X. F. Heterogeneous interface of Se@Sb@C boosting potassium storage. Nano Energy 2020, 78, 105345.

    Article  CAS  Google Scholar 

  110. Zhao, R. Z.; Di, H. X.; Wang, C. X.; Hui, X. B.; Zhao, D. Y.; Wang, R. T.; Zhang, L. Y.; Yin, L. W. Encapsulating ultrafine Sb nanoparticles in Na+ pre-intercalated 3D porous Ti3C2Tx MXene nanostructures for enhanced potassium storage performance. ACS Nano 2020, 14, 13938–13951.

    Article  Google Scholar 

  111. Cheng, N.; Zhao, J. G.; Fan, L.; Liu, Z. M.; Chen, S. H.; Ding, H. B.; Yu, X. Z.; Liu, Z. G.; Lu, B. G. Sb-MOFs derived Sb nanoparticles@porous carbon for high performance potassium-ion batteries anode. Chem. Commun. 2019, 55, 12511–12514.

    Article  CAS  Google Scholar 

  112. He, X. D.; Liu, Z. H.; Liao, J. Y.; Ding, X.; Hu, Q.; Xiao, L. N.; Wang, S.; Chen, C. H. A three-dimensional macroporous antimony@carbon composite as a high-performance anode material for potassium-ion batteries. J. Mater. Chem. A 2019, 7, 9629–9637.

    Article  CAS  Google Scholar 

  113. Zheng, J.; Yang, Y.; Fan, X. L.; Ji, G. B.; Ji, X.; Wang, H. Y.; Hou, S.; Zachariah, M. R.; Wang, C. S. Extremely stable antimony-carbon composite anodes for potassium-ion batteries. Energy Environ. Sci. 2019, 12, 615–623.

    Article  CAS  Google Scholar 

  114. Zhang, W. M.; Miao, W. F.; Liu, X. Y.; Li, L.; Yu, Z.; Zhang, Q. H. High-rate and ultralong-stable potassium-ion batteries based on antimony-nanoparticles encapsulated in nitrogen and phosphorus co-doped mesoporous carbon nanofibers as an anode material. J. Alloys Compd. 2018, 769, 141–148.

    Article  CAS  Google Scholar 

  115. Wang, H.; Wu, X.; Qi, X. J.; Zhao, W.; Ju, Z. C. Sb nanoparticles encapsulated in 3D porous carbon as anode material for lithium-ion and potassium-ion batteries. Mater. Res. Bull. 2018, 103, 32–37.

    Article  Google Scholar 

  116. Luo, W.; Li, F.; Zhang, W. R.; Han, K.; Gaumet, J. J.; Schaefer, H. E.; Mai, L. Q. Encapsulating segment-like antimony nanorod in hollow carbon tube as long-lifespan, high-rate anodes for rechargeable K-ion batteries. Nano Res. 2019, 12, 1025–1031.

    Article  CAS  Google Scholar 

  117. Yi, Z.; Lin, N.; Zhang, W. Q.; Wang, W. W.; Zhu, Y. C.; Qian, Y. T. Preparation of Sb nanoparticles in molten salt and their potassium storage performance and mechanism. Nanoscale 2018, 10, 13236–13241.

    Article  CAS  Google Scholar 

  118. An, Y. L.; Tian, Y.; Ci, L. J.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Micron-sized nanoporous antimony with tunable porosity for high-performance potassium-ion batteries. ACS Nano 2018, 12, 12932–12940.

    Article  CAS  Google Scholar 

  119. Obrovac, M. N.; Chevrier, V. L. Alloy negative electrodes for Li-ion batteries. Chem. Rev. 2014, 114, 11444–11502.

    Article  CAS  Google Scholar 

  120. Shan, Y. Y.; Li, Y.; Pang, H. Applications of tin sulfide-based materials in lithium-ion batteries and sodium-ion batteries. Adv. Funct. Mater. 2020, 30, 2001298.

    Article  CAS  Google Scholar 

  121. Li, Z.; Ding, J.; Mitlin, D. Tin and tin compounds for sodium ion battery anodes: Phase transformations and performance. Acc. Chem. Res. 2015, 48, 1657–1665.

    Article  CAS  Google Scholar 

  122. Wang, Q. N.; Zhao, X. X.; Ni, C. L.; Tian, H.; Li, J. X.; Zhang, Z.; Mao, S. X.; Wang, J. W.; Xu, Y. H. Reaction and capacity-fading mechanisms of tin nanoparticles in potassium-ion batteries. J. Phys. Chem. C 2017, 121, 12652–12657.

    Article  CAS  Google Scholar 

  123. Lang, J. H.; Li, J. R.; Ou, X. W.; Zhang, F.; Shin, K.; Tang, Y. B. A flexible potassium-ion hybrid capacitor with superior rate performance and long cycling life. ACS Appl. Mater. Inter. 2020, 12, 2424–2431.

    Article  CAS  Google Scholar 

  124. Yang, Y. L.; Li, D.; Zhang, J. Q.; Suo, G Q.; Yu, Q. Y.; Feng, L.; Hou, X. J.; Ye, X. H.; Zhang, L.; Wang, W. Sn nanoparticles anchored on N doped porous carbon as an anode for potassium ion batteries. Mater. Lett. 2019, 256, 126613.

    Article  CAS  Google Scholar 

  125. Sultana, I.; Ramireddy, T.; Rahman, M. M.; Chen, Y.; Glushenkov, A. M. Tin-based composite anodes for potassium-ion batteries. Chem. Commun. 2016, 52, 9279–9282.

    Article  CAS  Google Scholar 

  126. Wang, H.; Xing, Z.; Hu, Z. K.; Zhang, Y.; Hu, Y.; Sun, Y. W.; Ju, Z. C.; Zhuang, Q. C. Sn-based submicron-particles encapsulated in porous reduced graphene oxide network: Advanced anodes for high-rate and long life potassium-ion batteries. Appl. Mater. Today 2019, 15, 58–66.

    Article  Google Scholar 

  127. Yin, H.; Li, Q. W.; Cao, M. L.; Zhang, W.; Zhao, H.; Li, C.; Huo, K. F.; Zhu, M. Q. Nanosized-bismuth-embedded 1D carbon nanofibers as high-performance anodes for lithium-ion and sodium-ion batteries. Nano Res. 2017, 10, 2156–2167.

