Skip to main content
Log in

Molecular sieve based Janus separators for Li-ions redistribution to enable stable lithium deposition

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

During operation of a lithium metal battery, uneven lithium deposition often results in the growth of lithium dendrites and causes a rapid decay in battery performance and even leads to safety issues. This is still the main hurdle hindering the practical application of lithium metal anodes. We report a new type of Janus separator fabricated by introducing a molecular sieve coating on the surface of the polypropylene separator that serves as a redistribution layer for lithium ions. Our results show that using this layer, the growth of lithium dendrites can be largely inhibited and the battery performance greatly improved. In a typical Li∥Cu half-cell with the Janus separator, the Coulombic efficiency of the lithium metal anode can be maintained at > 98.5% for over 500 cycles. The cycling life span is also extended by a factor of 8 in the Li∥Li symmetric cell. Furthermore, the high-strength coating improves the mechanical properties of the separator, thus enhancing safety. The effectiveness of our strategy is demonstrated by both the inhibited growth of lithium dendrites and the improved battery performance. Our methodology could eventually be generalized for electrode protection in other battery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hobold, G. M.; Lopez, J.; Guo, R.; Minafra, N.; Banerjee, A.; Meng, Y. S.; Shao-Horn, Y.; Gallant, B. M. Moving beyond 99.9% Coulombic efficiency for lithium anodes in liquid electrolytes. Nat. Energy 2021, 6, 951–960.

    Article  CAS  Google Scholar 

  2. Stalin, S.; Chen, P. Y.; Li, G. J.; Deng, Y.; Rouse, Z.; Cheng, Y. F.; Zhang, Z. Y.; Biswal, P.; Jin, S.; Baker, S. P. et al. Ultrathin zwitterionic polymeric interphases for stable lithium metal anodes. Matter 2021, 4, 3753–3773.

    Article  CAS  Google Scholar 

  3. Lu, Y.; Chen, J. Prospects of organic electrode materials for practical lithium batteries. Nat. Rev. Chem. 2020, 4, 127–142.

    Article  CAS  Google Scholar 

  4. Ma, T.; Liu, L. J.; Wang, J. Q.; Lu, Y.; Chen, J. Charge storage mechanism and structural evolution of viologen crystals as the cathode of lithium batteries. Angew. Chem., Int. Ed. 2020, 59, 11533–11539.

    Article  CAS  Google Scholar 

  5. Xiang, Y. X.; Tao, M. M.; Zhong, G. M.; Liang, Z. T.; Zheng, G. R.; Huang, X.; Liu, X. S.; Jin, Y. T.; Xu, N. B.; Armand, M. et al. Quantitatively analyzing the failure processes of rechargeable Li metal batteries. Sci. Adv. 2021, 7, eabj3423.

    Article  CAS  Google Scholar 

  6. Li, P.; Kim, H.; Ming, J.; Jung, H. G.; Belharouak, I.; Sun, Y. K. Quasi-compensatory effect in emerging anode-free lithium batteries. eScience 2021, 1, 3–12.

    Article  Google Scholar 

  7. Zhao, C. Z.; Chen, P. Y.; Zhang, R.; Chen, X.; Li, B. Q.; Zhang, X. Q.; Cheng, X. B.; Zhang, Q. An ion redistributor for dendrite-free lithium metal anodes. Sci. Adv. 2018, 4, eaat3446.

    Article  CAS  Google Scholar 

  8. Cheng, X. B.; Hou, T. Z.; Zhang, R.; Peng, H. J.; Zhao, C. Z.; Huang, J. Q.; Zhang, Q. Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries. Adv. Mater. 2016, 28, 2888–2895.

    Article  CAS  Google Scholar 

  9. Jin, S.; Xin, S.; Wang, L. J.; Du, Z. Z.; Cao, L. N.; Chen, J. F.; Kong, X. H.; Gong, M.; Lu, J. L.; Zhu, Y. W. et al. Covalently connected carbon nanostructures for current collectors in both the cathode and anode of Li-S batteries. Adv. Mater. 2016, 28, 9094–9102.

