Skip to main content
Log in

Recent advances in electrocatalysts for efficient hydrogen evolution reaction

  • Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

As a clean energy source, hydrogen plays a critical role in the global mission to achieve carbon neutrality. Among varied hydrogen production techniques, water electrolysis driven by clean energy, such as solar or wind energy, is the most promising and viable option, with the advantages of celerity, high efficiency, cleanliness, and sustainability. However, this process necessitates a highly active and durable hydrogen evolution reaction (HER) catalyst to enhance the overall reaction efficiency. This article thoroughly reviews the recent development of electrocatalysts exhibiting high-performance HER. In particular, a comprehensive look at noble metals platinum (Pt), ruthenium (Ru), iridium (Ir), and non-noble metals, including sulfides, carbides, nitrides and phosphides is taken. Synthesis strategies, methods for enhancing performance, and the correlation between structure, composition, and catalytic performance are discussed. We also pay particular attention to density functional theory (DFT) calculations to reveal the mechanisms behind the improvement of HER performance. Finally, the critical challenges associated with electrochemical water splitting and propose coping strategies are presented.

Graphical abstract

摘要

作为一种清洁能源, 氢气在实现碳中和的全球使命中发挥着关键作用。在各种制氢技术中, 由太阳能或风能等清洁能源驱动的水电解是最有前途和可行的选择, 具有快速、高效、清洁和可持续的优点。然而, 这一过程需要一种高活性和持久的氢气进化反应 (HER) 催化剂来提高整体反应效率。这篇文章全面回顾了近年来表现出高性能HER的电催化剂的发展。我们全面回顾了贵金属–铂 (Pt) 、钌 (Ru) 、铱 (Ir), 以及非贵金属, 包括硫化物、碳化物、氮化物和磷化物。我们讨论了合成策略、提高性能的方法, 以及结构、成分和催化性能之间的相关性。我们还特别关注密度泛函理论 (DFT) 的计算, 以揭示改善HER性能背后的机制。最后, 我们介绍了与电化学水分离有关的关键挑战, 并提出了应对策略。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from Ref. [47]. Copyright 2022, American Chemical Society. d Schematic illustration of synthesis of PtSA-NiO/Ni; e calculated OH-binding energies and H binding energies for Ni, pure NiO, and O vacancies-modified NiO surface; f calculated energy barriers of water dissociation kinetic and g adsorption free energies of H* on surface of PtSA-NiO/Ni PtSA-NiO and PtSA-Ni catalysts, respectively. Reproduced with permission from Ref. [53]. Copyright 2021, The Author(s). h Schematic illustration of synthesis of Pt/MoS2-NTA/Ti3C2. Reproduced with permission from Ref. [59]. Copyright 2022, Wiley–VCH GmbH

Fig. 2

Reproduced with permission from Ref. [69]. Copyright 2021, Wiley–VCH GmbH. d Schematic illustration of synthesis of cMOF/LDH hetero-nanotree catalysts. Reproduced with permission from Ref. [71]. Copyright 2022, Wiley–VCH GmbH. e Corresponding free-energy diagram of ΔGH*; f charge density redistributions of Co@CNTs|Ru system, where blue, brown and white balls represent Co, C and Ru atoms; g schematic illustration of synthesis of Co@CNTs|Ru. Reproduced with permission from Ref. [85]. Copyright 2022, The Author(s)

Fig. 3

Reproduced with permission from Ref. [98]. Copyright 2021, American Chemical Society. Top and side views of optimized structure of 13 H2O molecule on d graphene and e N,O-C, where gray, white, red and blue represent carbon, hydrogen, oxygen and nitrogen atoms, respectively; f schematic illustration of synthesis of IrNi@N,O-C. Reproduced with permission from Ref. [103]. Copyright 2022, Elsevier B.V. g Schematic illustration of synthesis of NS-Ti3C2Tx; h comparison of overpotential (η) of 10 mA·cm−2 and metal-mass activity at − 0.01 V (vs. RHE) under acidic conditions. Reproduced with permission from Ref. [116]. Copyright 2022, Royal Society of Chemistry

Fig. 4

Reproduced with permission from Ref. [142]. Copyright 2019, The Author(s). b Top-view and side-view sp2 hybrid orbitals (highlighted by red dash circle) at the top of valence band and c empty 2p orbitals (highlighted by red dash circle) perpendicular to basal plane at the bottom of conduction band of C-MoS2; d schematic illustration of synthesis of C-MoS2 and MoS2. Reproduced with permission from Ref. [148]. Copyright 2019, The Author(s). e Schematic illustration of chemical etching process to introduce single S-vacancies. Reproduced with permission from Ref. [147]. Copyright 2020, American Chemical Society. f Raman spectra of Pd-MoS2 and MoS2; g H adsorption free energy. Reproduced with permission from Ref. [143]. Copyright 2018, The Author(s). h TEM and corresponding EDX elemental mapping images of Co-Fe-Pd-MoS2. Reproduced with permission from Ref. [149]. Copyright 2020, WILEY–VCH Verlag GmbH & Co. KGaA, Weinheim

Fig. 5

Reproduced with permission from Ref. [151]. Copyright 2021, The Author(s). c Schematic illustration of synthesis of P-WS2 NWAs; d EDX elemental distribution of P-WS2 NWAs; e total DOS of WS2 and P-WS2; f side-view of orbitals around EF of P-WS2; g PDOS of S and W in WS2 (upper), and P, S, W in P-WS2 (lower), respectively. Reproduced with permission from Ref. [153]. Copyright 2021, Tsinghua University Press and Springer-Verlag GmbH. h Schematic illustration of synthesis of CoS@CoNi-LDH/CC heterostructure. Reproduced with permission from Ref. [158]. Copyright 2020, American Chemical Society. i Charge density difference plot at Ni3S2-FeS interface, where light blue, yellow and light purple indicate Ni, S and Fe atoms, respectively. j Positive and k negative values of charge density difference plot at Ni3S2/FeS interface. Reproduced with permission from Ref. [160]. Copyright 2020, Elsevier B.V

Fig. 6

Reproduced with permission from Ref. [169]. Copyright 2021, Elsevier Ltd. b Comparison of free energy profiles of H2 generation in undoped and N, P-doped MoxC. Reproduced with permission from Ref. [170]. Copyright 2021, American Chemical Society. c DOSs of Mo2C@NG, Mo2C and NG catalysts; d calculated Mo d-orbitals of Mo2C@NG and Mo2C catalysts; e ‒COHP functions of Mo2C@NG and NC catalysts, where pCOHP and ICOHP represent local and integral values of COHP, respectively. Reproduced with permission from Ref. [171]. Copyright 2021, The Authors. PDOS of f MoC, g Mo2C, and h MoC-Mo2C heterojunction interface; i relative energy diagram of water dissociation on MoC, Mo2C and MoC-Mo2C in alkaline solution, where TS means transition state; j HRTEM image of MoC-Mo2C powders. Reproduced with permission from Ref. [173]. Copyright 2021, The Author(s). k HRTEM image of interface between Mo2C (100) and MoC (111) in Mo2C/MoC/CNT film; l free energy diagram of HER for different adsorption sites on Mo2C (100), MoC (111) and Mo2C (100)/MoC (111) heterostructure; m XPS spectra of Mo 3d in MoC powder, Mo2C/MoC/CNT film and Mo2C powder; n schematic illustration of synthesis of Mo2C/MoC/CNT. Reproduced with permission from Ref. [174]. Copyright 2022, The Author(s)

Fig. 7

Reproduced with permission from Ref. [189]. Copyright 2021, Elsevier B.V. d Total and partial electronic density of states calculated for Co (111) and MoN (200); e adsorption Gibbs free energy diagram for HER pathway on Co/MoN, Co and MoN. Reproduced with permission from Ref. [190]. Copyright 2021, Elsevier B.V. f Calculated adsorption energies of H2O and H on surface. Reproduced with permission from Ref. [193]. Copyright 2022, Wiley–VCH GmbH. g Synchrotron-based Mo L edge XANES spectra for V0.2Mo0.8N1.2 and MoN1.2; h differential charge density of V-doped MoN1.2, where yellow contour represents electron accumulation; i free energy diagram for HER on MoN1.2 and V-doped Mo5N6, and (inset) schematic top view of corresponding atomic structure. Reproduced with permission from Ref. [200]. Copyright 2022, The Authors

Fig. 8

Reproduced with permission from Ref. [214]. Copyright 2021, Wiley–VCH GmbH. c Schematic illustration of Ni2P@Ti3C2Tx heterostructure; d free energy diagram of HER on Ni2P (blue line) and Ni2P@Ti3C2 MXene (green line) surfaces. Reproduced with permission from Ref. [213]. Copyright 2022, Wiley–VCH GmbH. Raman mapping images of e MoS2 and f converted MoP; g schematic illustration of chemical conversion process from MoS2 to MoP; h high-resolution XPS profiles of S in MoP converted from MoS2. Reproduced with permission from Ref. [216]. Copyright 2022, Wiley–VCH GmbH. EDS elemental mapping images of FeP/Ni2P/CP: i Fe, j P, and k Ni; l simulated DOS of Fe-3d orbital, Ni-3d orbital and P-3p orbital in FeP/Ni2P; m charge density for FeP/Ni2P, where yellow represents charge accumulation and blue represents charge dissipation. Reproduced with permission from Ref. [223]. Copyright 2022, Royal Society of Chemistry

Fig. 9

Similar content being viewed by others

References

  1. Song W, Li MX, Wang C, Lu XF. Electronic modulation and interface engineering of electrospun nanomaterials-based electrocatalysts toward water splitting. Carbon Energy. 2021;3(1):101. https://doi.org/10.1002/20cey2.85.

    Article  CAS  Google Scholar 

  2. Fu XW, Shi RJ, Jiao SL, Li MM, Li QY. Structural design for electrocatalytic water splitting to realize industrial-scale deployment: strategies, advances, and perspectives. J Energy Chem. 2022;70:129. https://doi.org/10.1016/j.jechem.2022.02.010.

    Article  CAS  Google Scholar 

  3. Pu ZH, Amiinu IS, Kou ZK, Li WQ, Mu SC. RuP2-based catalysts with Platinum-like activity and higher durability for the hydrogen evolution reaction at all pH values. Angew Chem Int Ed Engl. 2017;56(38):11559. https://doi.org/10.1002/anie.201704911.

    Article  CAS  PubMed  Google Scholar 

  4. Wang JH, Cui W, Liu Q, Xing ZC, Asiri AM, Sun X. Recent Progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv Mater. 2016;28(2):215. https://doi.org/10.1002/adma.20201502696.

    Article  CAS  PubMed  Google Scholar 

  5. Winter M, Brodd RJ. What are batteries, fuel cells, and supercapacitors? Chem Rev. 2004;104(10):4245. https://doi.org/10.1021/cr020730k.

    Article  CAS  PubMed  Google Scholar 

  6. Hu SQ, Ge SY, Liu HM, Kang X, Yu QM, Liu B. Low-dimensional electrocatalysts for acidic oxygen evolution: intrinsic activity, high current density operation, and long-term stability. Adv Funct Mater. 2022;32(23):2201726. https://doi.org/10.1002/adfm.202201726.

    Article  CAS  Google Scholar 

  7. Wu P, Li SY, Xi FS, Li XF, Lv GQ, Ma WH. Research advances in titanium-based metal-organic frameworks materials in field of photocatalytic water-splitting hydrogen production. Chin J Rare Met. 2023;47(12):1624. https://doi.org/10.13373/j.cnki.cjrm.XY22120006.

    Article  CAS  Google Scholar 

  8. Deng X, Zheng XD, Gong ZW, Tan WY, Pei XD. Research progress on single metal atom catalysts for hydrogen production by PEM water electrolysis with lower costs. Chin J Rare Met. 2023;47(1):43. https://doi.org/10.13373/j.cnki.cjrm.XY22060014.

  9. Zou XX, Zhang Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem Soc Rev. 2015;44(15):5148. https://doi.org/10.1039/C4CS00448E.

    Article  CAS  PubMed  Google Scholar 

  10. Liu YP, Yu GT, Li GD, Sun YH, Asefa T, Chen W, Zou XX. Coupling Mo2C with nitrogen-rich nanocarbon leads to efficient hydrogen-evolution electrocatalytic sites. Angew Chem Int Ed. 2015;54(37):10752. https://doi.org/10.1002/anie.201504376.