    Article  CAS  Google Scholar 

  128. Yang, H.; Xu, R.; Yao, Y.; Ye, S. F.; Zhou, X. F.; Yu, Y. Multicoreshell Bi@N-doped carbon nanospheres for high power density and long cycle life sodium-and potassium-ion anodes. Adv. Funct. Mater. 2019, 29, 1809195.

    Article  Google Scholar 

  129. Zhang, Q.; Mao, J. F.; Pang, W. K.; Zheng, T.; Sencadas, V.; Chen, Y. Z.; Liu, Y. J.; Guo, Z. P. Boosting the potassium storage performance of alloy-based anode materials via electrolyte salt chemistry. Adv. Energy Mater. 2018, 8, 1703288.

    Article  Google Scholar 

  130. Cheng, X. L.; Li, D. J.; Wu, Y.; Xu, R.; Yu, Y. Bismuth nanospheres embedded in three-dimensional (3D) porous graphene frameworks as high performance anodes for sodium- and potassium-ion batteries. J. Mater. Chem. A 2019, 7, 4913–4921.

    Article  CAS  Google Scholar 

  131. Lei, K. X.; Wang, C. C.; Liu, L. J.; Luo, Y. W.; Mu, C. N.; Li, F. J.; Chen, J. A porous network of bismuth used as the anode material for high-energy-density potassium-ion batteries. Angew. Chem., Int. Ed. 2018, 57, 4687–4691.

    Article  CAS  Google Scholar 

  132. Yang, W. W.; Lu, Y. X.; Zhao, C. X.; Liu, H. L. First-principles study of black phosphorus as anode material for rechargeable potassium-ion batteries. Electron. Mater. Lett. 2020, 16, 89–98.

    Article  CAS  Google Scholar 

  133. Qin, G. H.; Liu, Y. H.; Liu, F. S.; Sun, X.; Hou, L. R.; Liu, B. B.; Yuan, C. Z. Magnetic field assisted construction of hollow red P nanospheres confined in hierarchical N-doped carbon nanosheets/nanotubes 3D framework for efficient potassium storage. Adv. Energy Mater. 2021, 11, 2003429.

    Article  CAS  Google Scholar 

  134. Chang, W. C.; Wu, J. H.; Chen, K. T.; Tuan, H. Y. Red phosphorus potassium-ion battery anodes. Adv. Sci. 2019, 6, 1801354.

    Article  Google Scholar 

  135. Sultana, I.; Rahman, M. M.; Ramireddy, T.; Chen, Y.; Glushenkov, A. M. High capacity potassium-ion battery anodes based on black phosphorus. J. Mater. Chem. A 2017, 5, 23506–23512.

    Article  CAS  Google Scholar 

  136. Gao, Y. Q.; Ru, Q.; Liu, Y.; Cheng, S. K.; Wei, L.; Ling, F. C. C.; Chen, F. M.; Hou, X. H. Mosaic red phosphorus/MoS2 hybrid as an anode to boost potassium-ion storage. ChemElectroChem 2019, 6, 4689–4695.

    Article  CAS  Google Scholar 

  137. Wu, X.; Zhao, W.; Wang, H.; Qi, X. J.; Xing, Z.; Zhuang, Q. C.; Ju, Z. C. Enhanced capacity of chemically bonded phosphorus/carbon composite as an anode material for potassium-ion batteries. J. Power Sources 2018, 378, 460–467.

    Article  CAS  Google Scholar 

  138. Wu, Y.; Hu, S. H.; Xu, R.; Wang, J. W.; Peng, Z. Q.; Zhang, Q. B.; Yu, Y. Boosting potassium-ion battery performance by encapsulating red phosphorus in free-standing nitrogen-doped porous hollow carbon nanofibers. Nano Lett. 2019, 19, 1351–1358.

    Article  CAS  Google Scholar 

  139. Liu, D.; Huang, X. K.; Qu, D. Y.; Zheng, D.; Wang, G. W.; Harris, J.; Si, J. Y.; Ding, T. Y.; Chen, J. H.; Qu, D. Y. Confined phosphorus in carbon nanotube-backboned mesoporous carbon as superior anode material for sodium/potassium-ion batteries. Nano Energy 2018, 52, 1–10.

    Article  CAS  Google Scholar 

  140. Xiong, P. X.; Bai, P. X.; Tu, S. B.; Cheng, M. R.; Zhang, J. F.; Sun, J.; Xu, Y. H. Red phosphorus nanoparticle@3D interconnected carbon nanosheet framework composite for potassium-ion battery anodes. Small 2018, 14, 1802140.

    Article  Google Scholar 

  141. Huang, X. K.; Liu, D.; Guo, X. R.; Sui, X. Y.; Qu, D. Y.; Chen, J. H. Phosphorus/carbon composite anode for potassium-ion batteries: Insights into high initial coulombic efficiency and superior cyclic performance. ACS Sustain. Chem. Eng. 2018, 6, 16308–16314.

    Article  CAS  Google Scholar 

  142. Wang, H.; Wang, L. F.; Wang, L. C.; Xing, Z.; Wu, X.; Zhao, W.; Qi, X. J.; Ju, Z. C.; Zhuang, Q. C. Phosphorus particles embedded in reduced graphene oxide matrix to enhance capacity and rate capability for capacitive potassium-ion storage. Chem.-Eur. J. 2018, 24, 13897–13902.

    Article  CAS  Google Scholar 

  143. Yang, Q.; Wang, Z. F.; Xi, W.; He, G. Tailoring nanoporous structures of Ge anodes for stable potassium-ion batteries. Electrochem. Commun. 2019, 101, 68–72.

    Article  CAS  Google Scholar 

  144. Tai, Z. X.; Liu, Y. J.; Zhang, Q.; Zhou, T. F.; Guo, Z. P.; Liu, H. K.; Dou, S. X. Ultra-light and flexible pencil-trace anode for high performance potassium-ion and lithium-ion batteries. Green. Energy Environ. 2017, 2, 278–284.

    Article  Google Scholar 

  145. Gabaudan, V.; Berthelot, R.; Stievano, L.; Monconduit, L. Electrochemical alloying of lead in potassium-ion batteries. ACS Omega 2018, 3, 12195–12200.

