Skip to main content
Log in

Identifying the roles of Ce3+−OH and Ce−H in the reverse water-gas shift reaction over highly active Ni-doped CeO2 catalyst

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Nickel-CeO2-based materials are commonly used for the thermal catalytic hydrogenation of CO2. However, high Ni loadings and low CO selectivity restrict their use in the reverse water-gas shift (RWGS) reaction. Herein, we demonstrate a highly active, robust, and low-Ni-doped (1.1 wt.%) CeO2 catalyst (1.0−Ni−CeO2). The Ni-based-mass-specific CO formation rate reaches up to 1,542 mmol·gNi−1·h−1 with 100% CO selectivity at 300 °C for 100 h, among the best values reported in the literature. Density functional theory (DFT) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) results reveal that the enhanced catalytic activity is attributed to the abundant Ce−H species, while the high selectivity results from low CO affinity. More importantly, a new reaction mechanism is proposed, which involves the reduction of bicarbonate to generate formate intermediate and CO by the H released from Ce−H species. The new findings in this work will benefit the design of economic, efficient, and robust catalysts for low-temperature RWGS reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Winter, L. R.; Gomez, E.; Yan, B. H.; Yao, S. Y.; Chen, J. G. Tuning Ni-catalyzed CO2 hydrogenation selectivity via Ni-ceria support interactions and Ni−Fe bimetallic formation. Appl. Catal. B Environ. 2018, 224, 442–450.

    CAS  Google Scholar 

  2. Centi, G.; Quadrelli, E. A.; Perathoner, S. Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy Environ. Sci. 2013, 6, 1711–1731.

    CAS  Google Scholar 

  3. Wang, Y. N.; Winter, L. R.; Chen, J. G.; Yan, B. H. CO2 hydrogenation over heterogeneous catalysts at atmospheric pressure: From electronic properties to product selectivity. Green. Chem. 2021, 23, 249–267.

    CAS  Google Scholar 

  4. Yang, X. L.; Su, X.; Chen, X. D.; Duan, H. M.; Liang, B. L.; Liu, Q. G.; Liu, X. Y.; Ren, Y. J.; Huang, Y. Q.; Zhang, T. Promotion effects of potassium on the activity and selectivity of Pt/zeolite catalysts for reverse water gas shift reaction. Appl. Catal. B Environ. 2017, 216, 95–105.

    CAS  Google Scholar 

  5. Wang, X.; Shi, H.; Kwak, J. H.; Szanyi, J. Mechanism of CO2 hydrogenation on Pd/Al2O3 catalysts: Kinetics and transient Drifts-MS studies. ACS Catal. 2015, 5, 6337–6349.

    CAS  Google Scholar 

  6. Dou, J.; Sheng, Y.; Choong, C.; Chen, L. W.; Zeng, H. C. Silica nanowires encapsulated Ru nanoparticles as stable nanocatalysts for selective hydrogenation of CO2 to CO. Appl. Catal. B Environ. 2017, 219, 580–591.

    CAS  Google Scholar 

  7. Yu, Y.; Jin, R. X.; Easa, J.; Lu, W.; Yang, M.; Liu, X. C.; Xing, Y.; Shi, Z. Highly active and stable copper catalysts derived from copper silicate double-shell nanofibers with strong metal-support interactions for the RWGS reaction. Chem. Commun. 2019, 55, 4178–4181.

    CAS  Google Scholar 

  8. Yang, L.; Pastor-Pérez, L.; Gu, S.; Sepulveda-Escribano, A.; Reina, T. R. Highly efficient Ni/CeO2−Al2O3 catalysts for CO2 upgrading via reverse water-gas shift: Effect of selected transition metal promoters. Appl. Catal. B Environ. 2018, 232, 464–471.

    CAS  Google Scholar 

  9. De, S.; Dokania, A.; Ramirez, A.; Gascon, J. Advances in the design of heterogeneous catalysts and thermocatalytic processes for CO2 utilization. ACS Catal. 2020, 10, 14147–14185.