    Article  CAS  Google Scholar 

  11. Morales-Guio CG, Stern LA, Hu X. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem Soc Rev. 2014;43(18):6555. https://doi.org/10.1039/c3cs60468c.

    Article  CAS  PubMed  Google Scholar 

  12. Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Nørskov JK, Jaramillo TF. Combining theory and experiment in electrocatalysis: insights into materials design. Science. 2017;355(6321):EAAD4998. https://doi.org/10.1126/science.aad4998.

    Article  PubMed  Google Scholar 

  13. Zhao XJ, Chang Y, He XL, Zhang HQ, Jia JC, Jia ML. Understanding ultra-dispersed CeOx modified iridium clusters as bifunction electrocatalyst for high-efficiency water splitting in acid electrolytes. J Rare Earths. 2023;41(2):208. https://doi.org/10.1002/adma.202108133.

    Article  CAS  Google Scholar 

  14. Yu ZY, Duan Y, Feng XY, Yu X, Gao MR, Yu SH. Clean and affordable hydrogen fuel from alkaline water splitting: past, recent progress, and future prospects. Adv Mater. 2021;33(31):2007100. https://doi.org/10.1002/adma.202007100.

    Article  CAS  Google Scholar 

  15. Wang Y, Kong B, Zhao DY, Wang HT, Selomulya C. Strategies for developing transition metal phosphides as heterogeneous electrocatalysts for water splitting. Nano Today. 2017;15:26. https://doi.org/10.1016/j.nantod.2017.06.006.

    Article  CAS  Google Scholar 

  16. Zhao S, Wang DW, Amal R, Dai LM. Carbon-based metal-free catalysts for key reactions involved in energy conversion and storage. Adv Mater. 2019;31(9):1801526. https://doi.org/10.1002/adma.201801526.

    Article  CAS  Google Scholar 

  17. Shao LY, Sun HM, Miao LH, Chen X, Han M, Sun JC, Liu S, Li L, Cheng FY, Chen J. Facile preparation of NH2-functionalized black phosphorene for the electrocatalytic hydrogen evolution reaction. J Mater Chem A Mater. 2018;6(6):2494. https://doi.org/10.1039/C7TA10884B.

    Article  CAS  Google Scholar 

  18. Sheng MQ, Jiang BB, Wu B, Liao F, Fan X, Lin HP, Li YY, Lifshitz Y, Lee S, Shao MW. Approaching the volcano top: iridium/silicon nanocomposites as efficient electrocatalysts for the hydrogen evolution reaction. ACS Nano. 2019;13(3):2786. https://doi.org/10.1021/acsnano.8b07572.

    Article  CAS  PubMed  Google Scholar 

  19. Li MF, Duanmu KN, Wan CZ, Cheng T, Zhang L, Dai S, Chen WX, Zhao ZP, Li P, Fei HL, Zhu YM, Yu R, Luo J, Zang KT, Lin ZY, Ding MN, Huang J, Sun HT, Guo JH, Pan XQ, Goddard WA, Sautet P, Huang Y, Duan XF. Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis. Nat Catal. 2019;2(6):495. https://doi.org/10.1038/s41929-019-0279-6.

    Article  CAS  Google Scholar 

  20. Mahmood J, Li F, Jung S, Okyay MS, Ahmad I, Kim S, Park N, Jeong HY, Baek J. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat Nanotechnol. 2017;12(5):441. https://doi.org/10.1038/nnano.2016.304.

    Article  CAS  PubMed  Google Scholar 

  21. Zheng Y, Jiao Y, Zhu Y, Li LH, Han Y, Chen Y, Jaroniec M, Qiao S. High electrocatalytic hydrogen evolution activity of an anomalous ruthenium catalyst. J Am Chem Soc. 2016;138(49):16174. https://doi.org/10.1021/jacs.6b11291.

    Article  CAS  PubMed  Google Scholar 

  22. Wu HM, Feng CQ, Zhang L, Zhang JJ, Wilkinson DP. Non-noble metal electrocatalysts for the hydrogen evolution reaction in water electrolysis. Electrochem Energy Rev. 2021;4(3):473. https://doi.org/10.1007/s41918-020-00086-z.

    Article  CAS  Google Scholar 

  23. Sun HM, Yan ZH, Liu FM, Xu WC, Cheng FY, Chen J. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Adv Mater. 2019;32(3):1806326. https://doi.org/10.1002/adma.201806326.

    Article  CAS  Google Scholar 

  24. Bae S, Mahmood J, Jeon I, Baek J. Recent advances in ruthenium-based electrocatalysts for the hydrogen evolution reaction. Nanoscale Horiz. 2019;5(1):43. https://doi.org/10.1039/c9nh00485h.

    Article  CAS  Google Scholar 

  25. Hua W, Sun HH, Xu F, Wang JG. A review and perspective on molybdenum-based electrocatalysts for hydrogen evolution reaction. Rare Met. 2020;39(4):335. https://doi.org/10.1007/s12598-020-01384-7.

    Article  CAS  Google Scholar 

  26. Li CQ, Baek JB. Recent advances in noble metal (Pt, Ru, and Ir)-based electrocatalysts for efficient hydrogen evolution reaction. ACS Omega. 2020;5(1):31. https://doi.org/10.1021/acsomega.9b03550.

    Article  CAS  PubMed  Google Scholar 

  27. Zhou F, Zhou Y, Liu GG, Wang CT, Wang J. Recent advances in nanostructured electrocatalysts for hydrogen evolution reaction. Rare Met. 2021;40(12):3375. https://doi.org/10.1007/s12598-021-01735-y.

    Article  CAS  Google Scholar 

  28. Zheng Y, Jiao Y, Zhu YH, Li LH, Han Y, Chen Y, Du AJ, Jaroniec M, Qiao SZ. Hydrogen evolution by a metal-free electrocatalyst. Nat Commun. 2014;5(1):3783. https://doi.org/10.1038/ncomms4783.

    Article  PubMed  Google Scholar 

  29. Zhao TW, Wang Y, Karuturi S, Catchpole K, Zhang Q, Zhao C. Design and operando/in situ characterization of precious-metal-free electrocatalysts for alkaline water splitting. Carbon Energy. 2020;2(4):582. https://doi.org/10.1002/cey2.79.

    Article  CAS  Google Scholar 

  30. Solanki R, Patra I, Ahmad N, Kumar NB, Parra RMR, Zaidi M, Yasin G, Kumar TCA, Hussein HA, Sivaraman R, Majdi HS, Alkadir OKA, Yaghobi R. Investigation of recent progress in metal-based materials as catalysts toward electrochemical water splitting. J Environ Chem Eng. 2022;10(4):108207. https://doi.org/10.1016/j.jece.2022.108207.

    Article  CAS  Google Scholar 

  31. Pu ZH, Amiinu IS, Cheng RL, Wang YP, Zhang CT, Mu SC, Zhao WY, Su FM, Zhang GX, Liao SJ, Sun SH. Single-atom catalysts for electrochemical hydrogen evolution reaction: recent advances and future perspectives. Nanomicro Lett. 2020;12(1):21. https://doi.org/10.1007/s40820-019-0349-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Song HQ, Yu JK, Tang ZY, Yang B, Lu SY. Halogen-doped carbon dots on amorphous cobalt phosphide as robust electrocatalysts for overall water splitting. Adv Energy Mater. 2022;12(14):2102573. https://doi.org/10.1002/aenm.202102573.

    Article  CAS  Google Scholar 

  33. Su PP, Pei W, Wang XW, Ma YF, Jiang Q, Liang J, Zhou S, Zhao JJ, Liu J, Lu GQM. Exceptional electrochemical HER performance with enhanced electron transfer between Ru nanoparticles and single atoms dispersed on a carbon substrate. Angew Chem Int Ed. 2021;60(29):16044. https://doi.org/10.1002/anie.202103557.

    Article  CAS  Google Scholar 

  34. Xue DP, Cheng JQ, Yuan PF, Lu BA, Xia HC, Yang CC, Dong CL, Zhang HZ, Shi FY, Mu SC, Hu JS, Sun SG, Zhang JN. Boron-tethering and regulative electronic states around iridium species for hydrogen evolution. Adv Funct Mater. 2022;32(21):2113191. https://doi.org/10.1002/adfm.202113191.

    Article  CAS  Google Scholar 

  35. Conway BE, Tilak BV. Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H. Electrochim Acta. 2002;47(22):3571. https://doi.org/10.1016/S0013-4686(02)00329-8.

    Article  CAS  Google Scholar 

  36. Nørskov JK, Bligaard T, Logadottir A, Kitchin JR, Chen JG, Pandelov S, Stimming U. Trends in the exchange current for hydrogen evolution. J Electrochem Soc. 2005;152(3):J23. https://doi.org/10.1149/1.1856988.

    Article  CAS  Google Scholar 

  37. Sun YT, Wang S, Jiao DX, Li FY, Qiu SY, Wang ZX, Cai QH, Zhao JX, Sun CH. Two-dimensional Pt2P3 monolayer: a promising bifunctional electrocatalyst with different active sites for hydrogen evolution and CO2 reduction. Chin Chem Lett. 2022;33(8):3987. https://doi.org/10.1016/j.cclet.2021.11.034.

    Article  CAS  Google Scholar 

  38. Zhao YF, Kumar PV, Tan X, Lu XX, Zhu XF, Jiang JJ, Pan J, Xi SB, Yang HY, Ma ZP, Wan T, Chu DW, Jiang WJ, Smith SC, Amal R, Han ZJ, Lu XY. Modulating Pt-O-Pt atomic clusters with isolated cobalt atoms for enhanced hydrogen evolution catalysis. Nat Commun. 2022;13(1):2430. https://doi.org/10.1038/s41467-022-30155-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shi Y, Ma ZR, Xiao YY, Yin YC, Huang WM, Huang ZC, Zheng YZ, Mu FY, Huang R, Shi GY, Sun YY, Xia XH, Chen W. Electronic metal-support interaction modulates single-atom platinum catalysis for hydrogen evolution reaction. Nat Commun. 2021;12(1):3021. https://doi.org/10.1038/s41467-021-23306-6.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wu YC, Wei W, Yu RH, Xia LX, Hong XF, Zhu JX, Li JT, Lv L, Chen W, Zhao Y, Zhou L, Mai LQ. Anchoring sub-nanometer Pt clusters on crumpled paper-like MXene enables high hydrogen evolution mass activity. Adv Funct Mater. 2022;32(17):2110910. https://doi.org/10.1002/adfm.202110910.

    Article  CAS  Google Scholar 

  41. Ha MR, Kim DY, Umer M, Gladkikh V, Myung CW, Kim KS. Tuning metal single atoms embedded in NxCy moieties toward high-performance electrocatalysis. Energy Environ Sci. 2021;14(6):3455. https://doi.org/10.1039/D1EE00154J.

    Article  CAS  Google Scholar 

  42. Xue YR, Huang BL, Yi YP, Guo Y, Zuo ZC, Li YJ, Jia ZY, Liu HB, Li YL. Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution. Nat Commun. 2018;9(1):1460. https://doi.org/10.1038/s41467-018-03896-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fang Y, Xue YR, Hui L, Yu HD, Li YL. Graphdiyne@Janus magnetite for photocatalytic nitrogen fixation. Angew Chem Int Ed. 2021;133(6):3207. https://doi.org/10.1002/ange.202012357.

    Article  Google Scholar 

  44. Guo J, Guo MY, Wang FH, Jin WY, Chen CY, Liu HB, Li YL. Graphdiyne: structure of fluorescent quantum dots. Angew Chem Int Ed. 2020;355(6321):EAAD4998. https://doi.org/10.1002/ange.202006891.

    Article  Google Scholar 

  45. Cheng QQ, Hu CG, Wang GL, Zou ZQ, Yang H, Dai LM. Carbon-defect-driven electroless deposition of Pt atomic clusters for highly efficient hydrogen evolution. J Am Chem Soc. 2020;142(12):5594. https://doi.org/10.1021/jacs.9b11524.

