Skip to main content

Advertisement

Log in

A Hybrid Separator with Fast Ionic Conductor for the Application of Lithium-Metal Batteries

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Uneven lithium deposition and uncontrollable dendrite growth limit the development and progress of lithium-metal batteries (LMBs). Here, we developed an appropriate strategy to prevent the damage of Li dendrites by introducing inorganic oxide solid electrolyte layers (Li1.3Al0.3Ti1.7(PO4)3, LATP) on both sides of a polypropylene separator (PP). The inorganic coating layers, which comprise close-packed LATP solid electrolyte particles, afford a firm and uniform microstructure for the hybrid separator. At a current density (0.25 mA cm−2), the lithium symmetric batteries composed of the LATP/PP separator exhibit a long cycle life of over 1600 h in the 1 M LiTFSI-DOL/DME electrolyte. Furthermore, the LiFePO4||LATP/PP||Li cell presents a prominent performance and delivers an average charge capacity of 151 mAh g−1 at 1 C. This can be attributed to the unique characteristics of the LATP/PP separator, as it not only has outstanding mechanical strength and thermal stability, but also possesses high ionic conductivity, which effectively enhances the rate capacity to improve the safety of LMBs.

Graphical Abstract

LATP/PP separator is prepared by the coating method, and the Li symmetric batteries can cycle more than 1600 h in the 1 M LiTFSI-DOL/DME, which show an outstanding electrochemical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D.H. Kang, M. Chen, and O.A. Ogunseitan, Potential Environmental and Human Health Impacts of Rechargeable Lithium Batteries in Electronic Waste. Environ. Sci. Technol. 47, 5495 (2013).

    Article  CAS  Google Scholar 

  2. W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, and J.-G. Zhang, Lithium Metal Anodes for Rechargeable Batteries. Energy Environ. Sci. 7, 513 (2014).

    Article  CAS  Google Scholar 

  3. Y. Liu, Y. Qiao, Y. Zhang, Z. Yang, T. Gao, D. Kirsch, B. Liu, J. Song, B. Yang, and L. Hu, 3D Printed Separator for the Thermal Management of High-Performance Li Metal Anodes. Energy Storage Mater. 12, 197 (2018).

    Article  Google Scholar 

  4. W. Luo, S. Cheng, M. Wu, X. Zhang, D. Yang, and X. Rui, A Review of Advanced Separators for Rechargeable Batteries. J. Power Sour. 509, 230372 (2021).

    Article  CAS  Google Scholar 

  5. W. Lu, Z. Yuan, Y. Zhao, H. Zhang, H. Zhang, and X. Li, Porous Membranes in Secondary Battery Technologies. Chem. Soc. Rev. 46, 2199 (2017).

    Article  CAS  Google Scholar 

  6. M.F. Lagadec, R. Zahn, and V. Wood, Characterization and Performance Evaluation of Lithium-Ion Battery Separators. Nat. Energy 4, 16 (2018).

    Article  Google Scholar 

  7. S. Li, Z. Luo, L. Li, J. Hu, G. Zou, H. Hou, and X. Ji, Recent Progress on Electrolyte Additives for Stable Lithium Metal Anode. Energy Storage Mater. 32, 306 (2020).

    Article  Google Scholar 

  8. G. Wang, X. Xiong, D. Xie, X. Fu, X. Ma, Y. Li, Y. Liu, Z. Lin, C. Yang, and M. Liu, Suppressing Dendrite Growth by a Functional Electrolyte Additive for Robust Li Metal Anodes. Energy Storage Mater. 23, 701 (2019).

    Article  Google Scholar 

  9. Y. Ma, Z. Zhou, C. Li, L. Wang, Y. Wang, X. Cheng, P. Zuo, C. Du, H. Huo, Y. Gao, and G. Yin, Enabling Reliable Lithium Metal Batteries by a Bifunctional Anionic Electrolyte Additive. Energy Storage Mater. 11, 197 (2018).