    Article  CAS  Google Scholar 

  146. Yan, C. L.; Gu, X.; Zhang, L.; Wang, Y.; Yan, L. T.; Liu, D. D.; Li, L. J.; Dai, P. C.; Zhao, X. B. Highly dispersed Zn nanoparticles confined in a nanoporous carbon network: Promising anode materials for sodium and potassium ion batteries. J. Mater. Chem. A 2018, 6, 17371–17377.

    Article  CAS  Google Scholar 

  147. Wang, Z. Y.; Dong, K. Z.; Wang, D.; Luo, S. H.; Liu, Y. G.; Wang, Q.; Zhang, Y. H.; Hao, A. M.; Shi, C. S.; Zhao, N. Q. A nanosized SnSb alloy confined in N-doped 3D porous carbon coupled with ether-based electrolytes toward high-performance potassium-ion batteries. J. Mater. Chem. A 2019, 7, 14309–14318.

    Article  CAS  Google Scholar 

  148. Zhang, Y. F.; Li, M.; Huang, F. B.; Li, Y. S.; Xu, Y. Q.; Wang, F.; Yao, Q. R.; Zhou, H. Y.; Deng, J. Q. 3D porous Sb-Co nanocomposites as advanced anodes for sodium-ion batteries and potassium-ion batteries. Appl. Surf. Sci. 2020, 499, 143907.

    Article  CAS  Google Scholar 

  149. Wang, J.; Fan, L.; Liu, Z. M.; Chen, S. H.; Zhang, Q. F.; Wang, L. L.; Yang, H. G.; Yu, X. Z.; Lu, B. G. In situ alloying strategy for exceptional potassium ion batteries. ACS Nano 2019, 13, 3703–3713.

    Article  CAS  Google Scholar 

  150. Li, J. S.; Xu, X. J.; Yu, X. T.; Han, X.; Zhang, T.; Zuo, Y.; Zhang, C. Q.; Yang, D. W.; Wang, X.; Luo, Z. S. et al. Monodisperse CoSn and NiSn nanoparticles supported on commercial carbon as anode for lithium- and potassium-ion batteries. ACS Appl. Mater. Inter. 2020, 12, 4414–4422.

    Article  CAS  Google Scholar 

  151. He, X. D.; Liao, J. Y.; Wang, S.; Wang, J. R.; Liu, Z. H.; Ding, X.; Hu, Q.; Wen, Z. Y.; Chen, C. H. From nanomelting to nanobeads: Nanostructured SbxBi1−x alloys anchored in three-dimensional carbon frameworks as a high-performance anode for potassium-ion batteries. J. Mater. Chem. A 2019, 7, 27041–27047.

    Article  CAS  Google Scholar 

  152. Jiang, J.; Li, Y. Y.; Liu, J. P.; Huang, X. T.; Yuan, C. Z.; Lou, X. W. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 2012, 24, 5166–5180.

    Article  CAS  Google Scholar 

  153. Yuan, C. Z.; Wu, H. B.; Xie, Y.; Lou, X. W. Mixed transition-metal oxides: Design, synthesis, and energy-related applications. Angew. Chem., Int. Ed. 2014, 53, 1488–1504.

    Article  CAS  Google Scholar 

  154. Wu, Z. S.; Zhou, G. M.; Yin, L. C.; Ren, W. C.; Li, F.; Cheng, H. M. Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 2012, 1, 107–131.

    Article  CAS  Google Scholar 

  155. Zhao, S. Q.; Dong, L. B.; Sun, B.; Yan, K.; Zhang, J. Q.; Wan, S. W.; He, F. R.; Munroe, P.; Notten, P. H. L.; Wang, G. X. K2Ti2O5@C microspheres with enhanced K+ intercalation pseudocapacitance ensuring fast potassium storage and long-term cycling stability. Small 2020, 16, 1906131.

    Article  CAS  Google Scholar 

  156. Niu, X. G.; Zhang, Y. C.; Tan, L. L.; Yang, Z.; Yang, J.; Liu, T.; Zeng, L.; Zhu, Y. J.; Guo, L. Amorphous FeVO4 as a promising anode material for potassium-ion batteries. Energy Storage Mater. 2019, 22, 160–167.

    Article  Google Scholar 

  157. Li, N.; Zhang, F.; Tang, Y. B. Hierarchical T-Nb2O5 nanostructure with hybrid mechanisms of intercalation and pseudocapacitance for potassium storage and high-performance potassium dual-ion batteries. J. Mater. Chem. A 2018, 6, 17889–17895.

    Article  CAS  Google Scholar 

  158. Li, Z. T.; Dong, Y. F.; Feng, J. Z.; Xu, T.; Ren, H.; Gao, C.; Li, Y. R.; Cheng, M. J.; Wu, W. T.; Wu, M. B. Controllably enriched oxygen vacancies through polymer assistance in titanium pyrophosphate as a super anode for Na/K-ion batteries. ACS Nano 2019, 13, 9227–9236.

    Article  CAS  Google Scholar 

  159. Lee, G. W.; Park, B. H.; Nazarian-Samani, M.; Kim, Y. H.; Roh, K. C.; Kim, K. B. Magneli phase titanium oxide as a novel anode material for potassium-ion batteries. ACS Omega 2019, 4, 5304–5309.

    Article  CAS  Google Scholar 

  160. Xing, L. D.; Yu, Q. Y.; Bao, Y. P.; Chu, J. H.; Han, K.; Chong, S. K.; Lao, C. Y.; Lai, F. L.; Li, P.; Xi, K. et al. Strong (001) facet-induced growth of multi-hierarchical tremella-like Sn-doped V2O5 for high-performance potassium-ion batteries. J. Mater. Chem. A 2019, 7, 25993–26001.

    Article  CAS  Google Scholar 

  161. Li, Y. Q.; Shi, H.; Wang, S. B.; Zhou, Y. T.; Wen, Z.; Lang, X. Y.; Jiang, Q. Dual-phase nanostructuring of layered metal oxides for high-performance aqueous rechargeable potassium ion microbatteries. Nat. Commun. 2019, 10, 4292.

    Article  Google Scholar 

  162. Shimizu, M.; Yatsuzuka, R.; Koya, T.; Yamakami, T.; Arai, S. Tin oxides as a negative electrode material for potassium-ion batteries. ACS Appl. Energy Mater. 2018, 1, 6865–6870.