    CAS  Google Scholar 

  10. Ginés, M. J. L.; Marchi, A. J.; Apesteguía, C. R. Kinetic study of the reverse water-gas shift reaction over CuO/ZnO/Al2O3 catalysts. Appl. Catal. A Gen. 1997, 154, 155–171.

    Google Scholar 

  11. Kattel, S.; Liu, P.; Chen, J. G. Tuning selectivity of CO2 hydrogenation reactions at the metal/oxide interface. J. Am. Chem. Soc. 2017, 139, 9739–9754.

    CAS  Google Scholar 

  12. Su, X.; Yang, X. L.; Zhao, B.; Huang, Y. Q. Designing of highly selective and high-temperature endurable RWGS heterogeneous catalysts: Recent advances and the future directions. J Energy. Chem. 2017, 26, 854–867.

    Google Scholar 

  13. Porosoff, M. D.; Yan, B. H.; Chen, J. G. Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: Challenges and opportunities. Energy Environ. Sci. 2016, 9, 62–73.

    CAS  Google Scholar 

  14. Wu, H. C.; Chang, Y. C.; Wu, J. H.; Lin, J. H.; Lin, I. K.; Chen, C. S. Methanation of CO2 and reverse water-gas shift reactions on Ni/SiO2 catalysts: The influence of particle size on selectivity and reaction pathway. Catal. Sci. Technol. 2015, 5, 4154–4163.

    CAS  Google Scholar 

  15. Hao, Z. W.; Shen, J. D.; Lin, S. X.; Han, X. Y.; Chang, X.; Liu, J.; Li, M. S.; Ma, X. B. Decoupling the effect of Ni particle size and surface oxygen deficiencies in CO2 methanation over ceria supported Ni. Appl. Catal. B Environ. 2021, 286, 119922.

    CAS  Google Scholar 

  16. Millet, M. M.; Algara-Siller, G.; Wrabetz, S.; Mazheika, A.; Girgsdies, F.; Teschner, D.; Seitz, F.; Tarasov, A.; Levchenko, S. V.; Schloögl, R. et al. Ni single atom catalysts for CO2 activation. J. Am. Chem. Soc. 2019, 141, 2451–2461.

    CAS  Google Scholar 

  17. Zurrer, T.; Wong, K.; Horlyck, J.; Lovell, E. C.; Wright, J.; Bedford, N. M.; Han, Z. J.; Liang, K.; Scott, J.; Amal, R. Mixed-metal MOF-74 templated catalysts for efficient carbon dioxide capture and methanation. Adv. Funct. Mater. 2020, 31, 2007624.

    Google Scholar 

  18. Li, M. S.; Amari, H.; Van Veen, A. C. Metal-oxide interaction enhanced CO2 activation in methanation over ceria supported nickel nanocrystallites. Appl. Catal. B Environ. 2018, 239, 27–35.

    CAS  Google Scholar 

  19. Liu, Y.; Liu, D. Z. Study of bimetallic Cu−Ni/γ-Al2O3 catalysts for carbon dioxide hydrogenation. Int. J. Hydrog. Energy 1999, 24, 351–354.

    CAS  Google Scholar 

  20. Gálvez, M. E.; Ascaso, S.; Moliner, R.; Lázaro, M. J. Influence of the alkali promoter on the activity and stability of transition metal (Cu, Co, Fe) based structured catalysts for the simultaneous removal of soot and Nox. Top. Catal. 2013, 56, 493–498.

    Google Scholar 

  21. Reddy, B. M.; Katta L.; Thrimurthulu, G. Novel nanocrystalline Ce1−xLaxO2−δ (x = 0.2) solid solutions: Structural characteristics and catalytic performance. Chem. Mater. 2010, 22, 467–475.

    CAS  Google Scholar 

  22. Yang, M.; Li, S.; Wang, Y.; Herron, J. A.; Xu, Y.; Allard, L. F.; Lee, S.; Huang, J.; Mavrikakis, M. Flytzani-Stephanopoulos, M. Catalytically active Au−O(OH)x-species stabilized by alkali ions on zeolites and mesoporous oxides. Science 2014, 346, 1498–1501.