    Article  Google Scholar 

  10. S. Sun, S. Myung, G. Kim, D. Lee, H. Son, M. Jang, E. Park, B. Son, Y.-G. Jung, U. Paik, and T. Song, Facile Ex Situ Formation of a LiF–Polymer Composite Layer as an Artificial SEI Layer on Li Metal by Simple Roll-Press Processing for Carbonate Electrolyte-Based Li Metal Batteries. J. Mater. Chem. A 8, 17229 (2020).

    Article  CAS  Google Scholar 

  11. C. Chen, Q. Liang, G. Wang, D. Liu, and X. Xiong, Grain-Boundary-Rich Artificial SEI Layer for High-Rate Lithium Metal Anodes. Adv. Funct. Mater. 32, 2107249 (2021).

    Article  Google Scholar 

  12. S. Gao, F. Sun, N. Liu, H. Yang, and P.-F. Cao, Ionic Conductive Polymers as Artificial Solid Electrolyte Interphase Films in Li Metal Batteries: A Review. Mater. Today 40, 140 (2020).

    Article  CAS  Google Scholar 

  13. J. Zhao, G. Zhou, K. Yan, J. Xie, Y. Li, L. Liao, Y. Jin, K. Liu, P.C. Hsu, J. Wang, H.M. Cheng, and Y. Cui, Air-Stable and Freestanding Lithium Alloy/Graphene Foil as an Alternative to Lithium Metal Anodes. Nat. Nanotechnol. 12, 993 (2017).

    Article  CAS  Google Scholar 

  14. D. Lin, Y. Liu, Z. Liang, H.W. Lee, J. Sun, H. Wang, K. Yan, J. Xie, and Y. Cui, Layered Reduced Graphene Oxide with Nanoscale Interlayer Gaps as a Stable Host for Lithium Metal Anodes. Nat. Nanotechnol. 11, 626 (2016).

    Article  CAS  Google Scholar 

  15. H. Wang, D. Lin, Y. Liu, Y. Li, and Y. Cui, Ultrahigh-Current Density Anodes with Interconnected Li Metal Reservoir Through Overlithiation of Mesoporous AlF3 Framework. Sci. Adv. 3, e1701301 (2017).

    Article  Google Scholar 

  16. Y.-Z. Song, Y. Zhang, J.-J. Yuan, C.-E. Lin, X. Yin, C.-C. Sun, B. Zhu, and L.-P. Zhu, Fast Assemble of Polyphenol Derived Coatings on Polypropylene Separator for High Performance Lithium-Ion Batteries. J. Electroanal. Chem. 808, 252 (2018).

    Article  CAS  Google Scholar 

  17. X. Zhu, X. Jiang, X. Ai, H. Yang, and Y. Cao, TiO2 Ceramic-Grafted Polyethylene Separators for Enhanced Thermostability and Electrochemical Performance of Lithium-Ion Batteries. J. Membr. Sci. 504, 97 (2016).

    Article  CAS  Google Scholar 

  18. D.-W. Lee, S.-H. Lee, Y.-N. Kim, and J.-M. Oh, Preparation of a High-Purity Ultrafine α-Al2O3 Powder and Characterization of an Al2O3-Coated PE Separator for Lithium-Ion Batteries. Powder Technol. 320, 125 (2017).

    Article  CAS  Google Scholar 

  19. H. Lee, X. Ren, C. Niu, L. Yu, M.H. Engelhard, I. Cho, M.H. Ryou, H.S. Jin, H.T. Kim, J. Liu, W. Xu, and J.G. Zhang, Suppressing Lithium Dendrite Growth by Metallic Coating on a Separator. Adv. Funct. Mater. 27, 1704391 (2017).

    Article  Google Scholar 

  20. Z. Hao, Q. Zhao, J. Tang, Q. Zhang, J. Liu, Y. Jin, and H. Wang, Functional Separators Towards the Suppression of Lithium Dendrites for Rechargeable High-Energy Batteries. Mater. Horiz. 8, 12 (2021).

    Article  CAS  Google Scholar 

  21. W. Ren, Y. Zheng, Z. Cui, Y. Tao, B. Li, and W. Wang, Recent Progress of Functional Separators in Dendrite Inhibition for Lithium Metal Batteries. Energy Storage Mater. 35, 157 (2021).