    Article  CAS  PubMed  Google Scholar 

  46. Yang Q, Jia Y, Wei FF, Zhuang LZ, Yang DJ, Liu JZ, Wang X, Lin S, Yuan P, Yao XD. Understanding the activity of Co-N4-xCx in atomic metal catalysts for oxygen reduction catalysis. Angew Chem Int Ed. 2020;132(15):6178. https://doi.org/10.1002/ange.202000324.

    Article  Google Scholar 

  47. Yang Q, Liu HX, Yuan P, Jia Y, Zhuang LZ, Zhang HW, Yan XC, Liu GH, Zhao YF, Liu JZ, Wei SQ, Song L, Wu QL, Ge BQ, Zhang LZ, Wang K, Wang X, Chang CR, Yao XD. Single carbon vacancy traps atomic platinum for hydrogen evolution catalysis. J Am Chem Soc. 2022;144(5):2171. https://doi.org/10.1021/jacs.1c10814.

    Article  CAS  PubMed  Google Scholar 

  48. Wan XK, Wu HB, Guan BY, Luan D, Lou XW. Confining sub-nanometer Pt clusters in hollow mesoporous carbon spheres for boosting hydrogen evolution activity. Adv Mater. 2019;32(7):1901349. https://doi.org/10.1002/adma.201901349.

    Article  CAS  Google Scholar 

  49. Kuang PY, Wang YR, Zhu BC, Xia FJ, Tung CW, Wu JS, Chen HM, Yu JG. Pt single atoms supported on N-doped mesoporous hollow carbon spheres with enhanced electrocatalytic H2-evolution activity. Adv Mater. 2021;33(18):2008599. https://doi.org/10.1002/adma.202008599.

    Article  CAS  Google Scholar 

  50. Tsounis C, Subhash B, Kumar PV, Bedford NM, Zhao Y, Shenoy J, Ma Z, Zhang D, Toe CY, Cheong S, Tilley RD, Lu X, Dai L, Han Z, Amal R. Pt single atom electrocatalysts at graphene edges for efficient alkaline hydrogen evolution. Adv Funct Mater. 2022;32(38):2203067. https://doi.org/10.1002/adfm.202203067.

    Article  CAS  Google Scholar 

  51. Su JN, Zhuang LZ, Zhang SS, Liu QJ, Zhang LZ, Hu GZ. Single atom catalyst for electrocatalysis. Chin Chem Lett. 2021;32(10):2947. https://doi.org/10.1016/j.cclet.2021.03.082.

    Article  CAS  Google Scholar 

  52. Wei ZX, Zhu YT, Liu JY, Zhang ZC, Hu WP, Xu H, Feng YZ, Ma JM. Recent advance in single-atom catalysis. Rare Met. 2021;40(4):767. https://doi.org/10.1007/s12598-020-01592-1.

    Article  CAS  Google Scholar 

  53. Zhou KL, Wang ZL, Han CB, Ke XX, Wang CH, Jin Y, Zhang QQ, Liu JB, Wang H, Yan H. Platinum single-atom catalyst coupled with transition metal/metal oxide heterostructure for accelerating alkaline hydrogen evolution reaction. Nat Commun. 2021;12(1):3783. https://doi.org/10.1038/s41467-021-24079-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mosallanezhad A, Wei C, Ahmadian Koudakan P, Fang YY, Niu SW, Bian ZN, Liu B, Huang T, Pan HG, Wang GM. Interfacial synergies between single-atomic Pt and CoS for enhancing hydrogen evolution reaction catalysis. Appl Catal B. 2022;315:121534. https://doi.org/10.1016/j.apcatb.2022.121534.

    Article  CAS  Google Scholar 

  55. Deng J, Li HB, Xiao JP, Tu YC, Deng DH, Yang HX, Tian HF, Li JQ, Ren PJ, Bao XH. Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ Sci. 2015;8(5):1594. https://doi.org/10.1039/C5EE00751H.

    Article  CAS  Google Scholar 

  56. Chen IP, Chen YX, Wu CW, Chiu CC, Hsieh YC. Large-scale fabrication of a flexible, highly conductive composite paper based on molybdenum disulfide-Pt nanoparticle-single-walled carbon nanotubes for efficient hydrogen production. Chem Commun (Camb). 2017;53(2):380. https://doi.org/10.1039/C6CC08050B.

    Article  CAS  Google Scholar 

  57. Chen S, Pan Y. Noble metal interlayer-doping enhances the catalytic activity of 2H-MoS2 from first-principles investigations. Int J Hydrogen Energy. 2021;46(40):21040. https://doi.org/10.1016/j.ijhydene.2021.03.202.

    Article  CAS  Google Scholar 

  58. Shan AX, Teng XA, Zhang Y, Zhang PF, Xu YY, Liu CR, Li H, Ye HY, Wang RM. Interfacial electronic structure modulation of Pt-MoS2 heterostructure for enhancing electrocatalytic hydrogen evolution reaction. Nano Energy. 2022;94:106913. https://doi.org/10.1016/j.nanoen.2021.106913.

    Article  CAS  Google Scholar 

  59. Jiao SL, Kong MS, Hu ZP, Zhou SM, Xu XX, Liu L. Pt atom on the wall of atomic layer deposition (ALD)-made MoS2 nanotubes for efficient hydrogen evolution. Small. 2022;18(16):2105129. https://doi.org/10.1002/smll.202105129.

    Article  CAS  Google Scholar 

  60. Feng YH, Wang XL, Wang JC. A nitridation route to construct high-activity interfaces toward alkaline hydrogen evolution. J Mater Chem A Mater. 2022;10(20):11205. https://doi.org/10.1039/D2TA02294J.

    Article  CAS  Google Scholar 

  61. Zhang JC, Chen GB, Liu QC, Fan C, Sun DM, Tang YW, Sun HJ, Feng XL. Competitive adsorption: reducing the poisoning effect of adsorbed hydroxyl on Ru single-atom site with SnO2 for efficient hydrogen evolution. Angew Chem Int Ed. 2022;61(39):e202209486. https://doi.org/10.1002/anie.202209486.

    Article  CAS  Google Scholar 

  62. Zhao YM, Wang XW, Li Z, Zhao PP, Tao CL, Cheng GZ, Luo W. Enhanced catalytic activity of Ru through N modification toward alkaline hydrogen electrocatalysis. Chin Chem Lett. 2022;33(2):1065. https://doi.org/10.1016/j.cclet.2021.05.038.

    Article  CAS  Google Scholar 

  63. You MZ, Du X, Hou XH, Wang ZY, Zhou Y, Ji HP, Zhang LY, Zhang ZT, Yi SS, Chen DL. In-situ growth of ruthenium-based nanostructure on carbon cloth for superior electrocatalytic activity towards HER and OER. Appl Catal B. 2022;317: 121729. https://doi.org/10.1016/j.apcatb.2022.121729.

    Article  CAS  Google Scholar 

  64. Zhang JT, Mao XN, Wang SL, Liang LL, Cao MF, Wang L, Li G, Xu Y, Huang XQ. Superlattice in a Ru superstructure for enhancing hydrogen evolution. Angew Chem Int Ed. 2022;61(14):e202116867. https://doi.org/10.1002/anie.202116867.

    Article  CAS  Google Scholar 

  65. Wang YH, Li RQ, Li HB, Huang HL, Guo ZJ, Chen HY, Zheng Y, Qu KG. Controlled synthesis of ultrasmall RuP2 particles on N, P-codoped carbon as superior pH-wide electrocatalyst for hydrogen evolution. Rare Met. 2021;40(5):1040. https://doi.org/10.1007/s12598-020-01665-1.

    Article  CAS  Google Scholar 

  66. Chen X, Ma DD, Chen B, Zhang KX, Zou RQ, Wu XT, Zhu QL. Metal-organic framework-derived mesoporous carbon nanoframes embedded with atomically dispersed Fe-N active sites for efficient bifunctional oxygen and carbon dioxide electroreduction. Appl Catal B. 2020;267:118720. https://doi.org/10.1016/j.apcatb.2020.118720.

    Article  CAS  Google Scholar 

  67. Wang HF, Chen LY, Pang H, Kaskel S, Xu Q. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chem Soc Rev. 2020;49(5):1414. https://doi.org/10.1039/c9cs00906j.

    Article  CAS  PubMed  Google Scholar 

  68. Cao CS, Ma DD, Gu JF, Xie XY, Zeng G, Li XF, Han SG, Zhu QL, Wu XT, Xu Q. Metal-organic layers leading to atomically thin bismuthene for efficient carbon dioxide electroreduction to liquid fuel. Angew Chem Int Ed. 2020;132(35):15124. https://doi.org/10.1002/ange.202005577.

    Article  Google Scholar 

  69. Wu YL, Li X, Wei YS, Fu ZM, Wei WB, Wu XT, Zhu QL, Xu Q. Ordered macroporous superstructure of nitrogen-doped nanoporous carbon implanted with ultrafine Ru nanoclusters for efficient pH-universal hydrogen evolution reaction. Adv Mater. 2021;33(12):2006965. https://doi.org/10.1002/adma.202006965.

    Article  CAS  Google Scholar 

  70. Wu XK, Xu WX, Wang ZC, Li HD, Wang MH, Zhang D, Lai JP, Wang L. Rapid microwave synthesis of Ru-supported partially carbonized conductive metal-organic framework for efficient hydrogen evolution. Chem Eng J. 2022;431(3):133247. https://doi.org/10.1016/j.cej.2021.133247.

    Article  CAS  Google Scholar 

  71. Wang Y, Wang S, Ma ZL, Yan LT, Zhao XB, Xue YY, Huo JM, Yuan X, Li SN, Zhai QG. Competitive coordination-oriented monodispersed ruthenium sites in conductive MOF/LDH hetero-nanotree catalysts for efficient overall water splitting in alkaline media. Adv Mater. 2022;34(12):2107488. https://doi.org/10.1002/adma.202107488.

    Article  CAS  Google Scholar 

  72. Lu BZ, Guo L, Wu F, Peng Y, Lu JE, Smart TJ, Wang N, Finfrock YZ, Morris D, Zhang P, Li N, Gao P, Ping Y, Chen SW. Ruthenium atomically dispersed in carbon outperforms platinum toward hydrogen evolution in alkaline media. Nat Commun. 2019;10(1):631. https://doi.org/10.1038/s41467-019-08419-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yao HX, Wang XK, Li K, Li C, Zhang CH, Zhou J, Cao ZW, Wang HL, Gu M, Huang MH, Jiang HQ. Strong electronic coupling between ruthenium single atoms and ultrafine nanoclusters enables economical and effective hydrogen production. Appl Catal B. 2022;312:121378. https://doi.org/10.1016/j.apcatb.2022.121378.

    Article  CAS  Google Scholar 

  74. Li WQ, Zhang H, Zhang K, Hu WX, Cheng ZZ, Chen HP, Feng X, Peng T, Kou ZK. Monodispersed ruthenium nanoparticles interfacially bonded with defective nitrogen-and-phosphorus-doped carbon nanosheets enable pH-universal hydrogen evolution reaction. Appl Catal B. 2022;306:121095. https://doi.org/10.1016/j.apcatb.2022.121095.

    Article  CAS  Google Scholar 

  75. Zhao Y, Zhang XY, Gao YX, Chen Z, Li ZJ, Ma TY, Wu ZX, Wang L, Feng SH. Heterostructure of RuO2-RuP2/Ru derived from HMT-based coordination polymers as superior pH-universal electrocatalyst for hydrogen evolution reaction. Small. 2022;18(11):2105168. https://doi.org/10.1002/smll.202105168.

    Article  CAS  Google Scholar 

  76. Qiu TJ, Cheng JQ, Liang ZB, Tabassum H, Shi JM, Tang YQ, Guo WH, Zheng LR, Gao S, Xu SZ, Zou RQ. Unveiling the nanoalloying modulation on hydrogen evolution activity of ruthenium-based electrocatalysts encapsulated by B/N co-doped graphitic nanotubes. Appl Catal B. 2022;316:121626. https://doi.org/10.1016/j.apcatb.2022.121626.

    Article  CAS  Google Scholar 

  77. Sun XZ, Li WH, Chen J, Yang XL, Wu BF, Wang ZX, Li B, Zhang HB. Boron-induced activation of Ru nanoparticles anchored on carbon nanotubes for the enhanced pH-independent hydrogen evolution reaction. J Colloid Interface Sci. 2022;616:338. https://doi.org/10.1016/j.jcis.2022.02.072.