    CAS  Google Scholar 

  23. Zhang, S.; Chang, C. R.; Huang, Z. Q.; Li, J.; Wu, Z. M.; Ma, Y. Y.; Zhang, Z. Y.; Wang, Y.; Qu, Y. Q. High catalytic activity and chemoselectivity of sub-nanometric Pd clusters on porous nanorods of CeO2 for hydrogenation of nitroarenes. J. Am. Chem. Soc. 2016, 138, 2629–2637.

    CAS  Google Scholar 

  24. Wang, F.; Li, C. M.; Zhang, X. Y.; Wei, M.; Evans, D. G.; Duan, X. Catalytic behavior of supported Ru nanoparticles on the {100}, {110}, and {111} facet of CeO2. J. Catal. 2015, 329, 177–186.

    CAS  Google Scholar 

  25. Wang, M.; Shen, M.; Jin, X. X.; Tian, J. J.; Li, M. L.; Zhou, Y. J.; Zhang, L. X.; Li, Y. S.; Shi, J. L. Oxygen vacancy generation and stabilization in CeO2−x by cu introduction with improved CO2 photocatalytic reduction activity. ACS Catal. 2019, 9, 4573–4581.

    CAS  Google Scholar 

  26. Wang, Z. Q.; Chu, D. R.; Zhou, H.; Wu, X. P.; Gong, X. Q. Role of low-coordinated Ce in hydride formation and selective hydrogenation reactions on CeO2 surfaces. ACS Catal. 2021, 624–632.

  27. Riley, C.; Zhou, S. L.; Kunwar, D.; De La Riva, A.; Peterson, E.; Payne, R.; Gao, L. Y.; Lin, S.; Guo, H.; Datye, A. Design of effective catalysts for selective alkyne hydrogenation by doping of ceria with a single-atom promotor. J. Am. Chem. Soc. 2018, 140, 12964–12973.

    CAS  Google Scholar 

  28. Matz, O.; Calatayud, M. Breaking H2 with CeO2: Effect of surface termination. ACS Omega 2018, 3, 16063–16073.

    CAS  Google Scholar 

  29. Ye, R. P.; Li, Q. H.; Gong, W. B.; Wang, T. T.; Razink, J. J.; Lin, L.; Qin, Y. Y.; Zhou, Z. F.; Adidharma, H.; Tang, J. K. et al. High-performance of nanostructured Ni/CeO2 catalyst on CO2 methanation. Appl. Catal. B Environ. 2020, 268, 118474.

    CAS  Google Scholar 

  30. Guo, Y.; Mei, S.; Yuan, K.; Wang, D. J.; Liu, H. C.; Yan, C. H.; Zhang, Y. W. Low-temperature CO2 methanation over CeO2-supported Ru single atoms, nanoclusters, and nanoparticles competitively tuned by strong metal-support interactions and H-spillover effect. ACS Catal. 2018, 8, 6203–6215.

    CAS  Google Scholar 

  31. Wu, Z. L.; Cheng, Y. Q.; Tao, F.; Daemen, L.; Foo, G. S.; Nguyen, L.; Zhang, X. Y.; Beste, A.; Ramirez-Cuesta, A. J. Direct neutron spectroscopy observation of cerium hydride species on a cerium oxide catalyst. J. Am. Chem. Soc. 2017, 139, 9721–9727.

    CAS  Google Scholar 

  32. Li, Z. R.; Werner, K.; Qian, K.; You, R.; Płucienik, A.; Jia, A. P.; Wu, L. H.; Zhang, L. Y.; Pan, H. B.; Kuhlenbeck, H. et al. Oxidation of reduced ceria by incorporation of hydrogen. Angew. Chem., Int. Ed. 2019, 58, 14686–14693.

    CAS  Google Scholar 

  33. Li, Z. R.; Werner, K.; Chen, L.; Jia, A. P.; Qian, K.; Zhong, J. Q.; You, R.; Wu, L. H.; Zhang, L. Y.; Pan, H. B. et al. Interaction of hydrogen with ceria: Hydroxylation, reduction, and hydride formation on the surface and in the bulk. Chem. -Eur. J. 2020, 10, 5278–5287.