    Article  CAS  Google Scholar 

  10. Sun, Z. W.; Jin, S.; Jin, H. C.; Du, Z. Z.; Zhu, Y. W.; Cao, A. Y.; Ji, H. X.; Wan, L. J. Robust expandable carbon nanotube scaffold for ultrahigh-capacity lithium-metal anodes. Adv. Mater. 2018, 30, 1800884.

    Article  CAS  Google Scholar 

  11. Wang, Q.; Yang, C. K.; Yang, J. J.; Wu, K.; Hu, C. J.; Lu, J.; Liu, W.; Sun, X. M.; Qiu, J. Y.; Zhou, H. H. Dendrite-free lithium deposition via a superfilling mechanism for high-performance Li-metal batteries. Adv. Mater. 2019, 31, 1903248.

    Article  CAS  Google Scholar 

  12. Li, N. W.; Yin, Y. X.; Yang, C. P.; Guo, Y. G. An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv. Mater. 2016, 28, 1853–1858.

    Article  CAS  Google Scholar 

  13. Ma, T.; Wang, R.; Jin, S.; Zheng, S. B.; Li, L.; Shi, J. Q.; Cai, Y. C.; Liang, J.; Tao, Z. L. Functionalized boron nitride-based modification layer as ion regulator toward stable lithium anode at high current densities. ACS Appl. Mater. Interfaces 2021, 13, 391–399.

    Article  CAS  Google Scholar 

  14. Liang, J.; Chen, Q. Y.; Liao, X. B.; Yao, P. C.; Zhu, B.; Lv, G. X.; Wang, X. Y.; Chen, X.; Zhu, J. A nano-shield design for separators to resist dendrite formation in lithium-metal batteries. Angew. Chem., Int. Ed. 2020, 59, 6561–6566.

    Article  CAS  Google Scholar 

  15. Hao, Z. D.; Zhao, Q.; Tang, J. D.; Zhang, Q. Q.; Liu, J. B.; Jin, Y. H.; Wang, H. Functional separators towards the suppression of lithium dendrites for rechargeable high-energy batteries. Mater. Horiz. 2021, 8, 12–32.

    Article  CAS  Google Scholar 

  16. Song, C. L.; Li, Z. H.; Ma, L. Y.; Li, M. Z.; Huang, S.; Hong, X. J.; Cai, Y. P.; Lan, Y. Q. Single-atom zinc and anionic framework as Janus separator coatings for efficient inhibition of lithium dendrites and shuttle effect. ACS Nano 2021, 15, 13436–13443.

    Article  CAS  Google Scholar 

  17. Li, X.; Yuan, L. X.; Liu, D. Z.; Liao, M. Y.; Chen, J.; Yuan, K.; Xiang, J. W.; Li, Z.; Huang, Y. H. Elevated lithium ion regulation by a “natural silk” modified separator for high-performance lithium metal anode. Adv. Funct. Mater. 2021, 31, 2100537.

    Article  CAS  Google Scholar 

  18. Gonzalez, M. S.; Yan, Q. Z.; Holoubek, J.; Wu, Z. H.; Zhou, H. Y.; Patterson, N.; Petrova, V.; Liu, H. D.; Liu, P. Draining over blocking: Nano-composite Janus separators for mitigating internal shorting of lithium batteries. Adv. Mater. 2020, 32, 1906836.

    Article  CAS  Google Scholar 

  19. Liu, Y. Y.; Xiong, S. Z.; Wang, J. L.; Jiao, X. X.; Li, S.; Zhang, C. F.; Song, Z. X.; Song, J. X. Dendrite-free lithium metal anode enabled by separator engineering via uniform loading of lithiophilic nucleation sites. Energy Storage Mater. 2019, 19, 24–30.

    Article  Google Scholar 

  20. Zang, Y.; Pei, F.; Huang, J. H.; Fu, Z. H.; Xu, G.; Fang, X. L. Large-area preparation of crack-free crystalline microporous conductive membrane to upgrade high energy lithium-sulfur batteries. Adv. Energy Mater. 2018, 8, 1802052.