    Article  CAS  PubMed  Google Scholar 

  78. Maiti UN, Lim J, Lee KE, Lee WJ, Kim SO. Three-dimensional shape engineered, interfacial gelation of reduced graphene oxide for high rate, large capacity supercapacitors. Adv Mater. 2014;26(4):615. https://doi.org/10.1002/adma.201303503.

    Article  CAS  PubMed  Google Scholar 

  79. He Q, Zhou YZ, Shou HW, Wang XY, Zhang PJ, Xu WJ, Qiao SC, Wu CQ, Liu HJ, Liu DB, Chen SM, Long R, Qi ZM, Wu XJ, Song L. Synergic reaction kinetics over adjacent ruthenium sites for superb hydrogen generation in alkaline media. Adv Mater. 2022;34(20):2110604. https://doi.org/10.1002/adma.202110604.

    Article  CAS  Google Scholar 

  80. Feng YQ, Feng WH, Wan J, Chen JS, Wang H, Li SM, Luo TM, Hu YZ, Yuan CK, Cao YL, Feng LL, Li J, Wen R, Huang JF. Spherical vs. planar: steering the electronic communication between Ru nanoparticle and single atom to boost the electrocatalytic hydrogen evolution activity both in acid and alkaline. Appl Catal B. 2022;307:121193. https://doi.org/10.1016/j.apcatb.2022.121193.

    Article  CAS  Google Scholar 

  81. Wang YF, Morales-Martínez R, Zhang XX, Yang W, Wang YX, Rodríguez-Fortea A, Poblet JM, Feng L, Wang S, Chen N. Unique four-electron metal-to-cage charge transfer of Th to a C82 fullerene cage: complete structural characterization of Th@C3v(8)-C82. J Am Chem Soc. 2017;139(14):5110. https://doi.org/10.1021/jacs.6b13383.

    Article  CAS  PubMed  Google Scholar 

  82. Jiao J, Zhang NN, Zhang C, Sun N, Pan Y, Chen C, Li J, Tan MJ, Cui RX, Shi ZL, Zhang JW, Xiao H, Lu TB. Doping ruthenium into metal matrix for promoted pH-universal hydrogen evolution. Adv Sci (Weinh). 2022;9(15):2200010. https://doi.org/10.1002/advs.202200010.

    Article  CAS  PubMed  Google Scholar 

  83. Liu Y, Li X, Zhang QH, Li WD, Xie Y, Liu HY, Shang L, Liu ZY, Chen ZM, Gu L, Tang ZY, Zhang TR, Lu SY. A general route to prepare low-ruthenium-content bimetallic electrocatalysts for pH-universal hydrogen evolution reaction by using carbon quantum dots. Angew Chem Int Ed. 2020;132(4):1735. https://doi.org/10.1002/ange.201913910.

    Article  Google Scholar 

  84. Zhao DK, Li ZL, Yu XL, Zhou W, Wu QK, Luo Y, Wang N, Liu AM, Li LG, Chen SW. Ru decorated Co nanoparticles supported by N-doped carbon sheet implements Pt-like hydrogen evolution performance in wide pH range. Chem Eng J. 2022;450(4):138254. https://doi.org/10.1016/j.cej.2022.138254.

    Article  CAS  Google Scholar 

  85. Chen J, Ha Y, Wang RR, Liu YX, Xu HB, Shang B, Wu RB, Pan HG. Inner Co synergizing outer Ru supported on carbon nanotubes for efficient pH-universal hydrogen evolution catalysis. Nanomicro Lett. 2022;14(1):186. https://doi.org/10.1007/s40820-022-00933-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Deng K, Zhou TQ, Mao QQ, Wang SQ, Wang ZQ, Xu Y, Li XN, Wang HJ, Wang L. Surface engineering of defective and porous Ir metallene with polyallylamine for hydrogen evolution electrocatalysis. Adv Mater. 2022;34(18):2110680. https://doi.org/10.1002/adma.202110680.

    Article  CAS  Google Scholar 

  87. Jiang P, Huang H, Diao JF, Gong SP, Chen S, Lu J, Wang CL, Sun ZJ, Xia GL, Yang K, Yang Y, Wei LZ, Chen QW. Improving electrocatalytic activity of iridium for hydrogen evolution at high current densities above 1000 mA cm–2. Appl Catal B. 2019;258:117965. https://doi.org/10.1016/j.apcatb.2019.117965.

    Article  CAS  Google Scholar 

  88. Mei J, He TW, Bai J, Qi DC, Du AJ, Liao T, Ayoko GA, Yamauchi Y, Sun TL, Sun ZQ. Surface-dependent intermediate adsorption modulation on iridium-modified black phosphorus electrocatalysts for efficient pH-universal water splitting. Adv Mater. 2021;33(49):2104638. https://doi.org/10.1002/adma.202104638.

    Article  CAS  Google Scholar 

  89. Ma SY, Deng J, Xu YP, Tao WY, Wang XQ, Lin ZP, Zhang QH, Gu L, Zhong WW. Pollen-like self-supported FeIr alloy for improved hydrogen evolution reaction in acid electrolyte. J Energy Chem. 2022;66:560. https://doi.org/10.1016/j.jechem.2021.08.066.

    Article  CAS  Google Scholar 

  90. Yao WQ, Jiang X, Li YL, Zhao CT, Ding LF, Sun DM, Tang YW. N-doped graphene anchored ultrasmall Ir nanoparticles as bifunctional electrocatalyst for overall water splitting. Green Energy Environ. 2022;7(5):1111. https://doi.org/10.1016/j.gee.2021.01.011.

    Article  CAS  Google Scholar 

  91. Wu QL, Luo M, Han JH, Peng W, Zhao Y, Chen DC, Peng M, Liu J, de Groot FMF, Tan YW. Identifying electrocatalytic sites of the nanoporous copper-ruthenium alloy for hydrogen evolution reaction in alkaline electrolyte. ACS Energy Lett. 2020;5(1):192. https://doi.org/10.1021/acsenergylett.9b02374.

    Article  CAS  Google Scholar 

  92. Chen LL, Yang SS, Qian K, Wei W, Sun C, Xie JM. In situ growth of N-doped carbon coated CoNi alloy with graphene decoration for enhanced HER performance. J Energy Chem. 2019;29:129. https://doi.org/10.1016/j.jechem.2018.03.005.

    Article  Google Scholar 

  93. Tian X, Zhao X, Su YQ, Wang L, Wang H, Dang D, Chi B, Liu H, Hensen EJM, Lou XWD, Xia BY. Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science. 2019;366(6467):850. https://doi.org/10.1126/science.aaw7493.

    Article  CAS  PubMed  Google Scholar 

  94. Yan S, Zhong MX, Zhu WD, Li WM, Chen XJ, Li MX, Wang C, Lu XF. Controllable fabrication of a nickel-iridium alloy network by galvanic replacement engineering for high-efficiency electrocatalytic water splitting. Inorg Chem Front. 2022;9(23):6225. https://doi.org/10.1039/D2QI01494G.

    Article  CAS  Google Scholar 

  95. Wei NY, Mao MY, Wu J, Long Y, Fan GY. Void confinement and doping-modulation of IrNi alloy nanoparticles on hollow carbon spheres for efficient hydrogen oxidation/evolution reactions. Fuel (Lond). 2022;319:123637. https://doi.org/10.1016/j.fuel.2022.123637.

    Article  CAS  Google Scholar 

  96. Shan JQ, Ling T, Davey K, Zheng Y, Qiao SZ. Transition-metal-doped RuIr bifunctional nanocrystals for overall water splitting in acidic environments. Adv Mater. 2019;31(17):1900510. https://doi.org/10.1002/adma.201900510.

    Article  CAS  Google Scholar 

  97. Ge JJ, He DS, Chen WX, Ju HX, Zhang H, Chao TT, Wang XQ, You R, Lin Y, Wang Y, Zhu JF, Li H, Xiao B, Huang WX, Wu YE, Hong X, Li YD. Atomically dispersed Ru on ultrathin Pd nanoribbons. J Am Chem Soc. 2016;138(42):13850. https://doi.org/10.1021/jacs.6b09246.

    Article  CAS  PubMed  Google Scholar 

  98. Yu YQ, Jiang K, Luo M, Zhao Y, Lan J, Peng M, de Groot FMF, Tan YW. Self-activated catalytic sites on nanoporous dilute alloy for high-efficiency electrochemical hydrogen evolution. ACS Nano. 2021;15(3):5333. https://doi.org/10.1021/acsnano.0c10885.

    Article  CAS  PubMed  Google Scholar 

  99. Liu DB, Zhao Y, Wu CQ, Xu WJ, Xi SB, Chen MX, Yang L, Zhou YZ, He Q, Li XY, Ge BH, Song L, Jiang J, Yan QY. Triggering electronic coupling between neighboring hetero-diatomic metal sites promotes hydrogen evolution reaction kinetics. Nano Energy. 2022;98:107296. https://doi.org/10.1016/j.nanoen.2022.107296.

    Article  CAS  Google Scholar 

  100. Tang C, Chen L, Li HJ, Li LQ, Jiao Y, Zheng Y, Xu HL, Davey K, Qiao SZ. Tailoring acidic oxygen reduction selectivity on single-atom catalysts via modification of first and second coordination spheres. J Am Chem Soc. 2021;143(20):7819. https://doi.org/10.1021/jacs.1c03135.

    Article  CAS  PubMed  Google Scholar 

  101. Wan JW, Zhao ZH, Shang HS, Peng B, Chen WX, Pei JJ, Zheng LR, Dong JC, Cao R, Sarangi R, Jiang ZL, Zhou DN, Zhuang ZB, Zhang JT, Wang DS, Li YD. In situ phosphatizing of triphenylphosphine encapsulated within metal-organic frameworks to design atomic Co1-P1N3 interfacial structure for promoting catalytic performance. J Am Chem Soc. 2020;142(18):8431. https://doi.org/10.1021/jacs.0c02229.

    Article  CAS  PubMed  Google Scholar 

  102. Shang HS, Zhou XY, Dong JC, Li A, Zhao X, Liu QH, Lin Y, Pei JJ, Li Z, Jiang ZL, Zhou DN, Zheng LR, Wang Y, Zhou J, Yang ZK, Cao R, Sarangi R, Sun TT, Yang X, Zheng XS, Yan WS, Zhuang ZB, Li J, Chen WX, Wang DS, Zhang JT, Li YD. Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nat Commun. 2020;11(1):3049. https://doi.org/10.1038/s41467-020-16848-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Chen SY, Wang SY, Hao PP, Li MH, Zhang Y, Guo J, Ding WP, Liu M, Wang JL, Guo XF. N, O-C nanocage-mediated high-efficient hydrogen evolution reaction on IrNi@N. O-C electrocatalyst Appl Catal B. 2022;304:120996. https://doi.org/10.1016/j.apcatb.2021.120996.

    Article  CAS  Google Scholar 

  104. Wang JY, Zhu RL, Cheng JL, Song YY, Mao M, Chen FF, Cheng YL. Co, Mo2C encapsulated in N-doped carbon nanofiber as self-supported electrocatalyst for hydrogen evolution reaction. Chem Eng J (Amsterdam, Neth). 2020;397:125481. https://doi.org/10.1016/j.cej.2020.125481.

    Article  CAS  Google Scholar 

  105. Shen F, Wang YM, Qian FG, Chen W, Jiang WJ, Luo L, Yin SB. Bimetallic iron-iridium alloy nanoparticles supported on nickel foam as highly efficient and stable catalyst for overall water splitting at large current density. Appl Catal B. 2020;278:119327. https://doi.org/10.1016/j.apcatb.2020.119327.

    Article  CAS  Google Scholar 

  106. Wang YM, Qian GF, Xu QL, Zhang H, Shen F, Luo L, Yin SB. Industrially promising IrNi-FeNi3 hybrid nanosheets for overall water splitting catalysis at large current density. Appl Catal B. 2021;286:119881. https://doi.org/10.1016/j.apcatb.2021.119881.