    Article  CAS  Google Scholar 

  163. Suo, G. Q.; Li, D.; Feng, L.; Hou, X. J.; Yang, Y. L.; Wang, W. SnO2 nanosheets grown on stainless steel mesh as a binder free anode for potassium ion batteries. J. Electroanal. Chem. 2019, 833, 113–118.

    Article  CAS  Google Scholar 

  164. Cao, K. Z.; Liu, H. Q.; Li, W. Y.; Han, Q. Q.; Zhang, Z.; Huang, K. J.; Jing, Q. S.; Jiao, L. F. CuO nanoplates for high-performance potassium-ion batteries. Small 2019, 15, 1901775.

    Article  Google Scholar 

  165. Jin, T.; Li, H. X.; Li, Y.; Jiao, L. F.; Chen, J. Intercalation pseudocapacitance in flexible and self-standing V2O3 porous nanofibers for high-rate and ultra-stable K ion storage. Nano Energy 2018, 50, 462–467.

    Article  CAS  Google Scholar 

  166. Liu, C. L.; Luo, S. H.; Huang, H. B.; Zhai, Y. C.; Wang, Z. W. Direct growth of MoO2/reduced graphene oxide hollow sphere composites as advanced anode materials for potassium-ion batteries. ChemSusChem 2019, 12, 873–880.

    Article  CAS  Google Scholar 

  167. Li, P. H.; Wang, W.; Gong, S.; Lv, F.; Huang, H. X.; Luo, M. C.; Yang, Y.; Yang, C.; Zhou, J. H.; Qian, C. et al. Hydrogenated Na2Ti3O7 epitaxially grown on flexible N-doped carbon sponge for potassium-ion batteries. ACS Appl. Mater. Inter. 2018, 10, 37974–37980.

    Article  CAS  Google Scholar 

  168. Li, Y. P.; Yang, C. H.; Zheng, F. H.; Pan, Q. C.; Liu, Y. Z.; Wang, G.; Liu, T. Z.; Hu, J. H.; Liu, M. L. Design of TiO2eC hierarchical tubular heterostructures for high performance potassium ion batteries. Nano Energy 2019, 59, 582–590.

    Article  CAS  Google Scholar 

  169. Liu, Y.; He, D. L.; Tan, Q. W.; Wan, Q.; Han, K.; Liu, Z. W.; Li, P.; An, F. Q.; Qu, X. H. A synergetic strategy for an advanced electrode with Fe3O4 embedded in a 3D N-doped porous graphene framework and a strong adhesive binder for lithium/potassium ion batteries with an ultralong cycle lifespan. J. Mater. Chem. A 2019, 7, 19430–19441.

    Article  CAS  Google Scholar 

  170. Wang, Z. Y.; Dong, K. Z.; Wang, D.; Luo, S. H.; Liu, Y. G.; Wang, Q.; Zhang, Y. H.; Hao, A. M.; Shi, C. S.; Zhao, N. Q. Ultrafine SnO2 nanoparticles encapsulated in 3D porous carbon as a high-performance anode material for potassium-ion batteries. J. Power Sources 2019, 441, 227191.

    Article  CAS  Google Scholar 

  171. Huang, Z.; Chen, Z.; Ding, S. S.; Chen, C. M.; Zhang, M. Enhanced conductivity and properties of SnO2-graphene-carbon nanofibers for potassium-ion batteries by graphene modification. Mater. Lett. 2018, 219, 19–22.

    Article  CAS  Google Scholar 

  172. Chong, S. K.; Wu, Y. F.; Liu, C. F.; Chen, Y. Z.; Guo, S. W.; Liu, Y. N.; Cao, G. Z. Cryptomelane-type MnO2/carbon nanotube hybrids as bifunctional electrode material for high capacity potassium-ion full batteries. Nano Energy 2018, 54, 106–115.

    Article  CAS  Google Scholar 

  173. Tong, Z. Q.; Yang, R.; Wu, S. L.; Shen, D.; Jiao, T. P.; Zhang, K. L.; Zhang, W. J.; Lee, C. S. Defect-engineered vanadium trioxide nanofiber bundle@graphene hybrids for high-performance all-vanadate Na-ion and K-ion full batteries. J. Mater. Chem. A 2019, 7, 19581–19588.

    Article  Google Scholar 

  174. Xiao, Y.; Lee, S. H.; Sun, Y. K. The application of metal sulfides in sodium ion batteries. Adv. Energy Mater. 2017, 7, 1601329.

    Article  Google Scholar 

  175. Liu, Y. Z.; Yang, C. H.; Zhang, Q. Y.; Liu, M. L. Recent progress in the design of metal sulfides as anode materials for sodium ion batteries. Energy Storage Mater. 2019, 22, 66–95.

    Article  Google Scholar 

  176. Li, W. D.; Wang, D. Z.; Gong, Z. J.; Yin, Z. M.; Guo, X. S.; Liu, J.; Mao, C. M.; Zhang, Z. H.; Li, G. C. A robust strategy for engineering Fe7S8/C hybrid nanocages reinforced by defect-rich MoS2 nanosheets for superior potassium-ion storage. ACS Nano 2020, 14, 16046–16056.

    Article  Google Scholar 

  177. Li, D. P.; Dai, L. N.; Ren, X. H.; Ji, F. J.; Sun, Q.; Zhang, Y. M.; Ci, L. J. Foldable potassium-ion batteries enabled by free-standing and flexible SnS2@C nanofibers. Energy Environ. Sci. 2021, 14, 424–436.

    Article  CAS  Google Scholar 

  178. Li, X.; Zhu, H. W. Two-dimensional MoS2: Properties, preparation, and applications. J. Materiom. 2015, 1, 33–44.

    Article  Google Scholar 

  179. Dong, Y. L.; Xu, Y.; Li, W.; Fu, Q.; Wu, M. H.; Manske, E.; Kröger, J.; Lei, Y. Insights into the crystallinity of layer-structured transition metal dichalcogenides on potassium ion battery performance: A case study of molybdenum disulfide. Small 2019, 15, 1900497.