    Article  CAS  Google Scholar 

  21. Xie, H. Y.; Hao, Q.; Jin, H. C.; Xie, S.; Sun, Z. W.; Ye, Y. D.; Zhang, C. H.; Wang, D.; Ji, H. X.; Wan, L. J. Redistribution of Li-ions using covalent organic frameworks towards dendrite-free lithium anodes: A mechanism based on a Galton Board. Sci. China Chem. 2020, 63, 1306–1314.

    Article  CAS  Google Scholar 

  22. Chen, H.; Lin, Q.; Xu, Q.; Yang, Y.; Shao, Z. P.; Wang, Y. Plasma activation and atomic layer deposition of TiO2 on polypropylene membranes for improved performances of lithium-ion batteries. J. Membr. Sci. 2014, 458, 217–224.

    Article  CAS  Google Scholar 

  23. Zhang, F.; Ma, X. L.; Cao, C. B.; Li, J. L.; Zhu, Y. Q. Poly(vinylidene fluoride)/SiO2 composite membranes prepared by electrospinning and their excellent properties for nonwoven separators for lithium-ion batteries. J. Power Sources 2014, 251, 423–431.

    Article  CAS  Google Scholar 

  24. Asghar, M. R.; Anwar, M. T.; Naveed, A. A review on inorganic nanoparticles modified composite membranes for lithium-ion batteries: Recent progress and prospects. Membranes 2019, 9, 78.

    Article  CAS  Google Scholar 

  25. Tripathi, A. K.; Singh, R. K. Development of ionic liquid and lithium salt immobilized MCM-41 quasi solid-liquid electrolytes for lithium batteries. J. Energy Storage 2018, 15, 283–291.

    Article  Google Scholar 

  26. Hu, L. Q.; Cheng, J.; Li, Y. N.; Liu, J. Z.; Zhang, L.; Zhou, J. H.; Cen, K. F. Composites of ionic liquid and amine-modified SAPO 34 improve CO2 separation of CO2-selective polymer membranes. Appl. Surf. Sci. 2017, 410, 249–258.

    Article  CAS  Google Scholar 

  27. Saputra, H.; Othman, R.; Sutjipto, A. G. E.; Muhida, R. MCM-41 as a new separator material for electrochemical cell: Application in zinc-air system. J. Membr. Sci. 2011, 367, 152–157.

    Article  CAS  Google Scholar 

  28. He, Y. B.; Chang, Z.; Wu, S. C.; Qiao, Y.; Bai, S. Y.; Jiang, K. K.; He, P.; Zhou, H. S. Simultaneously inhibiting lithium dendrites growth and polysulfides shuttle by a flexible MOF-based membrane in Li-S batteries. Adv. Energy Mater. 2018, 8, 1802130.

    Article  CAS  Google Scholar 

  29. He, Y. B.; Qiao, Y.; Zhou, H. S. Recent advances in functional modification of separators in lithium-sulfur batteries. Dalton Trans. 2018, 47, 6881–6887.

    Article  CAS  Google Scholar 

  30. Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B. et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 1992, 114, 10834–10843.

    Article  CAS  Google Scholar 

  31. Tan, J.; Liu, Z. M.; Bao, X. H.; Liu, X. C.; Han, X. W.; He, C. Q.; Zhai, R. S. Crystallization and Si incorporation mechanisms of SAPO-34. Micropor. Mesopor. Mater. 2002, 53, 97–108.

    Article  CAS  Google Scholar 

  32. Sun, Q. M.; Xie, Z. K.; Yu, J. H. The state-of-the-art synthetic strategies for SAPO-34 zeolite catalysts in methanol-to-olefin conversion. Natl. Sci. Rev. 2018, 5, 542–558.

    Article  CAS  Google Scholar 

  33. Chang, Z.; Qiao, Y.; Yang, H. J.; Cao, X.; Zhu, X. Y.; He, P.; Zhou, H. S. Sustainable lithium-metal battery achieved by a safe electrolyte based on recyclable and low-cost molecular sieve. Angew. Chem., Int. Ed. 2021, 60, 15572–15581.

    Article  CAS  Google Scholar 

  34. Hong, B.; Fan, H. L.; Cheng, X. B.; Yan, X. L.; Hong, S.; Dong, Q. Y.; Gao, C. H.; Zhang, Z. A.; Lai, Y. Q.; Zhang, Q. Spatially uniform deposition of lithium metal in 3D Janus hosts. Energy Storage Mater. 2019, 16, 259–266.