    Article  CAS  Google Scholar 

  107. Sha DW, Lu CJ, He W, Ding JX, Zhang H, Bao ZH, Cao X, Fan JC, Dou Y, Pan L, Sun ZM. Surface selenization strategy for V2CTx MXene toward superior Zn-Ion storage. ACS Nano. 2022;16(2):2711. https://doi.org/10.1021/acsnano.1c09639.

    Article  CAS  PubMed  Google Scholar 

  108. Peng W, Luo M, Xu XD, Jiang K, Peng M, Chen DC, Chan TS, Tan YW. Spontaneous atomic ruthenium doping in Mo2CTx MXene defects enhances electrocatalytic activity for the nitrogen reduction reaction. Adv Energy Mater. 2020;10(25):2001364. https://doi.org/10.1002/aenm.202001364.

    Article  CAS  Google Scholar 

  109. Peng W, Han JH, Lu YR, Luo M, Chan TS, Peng M, Tan YW. A general strategy for engineering single-metal sites on 3D porous N, P Co-doped Ti3C2Tx MXene. ACS Nano. 2022;16(3):4116. https://doi.org/10.1021/acsnano.1c09841.

    Article  CAS  PubMed  Google Scholar 

  110. Gu YT, Wei B, Legut D, Fu HZ, Du SY, Zhang HJ, Francisco JS, Zhang R. Single atom-modified hybrid transition metal carbides as efficient hydrogen evolution reaction catalysts. Adv Funct Mater. 2021;31(43):2104285. https://doi.org/10.1002/adfm.202104285.

    Article  CAS  Google Scholar 

  111. Dai LX, Shen YH, Chen JZ, Zhou L, Wu X, Li Z, Wang JY, Huang WY, Miller JT, Wang Q, Cao AY, Wu Y. MXene-supported, atomic-layered iridium catalysts created by nanoparticle Re-dispersion for efficient alkaline hydrogen evolution. Small. 2022;18(14):2105226. https://doi.org/10.1002/smll.202105226.

    Article  CAS  Google Scholar 

  112. Song HR, Du R, Wang YW, Zu DY, Zhou R, Cai Y, Wang FX, Li Z, Shen YM, Li CP. Anchoring single atom cobalt on two-dimensional MXene for activation of peroxymonosulfate. Appl Catal B. 2021;286:119898. https://doi.org/10.1016/j.apcatb.2021.119898.

    Article  CAS  Google Scholar 

  113. Kang ZM, Khan MA, Gong YM, Javed R, Xu Y, Ye DX, Zhao HB, Zhang JJ. Recent progress of MXenes and MXene-based nanomaterials for the electrocatalytic hydrogen evolution reaction. J Mater Chem A. 2021;9(1):618. https://doi.org/10.1039/d0ta11735h.

    Article  CAS  Google Scholar 

  114. Liu R, Gong ZC, Liu JB, Dong JC, Liao JW, Liu H, Huang HK, Liu JJ, Yan MM, Huang K, Gong HS, Zhu J, Cui CY, Ye GL, Fei HL. Design of aligned porous carbon films with single-atom Co-N-C sites for high-current-density hydrogen generation. Adv Mater. 2021;33(41):2103533. https://doi.org/10.1002/adma.202103533.

    Article  CAS  Google Scholar 

  115. Xiu LY, Pei W, Zhou S, Wang ZY, Yang PJ, Zhao JJ, Qiu JS. Multilevel hollow MXene tailored low-Pt catalyst for efficient hydrogen evolution in full-pH range and seawater. Adv Funct Mater. 2020;30(47):1910028. https://doi.org/10.1002/adfm.201910028.

    Article  CAS  Google Scholar 

  116. Lin WJ, Lu YR, Peng W, Luo M, Chan TS, Tan YW. Atomic bridging modulation of Ir-N, S co-doped MXene for accelerating hydrogen evolution. J Mater Chem A Mater. 2022;10(18):9878. https://doi.org/10.1039/D2TA00550F.

    Article  CAS  Google Scholar 

  117. Wu Y, Cai SF, Wang DS, He W, Li YD. Syntheses of water-soluble octahedral, truncated octahedral, and cubic Pt-Ni nanocrystals and their structure-activity study in model hydrogenation reactions. J Am Chem Soc. 2012;134(21):8975. https://doi.org/10.1021/ja302606d.

    Article  CAS  PubMed  Google Scholar 

  118. Suryanto BHR, Wang Y, Hocking RK, Adamson W, Zhao C. Overall electrochemical splitting of water at the heterogeneous interface of nickel and iron oxide. Nat Commun. 2019;10(1):5599. https://doi.org/10.1038/s41467-019-13415-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lin J, Wang AQ, Qiao BT, Liu X, Yang XF, Wang XD, Liang JX, Li J, Liu JY, Zhang T. Remarkable performance of Ir1/FeOx single-atom catalyst in water gas shift reaction. J Am Chem Soc. 2013;135(41):15314. https://doi.org/10.1021/ja408574m.

    Article  CAS  PubMed  Google Scholar 

  120. Wang HY, Ren JT, Wang L, Sun ML, Yang HM, Lv XW, Yuan ZY. Synergistically enhanced activity and stability of bifunctional nickel phosphide/sulfide heterointerface electrodes for direct alkaline seawater electrolysis. J Energy Chem. 2022;75:66. https://doi.org/10.1016/j.jechem.2022.08.019.

    Article  CAS  Google Scholar 

  121. Sun JP, Zhao Z, Li J, Li ZZ, Meng XC. Recent advances in electrocatalytic seawater splitting. Rare Met. 2023;42(3):751. https://doi.org/10.1007/s12598-022-02168-x.

    Article  CAS  Google Scholar 

  122. Zhang S, Zhang X, Rui Y, Wang RH, Li XJ. Recent advances in non-precious metal electrocatalysts for pH-universal hydrogen evolution reaction. Green Energy Environ. 2021;6(4):458. https://doi.org/10.1016/j.gee.2020.10.013.

    Article  CAS  Google Scholar 

  123. Wang HQ, Xu JH, Zhang QB, Hu SX, Zhou WJ, Liu H, Wang X. Super-hybrid transition metal sulfide nanoarrays of Co3S4 nanosheet/P-doped WS2 nanosheet/Co9S8 nanoparticle with Pt-like sctivities for robust all-pH hydrogen evolution. Adv Funct Mater. 2022;32(17):2112362. https://doi.org/10.1002/adfm.202112362.

    Article  CAS  Google Scholar 

  124. Qu J, Li Y, Li F, Li TM, Wang XY, Yin Y, Ma LY, Schmidt OG, Zhu F. Direct thermal enhancement of hydrogen evolution reaction of on-chip monolayer MoS2. ACS Nano. 2022;16(2):2921. https://doi.org/10.1021/acsnano.1c10030.

    Article  CAS  PubMed  Google Scholar 

  125. Shi JL, Hu LH, Liu JB, Chen M, Li CC, Guan GQ, Ma YF, Wang TJ. Phase-transition engineering induced lattice contraction of the molybdenum carbide surface for highly efficient hydrogen evolution reaction. J Mater Chem A Mater. 2022;10(21):11414. https://doi.org/10.1039/D2TA02282F.

    Article  CAS  Google Scholar 

  126. Fan BB, Wang HZ, Zhang H, Song Y, Zheng XR, Li CJ, Tan YQ, Han XP, Deng YD, Hu WB. Phase transfer of Mo2C induced by boron doping to boost nitrogen reduction reaction catalytic activity. Adv Funct Mater. 2022;32(20):2110783. https://doi.org/10.1002/adfm.202110783.

    Article  CAS  Google Scholar 

  127. Wu L, Zhang FH, Song SW, Ning MH, Zhu Q, Zhou JQ, Gao GH, Chen ZY, Zhou QC, Xing XX, Tong T, Yao Y, Bao JM, Yu L, Chen S, Ren ZF. Efficient alkaline water/seawater hydrogen evolution by a nanorod-nanoparticle-structured Ni-MoN catalyst with fast water-dissociation Kinetics. Adv Mater. 2022;34(21):2201774. https://doi.org/10.1002/adma.202201774.

    Article  CAS  Google Scholar 

  128. Ma FH, Wang SH, Gong XQ, Liu XL, Wang ZY, Wang P, Liu YY, Cheng HF, Dai Y, Zheng ZK, Huang BB. Highly efficient electrocatalytic hydrogen evolution coupled with upcycling of microplastics in seawater enabled via Ni3N/W5N4 janus nanostructures. Appl Catal B. 2022;307:121198. https://doi.org/10.1016/j.apcatb.2022.121198.

    Article  CAS  Google Scholar 

  129. Yang S, Zhu JY, Chen XN, Huang MJ, Cai SH, Han JY, Li JS. Self-supported bimetallic phosphides with artificial heterointerfaces for enhanced electrochemical water splitting. Appl Catal B. 2022;304:120914. https://doi.org/10.1016/j.apcatb.2021.120914.

    Article  CAS  Google Scholar 

  130. Das C, Sinha N, Roy P. Transition metal non-oxides as electrocatalysts: advantages and challenges. Small. 2022;18(28):2202033. https://doi.org/10.1002/smll.202202033.

    Article  CAS  Google Scholar 

  131. Vij V, Sultan S, Harzandi AM, Meena A, Tiwari JN, Lee W, Yoon T, Kim KS. Nickel-based electrocatalysts for energy-related applications: oxygen reduction, oxygen evolution, and hydrogen evolution reactions. ACS Catal. 2017;7(10):7196. https://doi.org/10.1021/acscatal.7b01800.

    Article  CAS  Google Scholar 

  132. Hinnemann B, Moses PG, Bonde J, Jørgensen KP, Nielsen JH, Horch S, Chorkendorff I, Nørskov JK. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J Am Chem Soc. 2005;127(15):5308. https://doi.org/10.1021/ja0504690.

    Article  CAS  PubMed  Google Scholar 

  133. Jaramillo TF, Jorgensen KP, Bonde J, Nielsen JH, Horch S, Chorkendorff I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science. 2007;317(5834):100. https://doi.org/10.1126/science.1141483.

    Article  CAS  PubMed  Google Scholar 

  134. Su H, Pan XD, Li SQ, Zhang H, Zou RQ. Defect-engineered two-dimensional transition metal dichalcogenides towards electrocatalytic hydrogen evolution reaction. Carbon Energy. 2023. https://doi.org/10.1002/cey2.296.

    Article  Google Scholar 

  135. Shao M, Wang PC, Wang YM, Wang BG, Wang YD, Xu JH. Continuous synthesis of few-layer MoS2 with highly electrocatalytic hydrogen evolution. Green Energy Environ. 2021;6(6):858. https://doi.org/10.1016/j.gee.2020.04.008.

    Article  CAS  Google Scholar 

  136. Xu Y, Ge RY, Yang J, Li JC, Li SA, Li Y, Zhang JJ, Feng J, Liu B, Li WX. Molybdenum disulfide (MoS2)-based electrocatalysts for hydrogen evolution reaction: from mechanism to manipulation. J Energy Chem. 2022;74:45. https://doi.org/10.1016/j.jechem.2022.06.031.

    Article  CAS  Google Scholar 

  137. Li ZG, Li CL, Chen JW, Xing X, Wang YQ, Zhang Y, Yang MS, Zhang GX. Confined synthesis of MoS2 with rich co-doped edges for enhanced hydrogen evolution performance. J Energy Chem. 2022;70:18. https://doi.org/10.1016/j.jechem.2022.01.001.

    Article  CAS  Google Scholar 

  138. Karunadasa HI, Montalvo E, Sun Y, Majda M, Long JR, Chang CJ. A molecular MoS2 edge site mimic for catalytic hydrogen generation. Science. 2012;335(6069):698. https://doi.org/10.1126/science.1215868.

    Article  CAS  PubMed  Google Scholar 

  139. Tsai C, Abild-Pedersen F, Nørskov JK. Tuning the MoS2 edge-site activity for hydrogen evolution via support interactions. Nano Lett. 2014;14(3):1381. https://doi.org/10.1021/nl404444k.

    Article  CAS  PubMed  Google Scholar 

  140. Liu Q, Li XL, He Q, Khalil A, Liu D, Xiang T, Wu XJ, Song L. Gram-scale aqueous synthesis of stable few-layered 1T-MoS2: applications for visible-light-driven photocatalytic hydrogen evolution. Small. 2015;11(41):5556. https://doi.org/10.1002/smll.201501822.