    Article  Google Scholar 

  180. He, H. N.; Huang, D.; Gan, Q. M.; Hao, J. N.; Liu, S. L.; Wu, Z. B.; Pang, W. K.; Johannessen, B.; Tang, Y. G.; Luo, J. L. et al. Anion vacancies regulating endows MoSSe with fast and stable potassium ion storage. ACS Nano 2019, 13, 11843–11852.

    Article  CAS  Google Scholar 

  181. Zhang, J. Y.; Cui, P. X.; Gu, Y.; Wu, D. J.; Tao, S.; Qian, B.; Chu, W. S.; Song, L. Encapsulating carbon-coated MoS2 nanosheets within a nitrogen-doped graphene network for high-performance potassium-ion storage. Adv. Mater. Interfaces 2019, 6, 1901066.

    Article  CAS  Google Scholar 

  182. Rui, B. L.; Li, J. H.; Chang, L. M.; Wang, H. R.; Lin, L.; Guo, Y.; Nie, P. Engineering MoS2 nanosheets anchored on metal organic frameworks derived carbon polyhedra for superior lithium and potassium storage. Front. Energy Res. 2019, 7, 142.

    Article  Google Scholar 

  183. Jia, B. R.; Zhao, Y. Z.; Qin, M. L.; Wang, W.; Liu, Z. W.; Lao, C. Y.; Yu, Q. Y.; Liu, Y.; Wu, H. W.; Zhang, Z. L. et al. Multirole organic-induced scalable synthesis of a mesoporous MoS2-monolayer/carbon composite for high-performance lithium and potassium storage. J. Mater. Chem. A 2018, 6, 11147–11153.

    Article  CAS  Google Scholar 

  184. Di, S. J.; Ding, P.; Wang, Y. Y.; Wu, Y. L.; Deng, J.; Jia, L.; Li, Y. G. Interlayer-expanded MoS2 assemblies for enhanced electrochemical storage of potassium ions. Nano Res. 2020, 13, 225–230.

    Article  CAS  Google Scholar 

  185. Chong, S. K.; Sun, L.; Shu, C. Y.; Guo, S. W.; Liu, Y. N.; Wang, W.; Liu, H. K. Chemical bonding boosts nano-rose-like MoS2 anchored on reduced graphene oxide for superior potassium-ion storage. Nano Energy 2019, 63, 103868.

    Article  CAS  Google Scholar 

  186. Xie, K. Y.; Yuan, K.; Li, X.; Lu, W.; Shen, C.; Liang, C. L.; Vajtai, R.; Ajayan, P.; Wei, B. Q. Superior potassium ion storage via vertical MoS2 “nano-rose” with expanded interlayers on graphene. Small 2017, 13, 1701471.

    Article  Google Scholar 

  187. Jia, B. R.; Yu, Q. Y.; Zhao, Y. Z.; Qin, M. L.; Wang, W.; Liu, Z. W.; Lao, C. Y.; Liu, Y.; Wu, H. W.; Zhang, Z. L. et al. Bamboo-like hollow tubes with MoS2/N-doped-C interfaces boost potassium-ion storage. Adv. Funct. Mater. 2018, 28, 1803409.

    Article  Google Scholar 

  188. Zhang, N.; Jiang, G. Y.; Chen, X.; Mao, J. Y.; Zhou, Y. J.; Li, Y. S. Rational design of a tubular, interlayer expanded MoS2-N/O doped carbon composite for excellent potassium-ion storage. J. Mater. Chem. A 2019, 7, 9305–9315.

    Article  Google Scholar 

  189. Xing, L. D.; Yu, Q. Y.; Jiang, B.; Chu, J. H.; Lao, C. Y.; Wang, M.; Han, K.; Liu, Z. W.; Bao, Y. P.; Wang, W. Carbon-encapsulated ultrathin MoS2 nanosheets epitaxially grown on porous metallic TiNb2O6 microspheres with unsaturated oxygen atoms for superior potassium storage. J. Mater. Chem. A 2019, 7, 5760–5768.

    Article  CAS  Google Scholar 

  190. Liu, Y. T.; Xiao, Y. Y.; Liu, F. S.; Han, P. Y.; Qin, G. H. Controlled building of mesoporous MoS2@MoO2-doped magnetic carbon sheets for superior potassium ion storage. J. Mater. Chem. A 2019, 7, 26818–26828.

    Article  CAS  Google Scholar 

  191. Chen, Z.; Yin, D. G.; Zhang, M. Sandwich-like MoS2@SnO2@C with high capacity and stability for sodium/potassium ion batteries. Small 2018, 14, 1703818.

    Article  Google Scholar 

  192. Zhang, C. Z.; Han, F.; Wang, F.; Liu, Q. D.; Zhou, D. W.; Zhang, F. Q.; Xu, S. H.; Fan, C. L.; Li, X. K.; Liu, J. S. Improving compactness and reaction kinetics of MoS2@C anodes by introducing Fe9S10 core for superior volumetric sodium/potassium storage. Energy Storage Mater. 2020, 24, 208–219.

    Article  Google Scholar 

  193. Lakshmi, V.; Chen, Y.; Mikhaylov, A. A.; Medvedev, A. G.; Sultana, I.; Rahman, M. M.; Lev, O.; Prikhodchenko, P. V.; Glushenkov, A. M. Nanocrystalline SnS2 coated onto reduced graphene oxide: Demonstrating the feasibility of a non-graphitic anode with sulfide chemistry for potassium-ion batteries. Chem. Commun. 2017, 53, 8272–8275.

    Article  CAS  Google Scholar 

  194. Rehman, J.; Fan, X. F.; Zheng, W. T. Computational insight of monolayer SnS2 as anode material for potassium ion batteries. Appl. Surf. Sci. 2019, 496, 143625.

    Article  CAS  Google Scholar 

  195. Fan, L. Z.; Xu, J.; Sun, S.; Lin, B. W.; Guo, Q. B.; Luo, D.; Xia, H. Few-layered tin sulfide nanosheets supported on reduced graphene oxide as a high-performance anode for potassium-ion batteries. Small 2019, 15, 1804806.

    Google Scholar 

  196. Li, D. P.; Sun, Q.; Zhang, Y. M.; Chen, L. N.; Wang, Z. P.; Liang, Z.; Si, P. C.; Ci, L. J. Surface-confined SnS2@C@rGO as high-performance anode materials for sodium- and potassium-ion batteries. ChemSusChem 2019, 12, 2689–2700.