    Article  Google Scholar 

  35. Wu, X.; Liu, N. N.; Guo, Z. K.; Wang, M. X.; Qiu, Y.; Tian, D.; Guan, B.; Fan, L. S.; Zhang, N. Q. Constructing multi-functional Janus separator toward highly stable lithium batteries. Energy Storage Mater. 2020, 28, 153–159.

    Article  CAS  Google Scholar 

  36. Zhou, D.; Tang, X.; Guo, X.; Li, P.; Shanmukaraj, D.; Liu, H.; Gao, X. C.; Wang, Y. Z.; Rojo, T.; Armand, M. et al. Polyolefin-based Janus separator for rechargeable sodium batteries. Angew. Chem., Int. Ed. 2020, 59, 16725–16734.

    Article  CAS  Google Scholar 

  37. Li, C.; Sun, Z. T.; Yang, T.; Yu, L. H.; Wei, N.; Tian, Z. N.; Cai, J. S.; Lv, J. Z.; Shao, Y. L.; Rümmeli, M. H. et al. Directly grown vertical graphene carpets as Janus separators toward stabilized Zn metal anodes. Adv. Mater. 2020, 32, 2003425.

    Article  CAS  Google Scholar 

  38. Chi, M. M.; Shi, L. Y.; Wang, Z. Y.; Zhu, J. F.; Mao, X. F.; Zhao, Y.; Zhang, M. H.; Sun, L. N.; Yuan, S. Excellent rate capability and cycle life of Li metal batteries with ZrO2/POSS multilayer-assembled PE separators. Nano Energy 2016, 28, 1–11.

    Article  CAS  Google Scholar 

  39. Song, Y. H.; Wu, K. J.; Zhang, T. W.; Lu, L. L.; Guan, Y.; Zhou, F.; Wang, X. X.; Yin, Y. C.; Tan, Y. H.; Li, F. et al. A nacre-inspired separator coating for impact-tolerant lithium batteries. Adv. Mater. 2019, 31, 1905711.

    Article  CAS  Google Scholar 

  40. Yao, W. Q.; Zheng, W. Z.; Xu, J.; Tian, C. X.; Han, K.; Sun, W. Z.; Xiao, S. X. ZnS-SnS@NC heterostructure as robust lithiophilicity and sulfiphilicity mediator toward high-rate and long-life lithium-sulfur batteries. ACS Nano 2021, 15, 7114–7130.

    Article  CAS  Google Scholar 

  41. Jin, S.; Sun, Z. W.; Guo, Y. L.; Qi, Z. K.; Guo, C. K.; Kong, X. H.; Zhu, Y. W.; Ji, H. X. High areal capacity and lithium utilization in anodes made of covalently connected graphite microtubes. Adv. Mater. 2017, 29, 1700783.

    Article  CAS  Google Scholar 

  42. Chang, Z.; Qiao, Y.; Deng, H.; Yang, H. J.; He, P.; Zhou, H. S. A liquid electrolyte with de-solvated lithium ions for lithium-metal battery. Joule 2020, 4, 1776–1789.

    Article  CAS  Google Scholar 

  43. He, X.; Jin, S.; Miao, L. C.; Cai, Y. C.; Hou, Y. P.; Li, H. X.; Zhang, K.; Yan, Z. H.; Chen, J. A 3D hydroxylated MXene/carbon nanotubes composite as a scaffold for dendrite-free sodium-metal electrodes. Angew. Chem., Int. Ed. 2020, 59, 16705–16711.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate funding support from the National Natural Science Foundation of China (Nos. U2032202, 21975243 and 51672262), the National Program for Support of Topnotch Young Professional and the Fundamental Research Funds for the Central Universities (No. WK2060000026).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Song Jin, Hengxing Ji or Jun Chen.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, H., Hao, Z., Xie, S. et al. Molecular sieve based Janus separators for Li-ions redistribution to enable stable lithium deposition. Nano Res. 15, 5143–5152 (2022). https://doi.org/10.1007/s12274-022-4181-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4181-1

Keywords

Navigation