    Article  CAS  PubMed  Google Scholar 

  141. Li HR, Han XB, Jiang SY, Zhang LL, Ma W, Ma RZ, Zhou Z. Controllable fabrication and structure evolution of hierarchical 1T-MoS2 nanospheres for efficient hydrogen evolution. Green Energy Environ. 2022;7(2):314. https://doi.org/10.1016/j.gee.2020.09.003.

    Article  CAS  Google Scholar 

  142. Huang YC, Sun YH, Zheng XL, Aoki T, Pattengale B, Huang J, He X, Bian W, Younan S, Williams N, Hu J, Ge JX, Pu N, Yan XX, Pan XQ, Zhang LJ, Wei YG, Gu J. Atomically engineering activation sites onto metallic 1T-MoS2 catalysts for enhanced electrochemical hydrogen evolution. Nat Commun. 2019;10(1):982. https://doi.org/10.1038/s41467-019-08877-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Luo ZY, Ouyang YX, Zhang H, Xiao ML, Ge JJ, Jiang Z, Wang JL, Tang DM, Cao XZ, Liu CP, Xing W. Chemically activating MoS2 via spontaneous atomic palladium interfacial doping towards efficient hydrogen evolution. Nat Commun. 2018;9(1):2120. https://doi.org/10.1038/s41467-018-04501-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Kibsgaard J, Chen Z, Reinecke BN, Jaramillo TF. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat Mater. 2012;11(11):963. https://doi.org/10.1038/nmat3439.

    Article  CAS  PubMed  Google Scholar 

  145. Voiry D, Fullon R, Yang J, Silva CDCE, Kappera R, Bozkurt I, Kaplan D, Lagos MJ, Batson PE, Gupta G, Mohite AD, Dong L, Er D, Shenoy VB, Asefa T, Chhowalla M. The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen. Nat Mater. 2016;15(9):1003. https://doi.org/10.1038/nmat4660.

    Article  CAS  PubMed  Google Scholar 

  146. Ling T, Zhang T, Ge BH, Han LL, Zheng LR, Lin F, Xu ZR, Hu WB, Du XW, Davey K, Qiao SZ. Well-dispersed nickel- and zinc-tailored electronic structure of a transition metal oxide for highly active alkaline hydrogen evolution reaction. Adv Mater. 2019;31(16):1807771. https://doi.org/10.1002/adma.201807771.

    Article  CAS  Google Scholar 

  147. Wang X, Zhang YW, Si HN, Zhang QH, Wu J, Gao L, Wei XF, Sun Y, Liao QL, Zhang Z, Ammarah K, Gu L, Kang Z, Zhang Y. Single-atom vacancy defect to trigger high-efficiency hydrogen evolution of MoS2. J Am Chem Soc. 2020;142(9):4298. https://doi.org/10.1021/jacs.9b12113.

    Article  CAS  PubMed  Google Scholar 

  148. Zang YP, Niu SW, Wu YS, Zheng XS, Cai JY, Ye J, Xie YF, Liu Y, Zhou JB, Zhu JF, Liu XJ, Wang GM, Qian YT. Tuning orbital orientation endows molybdenum disulfide with exceptional alkaline hydrogen evolution capability. Nat Commun. 2019;10(1):1217. https://doi.org/10.1038/s41467-019-09210-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Yang WW, Zhang SQ, Chen Q, Zhang C, Wei Y, Jiang HN, Lin YX, Zhao MT, He QQ, Wang XG, Du Y, Song L, Yang SB, Nie A, Zou XL, Gong YJ. Conversion of intercalated MoO3 to multi-heteroatoms-doped MoS2 with high hydrogen evolution activity. Adv Mater. 2020;32(30):2001167. https://doi.org/10.1002/adma.202001167.

    Article  CAS  Google Scholar 

  150. Cui Y, Guo XY, Zhang J, Li XA, Zhu XB, Huang W. Di-defects synergy boost electrocatalysis hydrogen evolution over two-dimensional heterojunctions. Nano Res. 2022;15(1):677. https://doi.org/10.1007/s12274-021-3545-2.

    Article  CAS  Google Scholar 

  151. Han AL, Zhou XF, Wang XJ, Liu S, Xiong QH, Zhang QH, Gu L, Zhuang ZC, Zhang WJ, Li F, Wang DS, Li LJ, Li YD. One-step synthesis of single-site vanadium substitution in 1T-WS2 monolayers for enhanced hydrogen evolution catalysis. Nat Commun. 2021;12(1):709. https://doi.org/10.1038/s41467-021-20951-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Xu W, Jung GS, Zhang W, Wee ATS, Warner JH. Atomically sharp jagged edges of chemical vapor deposition-grown WS2 for electrocatalysis. Mater Today Nano. 2022;18:100183. https://doi.org/10.1016/j.mtnano.2022.100183.

    Article  CAS  Google Scholar 

  153. Wang F, Niu SW, Liang XQ, Wang GM, Chen MH. Phosphorus incorporation activates the basal plane of tungsten disulfide for efficient hydrogen evolution catalysis. Nano Res. 2022;15(4):2855. https://doi.org/10.1007/s12274-021-3873-2.

    Article  CAS  Google Scholar 

  154. Du F, Shi L, Zhang YT, Li T, Wang JL, Wen GH, Alsaedi A, Hayat T, Zhou Y, Zou ZG. Foam-like Co9S8/Ni3S2 heterostructure nanowire arrays for efficient bifunctional overall water-splitting. Appl Catal B. 2019;253:246. https://doi.org/10.1016/j.apcatb.2019.04.067.

    Article  CAS  Google Scholar 

  155. Guo MR, Liu Y, Dong S, Jiao XL, Wang T, Chen DR. Co9S8-catalyzed growth of thin-walled graphite microtubes for robust, efficient overall water splitting. Chemsuschem. 2018;11(23):4150. https://doi.org/10.1002/cssc.201802055.

    Article  CAS  PubMed  Google Scholar 

  156. Guo MR, Qayum A, Dong S, Jiao XL, Chen DR, Wang T. In situconversion of metal (Ni, Co or Fe) foams into metal sulfide (Ni3S2, Co9S8 or FeS) foams with surface grown N-doped carbon nanotube arrays as efficient superaerophobic electrocatalysts for overall water splitting. J Mater Chem A Mater. 2020;8(18):9239. https://doi.org/10.1039/D0TA02337J.

    Article  CAS  Google Scholar 

  157. Deng BL, Guo LP, Lu Y, Rong HB, Cheng DC. Sulfur-nitrogen co-doped graphene supported cobalt-nickel sulfide rGO@SN-CoNi2S4 as highly efficient bifunctional catalysts for hydrogen/oxygen evolution reactions. Rare Met. 2022;41(3):911. https://doi.org/10.1007/s12598-021-01828-8.

    Article  CAS  Google Scholar 

  158. Ao K, Wei Q, Daoud WA. MOF-derived sulfide-based electrocatalyst and scaffold for boosted hydrogen production. ACS Appl Mater Interfaces. 2020;12(30):33595. https://doi.org/10.1021/acsami.0c04302.

    Article  CAS  PubMed  Google Scholar 

  159. Meng LX, Xuan HC, Zhang GH, Wang R, Wang J, Guan YY, Yu X, Liang XH, Li YP, Han PD. Rational construction of uniform CoS/NiFe2O4 heterostructure as efficient bifunctional electrocatalysts for hydrogen evolution and oxygen evolution reactions. Electrochim Acta. 2022;404:139596. https://doi.org/10.1016/j.electacta.2021.139596.

    Article  CAS  Google Scholar 

  160. Xiao K, Wei JX, Han WK, Liu ZQ. Bimetallic sulfide interfaces: Promoting destabilization of water molecules for overall water splitting. J Power Sources. 2021;487:229408. https://doi.org/10.1016/j.jpowsour.2020.229408.

    Article  CAS  Google Scholar 

  161. Chen JN, Zhang HJ, Yu J, Guan DQ, She SX, Zhou W, Shao ZP. Self-catalyzed formation of strongly interconnected multiphase molybdenum-based composites for efficient hydrogen evolution. Carbon Energy. 2022;4(1):77. https://doi.org/10.1002/cey2.156.

    Article  CAS  Google Scholar 

  162. Yu Y, Xl W, Zhang HK, Cao ZQ, Wu HY, Jia BR, Yang JJ, Qu XH, Qin ML. Facile synthesis of transition metal carbide nanoparticles embedded in mesoporous carbon nanosheets for hydrogen evolution reaction. Rare Met. 2022;41(7):2237. https://doi.org/10.1007/s12598-022-01991-6.

    Article  CAS  Google Scholar 

  163. Liu Z, Zhou SF, Xue SJ, Guo Z, Li J, Qu KG, Cai WW. Heterointerface-rich Mo2C/MoO2 porous nanorod enables superior alkaline hydrogen evolution. Chem Eng J. 2021;421(2):127807. https://doi.org/10.1016/j.cej.2020.127807.

    Article  CAS  Google Scholar 

  164. Li H, Hu MH, Zhang LY, Huo L, Jing P, Liu BC, Gao R, Zhang J, Liu B. Hybridization of bimetallic molybdenum-tungsten carbide with nitrogen-doped carbon: a rational design of super active porous composite nanowires with tailored electronic structure for boosting hydrogen evolution catalysis. Adv Funct Mater. 2020;30(40):2003198. https://doi.org/10.1002/adfm.202003198.

    Article  CAS  Google Scholar 

  165. Ang HX, Wang HW, Li B, Zong Y, Wang XF, Yan QY. 3D hierarchical porous Mo2C for efficient hydrogen evolution. Small. 2016;12(21):2859. https://doi.org/10.1002/smll.201600110.

    Article  CAS  PubMed  Google Scholar 

  166. Huang Y, Gong QF, Song XN, Feng K, Nie KQ, Zhao FP, Wang YY, Zeng M, Zhong J, Li YG. Mo2C nanoparticles dispersed on hierarchical carbon microflowers for efficient electrocatalytic hydrogen evolution. ACS Nano. 2016;10(12):11337. https://doi.org/10.1021/acsnano.6b06580.

    Article  CAS  PubMed  Google Scholar 

  167. Zhang ZQ, Lei Y, Huang WM. Recent progress in carbon-based materials boosting electrochemical water splitting. Chin Chem Lett. 2022;33(8):3623. https://doi.org/10.1016/j.cclet.2021.11.041.

    Article  CAS  Google Scholar 

  168. Wang WW, Yang L, Chen J, Wu SF, Chen MY, Liang XR, Zhou DL, Liu C. Realizing electronic modulation on Mo sites for efficient hydrogen evolution reaction. J Mater Chem A. 2020;8(35):1818. https://doi.org/10.1039/d0ta05957a.

    Article  CAS  Google Scholar 

  169. Wei HF, Wang JH, Lin Q, Zou YW, Chen XA, Zhao HP, Li J, Jin HL, Lei Y, Wang S. Incorporating ultra-small N-doped Mo2C nanoparticles onto 3D N-doped flower-like carbon nanospheres for robust electrocatalytic hydrogen evolution. Nano Energy. 2021;86:106047. https://doi.org/10.1016/j.nanoen.2021.106047.

    Article  CAS  Google Scholar 

  170. Zhang YN, Kong DY, Bo LL, Shi WP, Guan XL, Wang YX, Lei ZB, Tong JH. Electrospinning preparation of N, P dual-doped molybdenum carbide/porous carbon fibers with highly improved electrocatalytic activity for hydrogen evolution reaction. ACS Appl Energy Mater. 2021;4(11):13051. https://doi.org/10.1021/acsaem.1c02695.

    Article  CAS  Google Scholar 

  171. Yang CF, Shen K, Zhao R, Xiang H, Wu J, Zhong WD, Zhang Q, Li XK, Yang NJ. Balance effect: a universal strategy for transition metal carbides to enhance hydrogen evolution. Adv Funct Mater. 2022;32(5):2108167. https://doi.org/10.1002/adfm.202108167.

    Article  CAS  Google Scholar 

  172. Yang CF, Zhao R, Xiang H, Wu J, Zhong WD, Li XK, Zhang Q. Structural transformation of molybdenum carbide with extensive active centers for superior hydrogen evolution. Nano Energy. 2022;98:107232. https://doi.org/10.1016/j.nanoen.2022.107232.