    Article  Google Scholar 

  22. T. Ma, R. Wang, S. Jin, S. Zheng, L. Li, J. Shi, Y. Cai, J. Liang, and Z. Tao, Functionalized Boron Nitride-Based Modification Layer as Ion Regulator Toward Stable Lithium Anode at High Current Densities. ACS Appl. Mater. Interfaces 13, 391 (2021).

    Article  CAS  Google Scholar 

  23. P. Blin, B. Boury, A. Taguet, J. Touja, L. Monconduit, and S. Patra, Glycerol-Plasticized Agarose Separator Suppressing Dendritic Growth in Li Metal Battery. Carbohydr. Polym. 247, 116697 (2020).

    Article  CAS  Google Scholar 

  24. Z. Huang, Y. Chen, Q. Han, M. Su, Y. Liu, S. Wang, and H. Wang, Vapor-Induced Phase Inversion of Poly (m-Phenylene Isophthalamide) Modified Polyethylene Separator for High-Performance Lithium-Ion Batteries. Chem. Eng. J. 429, 132429 (2022).

    Article  CAS  Google Scholar 

  25. Z. Lu, F. Sui, Y.-E. Miao, G. Liu, C. Li, W. Dong, J. Cui, T. Liu, J. Wu, and C. Yang, Polyimide Separators for Rechargeable Batteries. J. Energy Chem. 58, 170 (2021).

    Article  Google Scholar 

  26. Y. Maeyoshi, D. Ding, M. Kubota, H. Ueda, K. Abe, K. Kanamura, and H. Abe, Long-Term Stable Lithium Metal Anode in Highly Concentrated Sulfolane-Based Electrolytes with Ultrafine Porous Polyimide Separator. ACS Appl. Mater. Interfaces. 11, 25833 (2019).

    Article  CAS  Google Scholar 

  27. M.H. Ryou, Y.M. Lee, J.K. Park, and J.W. Choi, Mussel-Inspired Polydopamine-Treated Polyethylene Separators for High-Power Li-Ion Batteries. Adv. Mater. 23, 3066 (2011).

    Article  CAS  Google Scholar 

  28. S. Hu, S. Lin, Y. Tu, J. Hu, Y. Wu, G. Liu, F. Li, F. Yu, and T. Jiang, Novel Aramid Nanofiber-Coated Polypropylene Separators for Lithium Ion Batteries. J. Mater. Chem. A 4, 3513 (2016).

    Article  CAS  Google Scholar 

  29. H. Huo, X. Li, Y. Chen, J. Liang, S. Deng, X. Gao, K. Doyle-Davis, R. Li, X. Guo, Y. Shen, C.-W. Nan, and X. Sun, Bifunctional Composite Separator with a Solid-State-Battery Strategy for Dendrite-Free Lithium Metal Batteries. Energy Storage Mater. 29, 361 (2020).

    Article  Google Scholar 

  30. S.V. Pershina, Structural, Thermal and Electrical Properties of Li2O–Al2O3–GeO2–P2O5 Glasses. J. Alloys Compd. 871, 159532 (2021).

    Article  CAS  Google Scholar 

  31. J. Li, W. Tian, H. Yan, L. He, and X. Tuo, Preparation and Performance of Aramid Nanofiber Membrane for Separator of Lithium Ion Battery. J. Appl. Polym. Sci. 133, 43623 (2016).

    Google Scholar 

Download references

Acknowledgments

The work was supported by the National Natural Science Foundation of China (21571110), the NSF of Zhejiang province (LY18B010003), the NSF of Ningbo (2019A610002), the Ningbo Public Welfare Funds (202002N3056 and 2021S142), and the K. C. Wong Magna Fund in Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Yang Qiu or Xing Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1076 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Y., He, LY., Qiu, XY. et al. A Hybrid Separator with Fast Ionic Conductor for the Application of Lithium-Metal Batteries. J. Electron. Mater. 51, 4307–4316 (2022). https://doi.org/10.1007/s11664-022-09679-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09679-4

Keywords

Navigation