    Google Scholar 

  34. Moon, J.; Cheng, Y. Q.; Daemen, L. L.; Li, M. J.; Polo-Garzon, F.; Ramirez-Cuesta, A. J.; Wu, Z. L. Discriminating the role of surface hydride and hydroxyl for acetylene semihydrogenation over ceria through in situ neutron and infrared spectroscopy. ACS Catal. 2020, 10, 5278–5287.

    CAS  Google Scholar 

  35. Wang, L. H.; Zhang, S. X.; Liu, Y. A. Reverse water gas shift reaction over co-precipitated Ni-CeO2 catalysts. J. Rare Earths 2008, 26, 66–70.

    Google Scholar 

  36. Lu, B.; Kawamoto, K. Preparation of mesoporous CeO2 and monodispersed NiO particles in CeO2, and enhanced selectivity of NiO/CeO2 for reverse water gas shift reaction. Materials Research Bulletin 2014, 53, 70–78.

    CAS  Google Scholar 

  37. Li, Q. Q.; Huang, Z.; Guan, P. F.; Su, R.; Cao, Q.; Chao, Y. M.; Shen, W.; Guo, J. J.; Xu, H. L.; Che, R. C. Simultaneous Ni doping at atom scale in ceria and assembling into well-defined lotuslike structure for enhanced catalytic performance. ACS Appl. Mater. Interfaces 2017, 9, 16243–16251.

    CAS  Google Scholar 

  38. Wang, L. H.; Liu, H.; Liu, Y.; Chen, Y.; Yang, S. Q. Effect of precipitants on Ni−CeO2 catalysts prepared by a Co-precipitation method for the reverse water-gas shift reaction. J. Rare Earths 2013, 31, 969–974.

    CAS  Google Scholar 

  39. Zhang, H. P.; Wu, C.; Wang, W. B.; Bu, J.; Zhou, F. T.; Zhang, B. L.; Zhang, Q. Y. Effect of ceria on redox-catalytic property in mild condition: A solvent-free route for imine synthesis at low temperature. Appl. Catal. B Environ. 2018, 227, 209–217.

    CAS  Google Scholar 

  40. Zhu, S. H.; Lian, X. Y.; Fan, T. T.; Chen, Z.; Dong, Y. Y.; Weng, W. Z.; Yi, X. D.; Fang, W. P. Thermally stable core-shell Ni/nanorod-CeO2@SiO2 catalyst for partial oxidation of methane at high temperatures. Nanoscale 2018, 10, 14031–14038.

    CAS  Google Scholar 

  41. Lian, Z. H.; Shan, W. P.; Zhang, Y.; Wang, M.; He, H. Morphology-dependent catalytic performance of NbOx/CeO2 catalysts for selective catalytic reduction of NOx with NH3. Ind. Eng. Chem. Res. 2018, 57, 12736–12741.

    CAS  Google Scholar 

  42. Tang, C. J.; Li, J. C.; Yao, X. J.; Sun, J. F.; Cao, Y.; Zhang, L.; Gao, F.; Deng, Y.; Dong, L. Mesoporous NiO−CeO2 catalysts for CO oxidation: Nickel content effect and mechanism aspect. Appl. Catal. A Gen. 2015, 494, 77–86.

    CAS  Google Scholar 

  43. Guo, J.; Wang, Z.; Li, J.; Wang, Z. In-Ni intermetallic compounds derived from layered double hydroxides as efficient catalysts toward the reverse water gas shift reaction. AACS Catal. 2022, 4026–4036.

  44. Davidson, A.; Tempere, J. F.; Che, M.; Roulet, H.; Dufour, G. Spectroscopic studies of nickel (II) and nickel (III) species generated upon thermal treatments of nickel/ceria-supported materials. J. Phys. Chem. 1996, 100, 4919–4929.

    CAS  Google Scholar 

  45. Xu, X. L.; Liu, L.; Tong, Y. Y.; Fang, X. Z.; Xu, J. W.; Jiang, D. E.; Wang, X. Facile Cr3+-doping strategy dramatically promoting Ru/CeO2 for low-temperature CO2 methanation: Unraveling the roles of surface oxygen vacancies and hydroxyl groups. ACS Catal. 2021, 11, 5762–5775.