    Article  CAS  Google Scholar 

  197. Miao, W. F.; Zhang, Y.; Li, H. T.; Zhang, Z. H.; Li, L.; Yu, Z.; Zhang, W. M. ZIF-8/ZIF-67-derived 3D amorphous carbon-encapsulated CoS/NCNTs supported on CoS-coated carbon nanofibers as an advanced potassium-ion battery anode. J. Mater. Chem. A 2019, 7, 5504–5512.

    Article  CAS  Google Scholar 

  198. Gao, H.; Zhou, T. F.; Zheng, Y.; Zhang, Q.; Liu, Y. Q.; Chen, J.; Liu, H. K.; Guo, Z. P. CoS Quantum dot nanoclusters for high-energy potassium-ion batteries. Adv. Funct. Mater. 2017, 27, 1702634.

    Article  Google Scholar 

  199. Yu, Q. Y.; He, J.; Qian, C.; Gao, Y. Z.; Wang, W.; Yin, G. P. CoS/N-doped carbon core/shell nanocrystals as an anode material for potassium-ion storage. J. Solid State Electrochem. 2019, 23, 27–32.

    Article  CAS  Google Scholar 

  200. Zhao, Y.; Zhu, J. J.; Ong, S. J. H.; Yao, Q. Q.; Shi, X. L.; Hou, K.; Xu, Z. J.; Guan, L. H. High-rate and ultralong cycle-life potassium ion batteries enabled by in situ engineering of yolk-shell FeS2@C structure on graphene matrix. Adv. Energy Mater. 2018, 8, 1802565.

    Article  Google Scholar 

  201. Xie, J. P.; Zhu, Y. Q.; Zhuang, N.; Lei, H.; Zhu, W. L.; Fu, Y.; Javed, M. S.; Li, J. L.; Mai, W. J. Rational design of metal organic framework-derived FeS2 hollow nanocages@reduced graphene oxide for K-ion storage. Nanoscale 2018, 10, 17092–17098.

    Article  CAS  Google Scholar 

  202. Yao, Q. Q.; Zhang, J. S.; Shi, X. L.; Deng, B. L.; Hou, K.; Zhao, Y.; Guan, L. H. Rational synthesis of two-dimensional G@porous FeS2@C composite as high-rate anode materials for sodium/potassium ion batteries. Electrochim. Acta 2019, 307, 118–128.

    Article  CAS  Google Scholar 

  203. Luo, Y. S.; Tao, M. L.; Deng, J. H.; Zhan, R. M.; Guo, B. S.; Ma, Q. R.; Aslam, M. K.; Qi, Y. R.; Xu, M. W. Nanocubes composed of FeS2@C nanoparticles as advanced anode materials for K-ion storage. Inorg. Chem. Front. 2020, 7, 394–401.

    Article  CAS  Google Scholar 

  204. Zhang, R. D.; Bao, J. Z.; Pan, Y. L.; Sun, C. F. Highly reversible potassium-ion intercalation in tungsten disulfide. Chem. Sci. 2019, 10, 2604–2612.

    Article  CAS  Google Scholar 

  205. Wu, Y. H.; Xu, Y.; Li, Y. L.; Lyu, P. B.; Wen, J.; Zhang, C. L.; Zhou, M.; Fang, Y. G.; Zhao, H. P.; Kaiser, U. et al. Unexpected intercalation-dominated potassium storage in WS2 as a potassium-ion battery anode. Nano Res. 2019, 12, 2997–3002.

    Article  CAS  Google Scholar 

  206. Liu, Y. J.; Tai, Z. X.; Zhang, J.; Pang, W. K.; Zhang, Q.; Feng, H. F.; Konstantinov, K.; Guo, Z. P.; Liu, H. K. Boosting potassium-ion batteries by few-layered composite anodes prepared via solution-triggered one-step shear exfoliation. Nat. Commun. 2018, 9, 3645.

    Article  Google Scholar 

  207. Li, T.; Zhang, Q. Advanced metal sulfide anode for potassium ion batteries. J. Energy Chem. 2018, 27, 373–374.

    Article  Google Scholar 

  208. Jia, X. X.; Zhang, E. J.; Yu, X. Z.; Lu, B. G. Facile synthesis of copper sulfide nanosheet@graphene oxide for the anode of potassium-ion batteries. Energy Technol. 2020, 8, 1900987.

    Article  CAS  Google Scholar 

  209. Xie, J. P.; Li, X. D.; Lai, H. J.; Zhao, Z. J.; Li, J. L.; Zhang, W. G.; Xie, W. G.; Liu, Y. M.; Mai, W. J. A Robust solid electrolyte interphase layer augments the ion storage capacity of bimetallic-sulfide-containing potassium-ion batteries. Angew. Chem., Int. Ed. 2019, 58, 14740–14747.

    Article  CAS  Google Scholar 

  210. Wang, W.; Jiang, B.; Qian, C.; Lv, F.; Feng, J. R.; Zhou, J. H.; Wang, K.; Yang, C.; Yang, Y.; Guo, S. J. Pistachio-shuck-like MoSe2/C core/shell nanostructures for high-performance potassium-ion storage. Adv. Mater. 2018, 30, 1801812.

    Article  Google Scholar 

  211. Chu, J. H.; Yu, Q. Y.; Yang, D. X.; Xing, L. D.; Lao, C. Y.; Wang, M.; Han, K.; Liu, Z. W.; Zhang, L.; Du, W. Y. et al. Thickness-control of ultrathin bimetallic Fe-Mo selenide@N-doped carbon core/shell “nano-crisps” for high-performance potassium-ion batteries. Appl. Mater. Today 2018, 13, 344–351.

    Article  Google Scholar 

  212. Zeng, L. X.; Kang, B. Y.; Luo, F. Q.; Fang, Y. X.; Zheng, C.; Liu, J. B.; Liu, R. P.; Li, X. Y.; Chen, Q. H.; Wei, M. D. et al. Facile synthesis of ultra-small few-layer nanostructured MoSe2 embedded on N, P co-doped bio-carbon for high-performance half/full sodium-ion and potassium-ion batteries. Chem.-Eur. J. 2019, 25, 13411–13421.