    Article  CAS  Google Scholar 

  173. Liu W, Wang XT, Wang F, Du KF, Zhang ZF, Guo YZ, Yin HY, Wang DH. A durable and pH-universal self-standing MoC-Mo2C heterojunction electrode for efficient hydrogen evolution reaction. Nat Commun. 2021;12(1):6776. https://doi.org/10.1038/s41467-021-27118-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Li CY, Wang ZJ, Liu MD, Wang EZ, Wang BL, Xu LL, Jiang KL, Fan SS, Sun YH, Li J, Liu K. Ultrafast self-heating synthesis of robust heterogeneous nanocarbides for high current density hydrogen evolution reaction. Nat Commun. 2022;13(1):3338. https://doi.org/10.1038/s41467-022-31077-x.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Li JC, Ge RY, Lan PP, Yang J, Feng J, Li Y, Li SA, Liu B, Li WX. In situ phase transition induced TM-MoC/Mo2C (TM= Fe Co, Ni, and Cu) heterostructure catalysts for efficient hydrogen evolution. J Mater Chem A Mater. 2022;10(19):10493. https://doi.org/10.1039/D2TA00727D.

    Article  Google Scholar 

  176. Zaanen J, Sawatzky GA, Allen JW. Band gaps and electronic structure of transition-metal compounds. Phys Rev Lett. 1985;55(4):418. https://doi.org/10.1103/PhysRevLett.55.418.

    Article  CAS  PubMed  Google Scholar 

  177. Didziulis SV, Butcher KD, Perry SS. Small cluster models of the surface electronic structure and bonding properties of titanium carbide, vanadium carbide, and titanium nitride. Inorg Chem. 2003;42(24):7766. https://doi.org/10.1021/ic030140k.

    Article  CAS  PubMed  Google Scholar 

  178. Chen WF, Muckerman JT, Fujita E. Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts. Chem Commun (Camb). 2013;49(79):8896. https://doi.org/10.1039/c3cc44076a.

    Article  CAS  PubMed  Google Scholar 

  179. Jin HY, Wang XS, Tang C, Vasileff A, Li L, Slattery A, Qiao SZ. Stable and highly efficient hydrogen evolution from seawater enabled by an unsaturated nickel surface nitride. Adv Mater. 2021;33(13):2007508. https://doi.org/10.1002/adma.202007508.

    Article  CAS  Google Scholar 

  180. Su H, Tang YQ, Shen HM, Zhang H, Guo PH, Gao L, Zhao X, Xu XS, Li SQ, Zou RQ. Insights into antiperovskite Ni3In1-xCuxN multi-crystalline nanoplates and bulk cubic particles as efficient electrocatalysts on hydrogen evolution reaction. Small. 2022;18(12):2105906. https://doi.org/10.1002/smll.202105906.

    Article  CAS  Google Scholar 

  181. Wang H, Li JM, Li K, Lin YP, Chen JM, Gao LJ, Nicolosi V, Xiao X, Lee JM. Transition metal nitrides for electrochemical energy applications. Chem Soc Rev. 2021;50(2):1354. https://doi.org/10.1039/d0cs00415d.

    Article  CAS  PubMed  Google Scholar 

  182. Zhang J, Zhang QY, Feng XL. Support and interface effects in water-splitting electrocatalysts. Adv Mater. 2019;31(31):e1808167. https://doi.org/10.1002/adma.201808167.

    Article  CAS  PubMed  Google Scholar 

  183. Yang GC, Jiao YQ, Yan HH, Xie Y, Wu AP, Dong X, Guo DZ, Tian CG, Fu HG. Interfacial engineering of MoO2-FeP heterojunction for highly efficient hydrogen evolution coupled with biomass electrooxidation. Adv Mater. 2020;32(17):2000455. https://doi.org/10.1002/adma.202000455.

    Article  CAS  Google Scholar 

  184. Zheng XR, Han XP, Cao YH, Zhang Y, Nordlund D, Wang JH, Chou SL, Liu H, Li LL, Zhong C, Deng YD, Hu WB. Identifying dense NiSe2/CoSe2 heterointerfaces coupled with surface high-valence bimetallic sites for synergistically enhanced oxygen electrocatalysis. Adv Mater. 2020;32(26):2000607. https://doi.org/10.1002/adma.202000607.

    Article  CAS  Google Scholar 

  185. Diao JX, Qiu Y, Liu SQ, Wang WT, Chen K, Li HL, Yuan WY, Qu YT, Guo XH. Interfacial engineering of W2N/WC heterostructures derived from solid-state synthesis: a highly efficient trifunctional electrocatalyst for ORR, OER, and HER. Adv Mater. 2020;32(7):1905679. https://doi.org/10.1002/adma.201905679.

    Article  CAS  Google Scholar 

  186. Song FZ, Li W, Yang JQ, Han GQ, Liao PL, Sun YJ. Interfacing nickel nitride and nickel boosts both electrocatalytic hydrogen evolution and oxidation reactions. Nat Commun. 2018;9(1):4531. https://doi.org/10.1038/s41467-018-06728-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Qi ZB, Zeng Y, Hou Z, Zhu WJ, Wei BB, Yang Y, Lin BL, Liang HF. Heterointerface engineering of Ni/Ni3N hierarchical nanoarrays for efficient alkaline hydrogen evolution. Nano Res. 2022. https://doi.org/10.1007/s12274-022-5339-6.

    Article  PubMed  Google Scholar 

  188. Qian QZ, Zhang JH, Li JM, Li YP, Jin X, Zhu Y, Liu Y, Li ZY, El-Harairy A, Xiao C, Zhang GQ, Xie Y. Artificial heterointerfaces achieve delicate reaction kinetics towards hydrogen evolution and hydrazine oxidation catalysis. Angew Chem Int Ed. 2021;60(11):5984. https://doi.org/10.1002/anie.202014362.

    Article  CAS  Google Scholar 

  189. Lu YK, Li ZX, Xu YL, Tang LQ, Xu SJ, Li D, Zhu JJ, Jiang DL. Bimetallic Co-Mo nitride nanosheet arrays as high-performance bifunctional electrocatalysts for overall water splitting. Chem Eng J. 2021;411:128433. https://doi.org/10.1016/j.cej.2021.128433.

    Article  CAS  Google Scholar 

  190. Sun JW, Xu WJ, Lv CX, Zhang JL, Shakouri M, Peng YH, Wang QQ, Yang XF, Yuan D, Huang MH, Hu YF, Yang DJ, Zhang LX. Co/MoN hetero-interface nanoflake array with enhanced water dissociation capability achieves the Pt-like hydrogen evolution catalytic performance. Appl Catal B. 2021;286:119882. https://doi.org/10.1016/j.apcatb.2021.119882.

    Article  CAS  Google Scholar 

  191. Li LP, Liu WY, Dong HY, Gui QY, Hu ZQ, Li YY, Liu JP. Surface and interface engineering of nanoarrays toward sdvanced electrodes and electrochemical energy storage Devices. Adv Mater. 2021;33(13):2004959. https://doi.org/10.1002/adma.202004959.

    Article  CAS  Google Scholar 

  192. Lin HL, Shi PZ, He SN, Yu X, Wang SN, Gao QS, Tang Y. Heteronanowires of MoC-Mo2C as efficient electrocatalysts for hydrogen evolution reaction. Chem Sci. 2016;7(5):3399. https://doi.org/10.1039/C6SC00077K.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Wang B, Guo LJ, Zhang JW, Qiao YY, He M, Jiang QK, Zhao Y, Shi XH, Zhang FX. Synthesis of nickel nitride-based 1D/0D heterostructure via a morphology-inherited nitridation strategy for efficient electrocatalytic hydrogen evolution. Small. 2022;18(25):2201927. https://doi.org/10.1002/smll.202201927.

    Article  CAS  Google Scholar 

  194. Sun YY, Wang LW, Guselnikova O, Semyonov O, Fraser J, Zhou YC, López N, Ganin AY. Revealing the activity of Co3Mo3N and Co3Mo3N0.5 as electrocatalysts for the hydrogen evolution reaction. J Mater Chem A Mater. 2022;10(2):855. https://doi.org/10.1039/D1TA08389A.

    Article  CAS  Google Scholar 

  195. Cui ZH, Liang XZ, Wang P, Zhou P, Zhang QQ, Wang ZY, Zheng ZK, Liu YY, Dai Y, Huang BB. In situ integration of Fe3N@Co4N@CoFe alloy nanoparticles as efficient and stable electrocatalyst for overall water splitting. Electrochim Acta. 2021;395:139218. https://doi.org/10.1016/j.electacta.2021.139218.

    Article  CAS  Google Scholar 

  196. Lv WY, Xu HL, Wang LL, Yang Y, Wang LX, Wang TQ, Li D, Shao H, Li F, Dong XT. Synergistic effect of bimetallic nitride micro-flower promotes highly efficient overall water splitting. J Alloys Compd. 2022;920:165934. https://doi.org/10.1016/j.jallcom.2022.165934.

    Article  CAS  Google Scholar 

  197. Wei RL, Tang N, Jiang LB, Yang JJ, Guo JY, Yuan XZ, Liang J, Zhu Y, Wu ZB, Li H. Bimetallic nanoparticles meet polymeric carbon nitride: fabrications, catalytic applications and perspectives. Coord Chem Rev. 2022;462:214500. https://doi.org/10.1016/j.ccr.2022.214500.

    Article  CAS  Google Scholar 

  198. Jia LY, Li J, Yu XR, Feng LZ, Yang L, Yang YY, Ye WF, Liu BD. In situ synthesis of nanorod arrays of nickel-molybdenum nitrides as stable electrocatalysts for hydrogen evolution reactions. ACS Appl Nano Mater. 2023;6(2):1050. https://doi.org/10.1021/acsanm.2c04496.

    Article  CAS  Google Scholar 

  199. Chen MP, Liu D, Zi BY, Chen YY, Liu DY, Du XY, Li FF, Zhou PF, Ke Y, Li JL, Lo KH, Kwok CT, Ip WF, Chen S, Wang SP, Liu QJ, Pan H. Remarkable synergistic effect in cobalt-iron nitride/alloy nanosheets for robust electrochemical water splitting. J Energy Chem. 2022;65:405. https://doi.org/10.1016/j.jechem.2021.05.051.

    Article  CAS  Google Scholar 

  200. Jin HY, Yu HM, Li HB, Davey K, Song T, Paik U, Qiao SZ. MXene analogue: a 2D nitridene solid solution for high-rate hydrogen production. Angew Chem Int Ed. 2022;61(27):e202203850. https://doi.org/10.1002/anie.202203850.

    Article  CAS  Google Scholar 

  201. Pei YT, Huang L, Han L, Zhang HJ, Dong LH, Jia QL, Zhang SW. NiCoP/NiOOH nanoflowers loaded on ultrahigh porosity Co foam for hydrogen evolution reaction under large current density. Green Energy Environ. 2022;7(3):467. https://doi.org/10.1016/j.gee.2020.10.019.

    Article  CAS  Google Scholar 

  202. Yang ZJ, Tuo XY, Lu Q, Chen C, Liu MS, Liu BY, Duan XZ, Zhou Y, Zhang J. Hierarchical Cu3P-based nanoarrays on nickel foam as efficient electrocatalysts for overall water splitting. Green Energy Environ. 2022;7(2):236. https://doi.org/10.1016/j.gee.2020.09.002.

    Article  CAS  Google Scholar 

  203. Ojha K, Saha S, Dagar P, Ganguli AK. Nanocatalysts for hydrogen evolution reactions. Phys Chem Chem Phys. 2018;20(10):6777. https://doi.org/10.1039/C7CP06316D.

    Article  CAS  PubMed  Google Scholar 

  204. Jiao L, Zhou YX, Jiang HL. Metal-organic framework-based CoP/reduced graphene oxide: high-performance bifunctional electrocatalyst for overall water splitting. Chem Sci. 2016;7(3):1690. https://doi.org/10.1039/C5SC04425A.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Jiang N, You B, Sheng ML, Sun YJ. Electrodeposited cobalt-phosphorous-derived films as competent bifunctional catalysts for overall water splitting. Angew Chem Int Ed. 2015;54(21):6251. https://doi.org/10.1002/anie.201501616.