    CAS  Google Scholar 

  46. Wang, F.; He, S.; Chen, H.; Wang, B.; Zheng, L. R.; Wei, M.; Evans, D. G.; Duan, X. Active site dependent reaction mechanism over Ru/CeO2 catalyst toward CO2 methanation. J. Am. Chem. Soc. 2016, 138, 6298–6305.

    CAS  Google Scholar 

  47. Dostagir, N. H. M. D.; Rattanawan, R.; Gao, M.; Ota, J.; Hasegawa, J. Y.; Asakura, K.; Fukouka, A.; Shrotri, A. Co single atoms in ZrO2 with inherent oxygen vacancies for selective hydrogenation of CO2 to CO. ACS Catal. 2021, 11, 9450–9461.

    CAS  Google Scholar 

  48. Chen, C. S.; Budi, C. S.; Wu, H. C.; Saikia, D.; Kao, H. M. Size-tunable Ni nanoparticles supported on surface-modified, cage-type mesoporous silica as highly active catalysts for CO2 hydrogenation. ACS Catal. 2017, 7, 8367–8381.

    CAS  Google Scholar 

  49. Hongmanorom, P.; Ashok, J.; Zhang, G. H.; Bian, Z. F.; Wai, M. H.; Zeng, Y. Q.; Xi, S. B.; Borgna, A.; Kawi, S. Enhanced performance and selectivity of CO2 methanation over phyllosilicate structure derived Ni−Mg/SBA-15 catalysts. Appl. Catal. B Environ. 2021, 282, 119564.

    CAS  Google Scholar 

  50. Vogt, C.; Groeneveld, E.; Kamsma, G.; Nachtegaal, M.; Lu, L.; Kiely, C. J.; Berben, P. H.; Meirer, F.; Weckhuysen, B. M. Unravelling structure sensitivity in CO2 hydrogenation over nickel. Nat. Catal. 2018, 1, 127–134.

    CAS  Google Scholar 

  51. Chen, Y. M.; Qiu, B. C.; Liu, Y.; Zhang, Y. An active and stable nickel-based catalyst with embedment structure for CO2 methanation. Appl. Catal. B: Environ. 2020, 269, 118801.

    CAS  Google Scholar 

  52. Jia, X. Y.; Zhang, X. S.; Rui, N.; Hu, X.; Liu, C. J. Structural effect of Ni/ZrO2 catalyst on CO2 methanation with enhanced activity. Appl. Catal. B Environ. 2019, 244, 159–169.

    CAS  Google Scholar 

  53. Bobadilla, L. F.; Santos, J. L.; Ivanova, S.; Odriozola, J. A.; Urakawa, A. Unravelling the role of oxygen vacancies in the mechanism of the reverse water-gas shift reaction by Operando DRIFTS and ultraviolet-visible spectroscopy. ACS Catal. 2018, 8, 7455–7467.

    CAS  Google Scholar 

  54. Binet, C.; Daturi, M.; Lavalley, J. C. Ir study of polycrystalline ceria properties in oxidised and reduced states. Catal. Today 1999, 50, 207–225.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Science and Technology Project of Shenzhen (No. JCYJ20190806155814624), the National Natural Science Foundation of China (No. 22002120) and the Fundamental Research Funds for the Central Universities (No. 3102017jc01001). We would like to thank the Analytical & Testing Center of Northwestern Polytechnical University for SEM, TEM, XRD, and XPS characterizations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tianshuai Wang, Qiuyu Zhang or Hepeng Zhang.

Electronic Supplementary Material

12274_2022_4207_MOESM1_ESM.pdf

Identifying the roles of Ce3+−OH and Ce−H in the reverse water-gas shift reaction over highly active Ni-doped CeO2 catalyst

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, H., Dong, Y., Yang, S. et al. Identifying the roles of Ce3+−OH and Ce−H in the reverse water-gas shift reaction over highly active Ni-doped CeO2 catalyst. Nano Res. 15, 5831–5841 (2022). https://doi.org/10.1007/s12274-022-4207-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4207-8

Keywords

Navigation