    Article  CAS  Google Scholar 

  213. Shen, Q.; Jiang, P. J.; He, H. C.; Chen, C. M.; Liu, Y.; Zhang, M. Encapsulation of MoSe2 in carbon fibers as anodes for potassium ion batteries and nonaqueous battery-supercapacitor hybrid devices. Nanoscale 2019, 11, 13511–13520.

    Article  CAS  Google Scholar 

  214. Huang, H. W.; Cui, J.; Liu, G. X.; Bi, R.; Zhang, L. Carbon-coated MoSe2/MXene hybrid nanosheets for superior potassium storage. ACS Nano 2019, 13, 3448–3456.

    Article  CAS  Google Scholar 

  215. Sannyal, A.; Zhang, Z. Q.; Gao, X. F.; Jang, J. Two-dimensional sheet of germanium selenide as an anode material for sodium and potassium ion batteries: First-principles simulation study. Comput. Mater. Sci. 2018, 154, 204–211.

    Article  CAS  Google Scholar 

  216. He, C.; Zhang, J. H.; Zhang, W. X.; Li, T. T. GeSe/BP van der Waals heterostructures as promising anode materials for potassium-ion batteries. J. Phys. Chem. C 2019, 123, 5157–5163.

    Article  CAS  Google Scholar 

  217. Zhou, Y.; Zhao, M.; Chen, Z. W.; Shi, X. M.; Jiang, Q. Potential application of 2D monolayer β-GeSe as an anode material in Na/K ion batteries. Phys. Chem. Chem. Phys. 2018, 20, 30290–30296.

    Article  CAS  Google Scholar 

  218. Yu, H. X.; Cheng, X.; Xia, M. T.; Liu, T. T.; Ye, W. Q.; Zheng, R. T.; Long, N. B.; Shui, M.; Shu, J. Pretreated commercial TiSe2 as an insertion-type potassium container for constructing “Rocking-Chair” type potassium ion batteries. Energy Storage Mater. 2019, 22, 154–159.

    Article  Google Scholar 

  219. Wu, M. G.; Yang, J. L.; Ng, D. H. L.; Ma, J. M. Rhenium diselenide anchored on reduced graphene oxide as anode with cyclic stability for potassium-ion battery. Phys. Status Solidi Rapid Res. Lett. 2019, 13, 1900329.

    Article  CAS  Google Scholar 

  220. Yu, Q. Y.; Jiang, B.; Hu, J.; Lao, C. Y.; Gao, Y. Z.; Li, P. H.; Liu, Z. W.; Suo, G. Q.; He, D. L.; Wang, W. et al. Metallic octahedral CoSe2 threaded by N-doped carbon nanotubes: A flexible framework for high-performance potassium-ion batteries. Adv. Sci. 2018, 5, 1800782.

    Article  Google Scholar 

  221. Etogo, C. A.; Huang, H. W.; Hong, H.; Liu, G. X.; Zhang, L. Metal-organic-frameworks-engaged formation of Co0.85Se@C nanoboxes embedded in carbon nanofibers film for enhanced potassium-ion storage. Energy Storage Mater. 2020, 24, 167–176.

    Article  Google Scholar 

  222. Liu, Z. W.; Han, K.; Li, P.; Wang, W.; He, D. L.; Tan, Q. W.; Wang, L. Y.; Li, Y.; Qin, M. L.; Qu, X. H. Tuning metallic Co0.85Se quantum dots/carbon hollow polyhedrons with tertiary hierarchical structure for high-performance potassium ion batteries. Nano-Micro Lett. 2019, 11, 96.

    Article  CAS  Google Scholar 

  223. Chu, J. H.; Wang, W.; Yu, Q. Y.; Lao, C. Y.; Zhang, L.; Xi, K.; Han, K.; Xing, L. D.; Song, L.; Wang, M. et al. Open ZnSe/C nanocages: Multi-hierarchy stress-buffer for boosting cycling stability in potassium-ion batteries. J. Mater. Chem. A 2020, 8, 779–788.

    Article  CAS  Google Scholar 

  224. Hu, Y.; Lu, T. T.; Zhang, Y.; Sun, Y. W.; Liu, J. L.; Wei, D. H.; Ju, Z. C.; Zhuang, Q. C. Highly dispersed ZnSe nanoparticles embedded in N-doped porous carbon matrix as an anode for potassium ion batteries. Part. Part. Syst. Charact. 2019, 36, 1900199.

    Article  CAS  Google Scholar 

  225. Yang, C.; Feng, J. R.; Lv, F.; Zhou, J. H.; Lin, C. F.; Wang, K.; Zhang, Y. L.; Yang, Y.; Wang, W.; Li, J. B. et al. Metallic graphemelike VSe2 ultrathin nanosheets: Superior potassium-ion storage and their working mechanism. Adv. Mater. 2018, 30, 1800036.

    Article  Google Scholar 

  226. Tian, H. J.; Yu, X. C.; Shao, H. Z.; Dong, L. B.; Chen, Y.; Fang, X. Q.; Wang, C. Y.; Han, W. Q.; Wang, G. X. Unlocking few-layered ternary chalcogenides for high-performance potassium-ion storage. Adv. Energy Mater. 2019, 9, 1901560.

    Article  Google Scholar 

  227. Luo, Y. S.; Han, J.; Ma, Q. R.; Zhan, R. M.; Zhang, Y. Q.; Xu, Q. J.; Xu, M. W. Exploration of NbSe2 flakes as reversible host materials for sodium-ion and potassium-ion batteries. Chem. Select 2018, 3, 9807–9811.

    CAS  Google Scholar 

  228. Verma, R.; Didwal, P. N.; Ki, H. S.; Cao, G. Z.; Park, C. J. SnP3/ carbon nanocomposite as an anode material for potassium-ion batteries. ACS Appl. Mater. Inter. 2019, 11, 26976–26984.

    Article  CAS  Google Scholar 

  229. Yang, F. H.; Hao, J. N.; Long, J.; Liu, S. L.; Zheng, T.; Lie, W.; Chen, J.; Guo, Z. P. Achieving high-performance metal phosphide anode for potassium ion batteries via concentrated electrolyte chemistry. Adv. Energy Mater. 2021, 11, 2003346.

    Article  CAS  Google Scholar 

  230. Zhang, W. C.; Pang, W. K.; Sencadas, V.; Guo, Z. P. Understanding high-energy-density Sn4P3 anodes for potassium-ion batteries. Joule 2018, 2, 1534–1547.