    Article  CAS  Google Scholar 

  206. Lin LF, Chen M, Wu LM. Hierarchical MoP/NiFeP hybrid hollow spheres as highly efficient bifunctional electrocatalysts for overall water splitting. Mater Chem Front. 2021;5(1):375. https://doi.org/10.1039/D0QM00635A.

    Article  CAS  Google Scholar 

  207. Wu JC, Wang ZF, Guan TT, Zhang GL, Zhang J, Han J, Guan SQ, Wang N, Wang JL, Li KX. Optimizing band structure of CoP nanoparticles via rich-defect carbon shell toward bifunctional electrocatalysts for overall water splitting. Carbon Energy. 2022. https://doi.org/10.1002/cey2.268.

    Article  Google Scholar 

  208. Ren JT, Yao YL, Yuan ZY. Fabrication strategies of porous precious-metal-free bifunctional electrocatalysts for overall water splitting: recent advances. Green Energy Environ. 2021;6(5):620. https://doi.org/10.1016/j.gee.2020.11.023.

    Article  CAS  Google Scholar 

  209. Liu G, Wu Y, Yao R, Zhao F, Zhao Q, Li JP. Amorphous iron-nickel phosphide nanocone arrays as efficient bifunctional electrodes for overall water splitting. Green Energy Environ. 2021;6(4):496. https://doi.org/10.1016/j.gee.2020.05.009.

    Article  CAS  Google Scholar 

  210. Alsabban MM, Eswaran MK, Peramaiah K, Wahyudi W, Yang X, Ramalingam V, Hedhili MN, Miao X, Schwingenschlögl U, Li L, Tung V, Huang K. Unusual activity of rationally designed cobalt phosphide/oxide heterostructure composite for hydrogen production in alkaline medium. ACS Nano. 2022;16(3):3906. https://doi.org/10.1021/acsnano.1c09254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Delley MF, Wu ZS, Mundy ME, Ung D, Cossairt BM, Wang HL, Mayer JM. Hydrogen on cobalt phosphide. J Am Chem Soc. 2019;141(38):15390. https://doi.org/10.1021/jacs.9b07986.

    Article  CAS  PubMed  Google Scholar 

  212. Guo XM, Duan MT, Zhang JH, Xi BJ, Li M, Yin R, Zheng XJ, Liu YJ, Cao F, An XG, Xiong SL. A general self-assembly induced strategy for synthesizing 2D ultrathin cobalt-based compounds toward optimizing hydrogen evolution catalysis. Adv Funct Mater. 2022. https://doi.org/10.1002/adfm.202209397.

    Article  PubMed  PubMed Central  Google Scholar 

  213. Cai HR, Xiong LF, Wang B, Zhu DL, Hao HJ, Zhang XJ, Li J, Yang SC. Boosting the hydrogen evolution reaction of N-C@CoP through an N atom induced p-d orbital coupling. Chem Eng J. 2022;446(1):137132. https://doi.org/10.1016/j.cej.2022.137132.

    Article  CAS  Google Scholar 

  214. Nguyen DN, Phu TKC, Kim J, Hong WT, Kim JS, Roh SH, Park HS, Chung CH, Choe WS, Shin H, Lee JY, Kim JK. Interfacial strain-modulated nanospherical Ni2P by heteronuclei-mediated growth on Ti3C2Tx MXene for efficient hydrogen evolution. Small. 2022;18(45):2204797. https://doi.org/10.1002/smll.202204797.

    Article  CAS  Google Scholar 

  215. Wang ZK, Wang SY, Ma LX, Guo YJ, Sun J, Zhang N, Jiang RB. Water-induced formation of Ni2P-Ni12P5 interfaces with superior electrocatalytic activity toward hydrogen evolution reaction. Small. 2021;17(6):2006770. https://doi.org/10.1002/smll.202006770.

    Article  CAS  Google Scholar 

  216. Wang WB, Qi JL, Zhai L, Ma C, Ke CX, Zhai W, Wu ZX, Bao K, Yao Y, Li SY, Chen B, Repaka DVM, Zhang X, Ye RQ, Lai ZC, Luo GF, Chen Y, He QY. Preparation of 2D molybdenum phosphide via surface-confined atomic substitution. Adv Mater. 2022;34(35):2203220. https://doi.org/10.1002/adma.202203220.

    Article  CAS  Google Scholar 

  217. Wang XL, Zhang GX, Yin W, Zheng SS, Kong QQ, Tian JQ, Pang H. Metal-organic framework-derived phosphide nanomaterials for electrochemical applications. Carbon Energy. 2022;4(2):246. https://doi.org/10.1002/cey2.182.

    Article  CAS  Google Scholar 

  218. Li CM, Zhu DQ, Cheng SS, Zuo Y, Wang Y, Ma CC, Dong HJ. Recent research progress of bimetallic phosphides-based nanomaterials as cocatalyst for photocatalytic hydrogen evolution. Chin Chem Lett. 2022;33(3):1141. https://doi.org/10.1016/j.cclet.2021.07.057.

    Article  CAS  Google Scholar 

  219. Fang ZW, Peng LL, Qian YM, Zhang X, Xie YJ, Cha JJ, Yu GH. Dual tuning of Ni-Co-A (A = P, Se, O) nanosheets by anion substitution and holey engineering for efficient hydrogen evolution. J Am Chem Soc. 2018;140(15):5241. https://doi.org/10.1021/jacs.8b01548.

    Article  CAS  PubMed  Google Scholar 

  220. Zhao L, Wen M, Tian YK, Wu QS, Fu YQ. A novel structure of quasi-monolayered NiCo-bimetal-phosphide for superior electrochemical performance. J Energy Chem. 2022;74:203. https://doi.org/10.1016/j.jechem.2022.07.017.

    Article  CAS  Google Scholar 

  221. Xu HW, Zhu JW, Wang PY, Chen D, Zhang CT, Xiao MJ, Ma QL, Bai HW, Qin R, Ma JJ, Mu SC. Fe-Co-P multi-heterostructure arrays for efficient electrocatalytic water splitting. J Mater Chem A. 2021;9(43):24677. https://doi.org/10.1039/D1TA06603J.

    Article  CAS  Google Scholar 

  222. Xu YC, Wei ST, Gan LF, Zhang L, Wang F, Wu Q, Cui XQ, Zheng WT. Amorphous carbon interconnected ultrafine CoMnP with enhanced Co electron delocalization yields Pt-like activity for Alkaline water electrolysis. Adv Funct Mater. 2022;32(21):2112623. https://doi.org/10.1002/adfm.202112623.

    Article  CAS  Google Scholar 

  223. Gao ML, Gao PP, Lei T, Ouyang C, Wu XB, Wu AR, Du Y. FeP/Ni2P nanosheet arrays as high-efficiency hydrogen evolution electrocatalysts. J Mater Chem A Mater. 2022;10(29):15569. https://doi.org/10.1039/D2TA02499C.

    Article  CAS  Google Scholar 

  224. Riyajuddin S, Azmi K, Pahuja M, Kumar S, Maruyama T, Bera C, Ghosh K. Super-hydrophilic hierarchical Ni-foam-graphene-carbon nanotubes-Ni2P-CuP2 nano-architecture as efficient electrocatalyst for overall water splitting. ACS Nano. 2021;15(3):5586. https://doi.org/10.1021/acsnano.1c00647.

    Article  CAS  PubMed  Google Scholar 

  225. Liu D, Ai HQ, Chen MP, Zhou PF, Li BW, Liu D, Du XY, Lo KH, Ng KW, Wang SP, Chen S, Xing GC, Hu JS, Pan H. Multi-phase heterostructure of CoNiP/CoxP for enhanced hydrogen evolution under alkaline and seawater conditions by promoting H2O dissociation. Small. 2021;17(17):2007557. https://doi.org/10.1002/smll.202007557.

    Article  CAS  Google Scholar 

  226. Wei YR, Zhang XX, Wang ZH, Yin JM, Huang JZ, Zhao G, Xu XJ. Metal-organic framework derived NiCoP hollow polyhedrons electrocatalyst for pH-universal hydrogen evolution reaction. Chin Chem Lett. 2021;32(1):119. https://doi.org/10.1016/j.cclet.2020.10.046.

    Article  CAS  Google Scholar 

  227. Xu JY, Amorim I, Li Y, Li JJ, Yu ZP, Zhang BS, Araujo A, Zhang N, Liu LF. Stable overall water splitting in an asymmetric acid/alkaline electrolyzer comprising a bipolar membrane sandwiched by bifunctional cobalt-nickel phosphide nanowire electrodes. Carbon Energy. 2020;2(4):646. https://doi.org/10.1002/cey2.56.

    Article  CAS  Google Scholar 

  228. Li XP, Huang C, Han WK, Ouyang T, Liu ZQ. Transition metal-based electrocatalysts for overall water splitting. Chin Chem Lett. 2021;32(9):2597. https://doi.org/10.1016/j.cclet.2021.01.047.

    Article  CAS  Google Scholar 

  229. Liu X, Fang ZY, Teng X, Niu YL, Gong SQ, Chen W, Meyer TJ, Chen ZF. Paired formate and H2 productions via efficient bifunctional Ni-Mo nitride nanowire electrocatalysts. J Energy Chem. 2022;72:432. https://doi.org/10.1016/j.jechem.2022.04.040.

    Article  CAS  Google Scholar 

  230. Wu T, Sun MZ, Huang BL. Non-noble metal-based bifunctional electrocatalysts for hydrogen production. Rare Met. 2022;41(7):2169. https://doi.org/10.1007/s12598-021-01914-x.

    Article  CAS  Google Scholar 

  231. Choi S, Kwon J, Jo S, Kim S, Park K, Kim S, Han H, Paik U, Song T. Highly efficient and stable bifunctional electrocatalysts with decoupled active sites for hydrogen evolution and oxygen reduction reactions. Appl Catal B. 2021;298:120530. https://doi.org/10.1016/j.apcatb.2021.120530.

    Article  CAS  Google Scholar 

  232. Wang SH, Yang P, Sun XF, Xing HL, Hu J, Chen P, Cui ZT, Zhu WK, Ma ZJ. Synthesis of 3D heterostructure Co-doped Fe2P electrocatalyst for overall seawater electrolysis. Appl Catal B. 2021;297:120386. https://doi.org/10.1016/j.apcatb.2021.120386.

    Article  CAS  Google Scholar 

  233. Li D, Li ZY, Zou R, Shi G, Huang YM, Yang W, Yang W, Liu CF, Peng XW. Coupling overall water splitting and biomass oxidation via Fe-doped Ni2P@C nanosheets at large current density. Appl Catal B. 2022;307:121170. https://doi.org/10.1016/j.apcatb.2022.121170.

    Article  CAS  Google Scholar 

  234. Zhang R, Wei ZH, Ye GY, Chen GJ, Miao JJ, Zhou XH, Zhu XW, Cao XQ, Sun XN. “d-Electron complementation” induced V-Co phosphide for efficient overall water splitting. Adv Energy Mater. 2021;11(38):2101758. https://doi.org/10.1002/aenm.202101758.

    Article  CAS  Google Scholar 

  235. Geng B, Yan F, Liu LN, Zhu CL, Li B, Chen YJ. Ni/MoC heteronanoparticles encapsulated within nitrogen-doped carbon nanotube arrays as highly efficient self-supported electrodes for overall water splitting. Chem Eng J. 2021;406:126815. https://doi.org/10.1016/j.cej.2020.126815.

    Article  CAS  Google Scholar 

  236. Wang XQ, Huang G, Pan ZY, Kang SJ, Ma SJ, Shen PK, Zhu JL. One-pot synthesis of Mn2P-Mn2O3 heterogeneous nanoparticles in a P, N-doped three-dimensional porous carbon framework as a highly efficient bifunctional electrocatalyst for overall water splitting. Chem Eng J. 2022;428:131190. https://doi.org/10.1016/j.cej.2021.131190.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 52102470)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen-Guo Zhang, Feng Zhan or Xin-Hua Liu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, H., Mai, JH., Hu, KS. et al. Recent advances in electrocatalysts for efficient hydrogen evolution reaction. Rare Met. (2024). https://doi.org/10.1007/s12598-024-02649-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12598-024-02649-1

Keywords

Navigation