    Article  CAS  Google Scholar 

  231. Li, D. P.; Zhang, Y. M.; Sun, Q.; Zhang, S. N.; Wang, Z. P.; Liang, Z.; Si, P. C.; Ci, L. J. Hierarchically porous carbon supported Sn4P3 as a superior anode material for potassium-ion batteries. Energy Storage Mater. 2019, 23, 367–374.

    Article  Google Scholar 

  232. Zhao, X. X.; Wang, W. H.; Hou, Z.; Wei, G. J.; Yu, Y. K.; Zhang, J.; Quan, Z. W. SnP0.94 nanoplates/graphene oxide composite for novel potassium-ion battery anode. Chem. Eng. J. 2019, 370, 677–683.

    Article  CAS  Google Scholar 

  233. Yang, W. W.; Zhang, J. Y.; Huo, D.; Sun, S.; Tao, S.; Wang, Z. C.; Wang, J.; Wu, D. J.; Qian, B. Facile synthesis of tin phosphide/reduced graphene oxide composites as anode material for potassium-ion batteries. Ionics 2019, 25, 4795–4803.

    Article  CAS  Google Scholar 

  234. Yang, F. H.; Gao, H.; Hao, J. N.; Zhang, S. L.; Li, P.; Liu, Y. Q.; Chen, J.; Guo, Z. P. Yolk-shell structured FeP@C nanoboxes as advanced anode materials for rechargeable lithium-/potassium-ion batteries. Adv. Funct. Mater. 2019, 29, 1808291.

    Article  Google Scholar 

  235. Li, W. T.; Yan, B. J.; Fan, H. W.; Zhang, C.; Xu, H. Y.; Cheng, X. L.; Li, Z. L.; Jia, G. X.; An, S. L.; Qiu, X. P. FeP/C composites as an anode material for K-ion batteries. ACS Appl. Mater. Inter. 2019, 11, 22364–22370.

    Article  CAS  Google Scholar 

  236. Wang, Y. X.; Zhang, Z. Y.; Wang, G. X.; Yang, X. Y.; Sui, Y. M.; Du, F.; Zou, B. Ultrafine Co2P nanorods wrapped by graphene enable a long cycle life performance for a hybrid potassium-ion capacitor. Nanoscale Horiz. 2019, 4, 1394–1401.

    Article  CAS  Google Scholar 

  237. Chen, X. X.; Zeng, S. Y.; Muheiyati, H.; Zhai, Y. J.; Li, C. C.; Ding, X. Y.; Wang, L.; Wang, D. B.; Xu, L. Q.; He, Y. Y. et al. Double-shelled Ni-Fe-P/N-doped carbon nanobox derived from a prussian blue analogue as an electrode material for K-ion batteries and Li-S batteries. ACS Energy Lett. 2019, 4, 1496–1504.

    Article  CAS  Google Scholar 

  238. Sun, N.; Zhu, Q. Z.; Anasori, B.; Zhang, P.; Liu, H.; Gogotsi, Y.; Xu, B. MXene-bonded flexible hard carbon film as anode for stable Na/K-ion storage. Adv. Funct. Mater. 2019, 29, 1906282.

    Article  CAS  Google Scholar 

  239. Tian, Y.; An, Y. L.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. A general method for constructing robust, flexible and freestanding MXene@metal anodes for high-performance potassium-ion batteries. J. Mater. Chem. A 2019, 7, 9716–9725.

    Article  CAS  Google Scholar 

  240. Lian, P. C.; Dong, Y. F.; Wu, Z. S.; Zheng, S. H.; Wang, X. H.; Wang, S.; Sun, C. L.; Qin, J. Q.; Shi, X. Y.; Bao, X. H. Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries. Nano Energy 2017, 40, 1–8.

    Article  CAS  Google Scholar 

  241. Tao, M. L.; Du, G. Y.; Zhang, Y. Q.; Gao, Q.; Liu, D. Y.; Luo, Y. S.; Jiang, J.; Bao, S. J.; Xu, M. W. TiOxNy nanoparticles/C composites derived from MXene as anode material for potassium-ion batteries. Chem. Eng. J. 2019, 369, 828–833.

    Article  CAS  Google Scholar 

  242. Li, C.; Hu, X. S.; Hu, B. W. Cobalt(II) dicarboxylate-based metal-organic framework for long-cycling and high-rate potassium-ion battery anode. Electrochim. Acta 2017, 253, 439–444.

    Article  CAS  Google Scholar 

  243. Wu, H. Y.; Yu, Q. Y.; Lao, C. Y.; Qin, M. L.; Wang, W.; Liu, Z. W.; Man, C.; Wang, L. Y.; Jia, B. R.; Qu, X. H. Scalable synthesis of VN quantum dots encapsulated in ultralarge pillared N-doped mesoporous carbon microsheets for superior potassium storage. Energy Storage Mater. 2019, 18, 43–50.

    Article  Google Scholar 

  244. Katorova, N. S.; Fedotov, S. S.; Rupasov, D. P.; Luchinin, N. D.; Delattre, B.; Chiang, Y. M.; Abakumov, A. M.; Stevenson, K. J. Effect of concentrated diglyme-based electrolytes on the electrochemical performance of potassium-ion batteries. ACS Appl. Energy Mater. 2019, 2, 6051–6059.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was financially supported by the National Key Research and Development Program of China (No. 2017YFA0208200), the National Natural Science Foundation of China (Nos. 22005003, 22022505, and 21872069), the Fundamental Research Funds for the Central Universities (Nos. 0205-14380219 and 0205-14913212), the Scientific Research Foundation of Anhui University of Technology for Talent Introduction (No. DT19100069), the Yong Scientific Research Foundation of Anhui University of Technology (No. QZ202003), the Natural Science Foundation of Jiangsu Province (No. BK20180008), the Shenzhen Fundamental Research Program of Science, Technology, and Innovation Commission of Shenzhen Municipality (No. JCYJ20180307155007589).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junxiong Wu, Qi Kang or Zhong Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L., Lv, Y., Wu, J. et al. Recent advances in anode materials for potassium-ion batteries: A review. Nano Res. 14, 4442–4470 (2021). https://doi.org/10.1007/s12274-021-3439-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3439-3

Keywords

Navigation