Skip to main content
Log in

A molecular sieve-containing protective separator to suppress the shuttle effect of redox mediators in lithium-oxygen batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Lithium-oxygen (Li-O2) batteries have a great potential in energy storage and conversion due to their ultra-high theoretical specific energy, but their applications are hindered by sluggish redox reaction kinetics in the charge/discharge processes. Redox mediators (RMs), as soluble catalysts, are widely used to facilitate the electrochemical processes in the Li-O2 batteries. A drawback of RMs is the shuttle effect due to their solubility and mobility, which leads to the corrosion of a Li metal anode and the degradation of the electrochemical performance of the batteries. Herein, we synthesize a polymer-based composite protective separator containing molecular sieves. The nanopores with a diameter of 4 Å in the zeolite powder (4A zeolite) are able to physically block the migration of 2,2,6,6-tetramethylpiperidinyloxy (TEMPO) molecules with a larger size; therefore, the shuttle effect of TEMPO is restrained. With the assistance of the zeolite molecular sieves, the cycle life of the Li-O2 batteries is significantly extended from ∼ 20 to 170 cycles at a current density of 250 mA·g−1 and a limited capacity of 500 mAh·g−1. Our work provides a highly effective approach to suppress the shuttle effects of RMs and boost the electrochemical performance of Li-O2 batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham, K. M.; Jiang, Z. A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 1996, 143, 1–5.

    CAS  Google Scholar 

  2. Lu, J.; Li, L.; Park, J. B.; Sun, Y. K.; Wu, F.; Amine, K. Aprotic and aqueous Li-O2 batteries. Chem. Rev. 2014, 114, 5611–5640.

    CAS  Google Scholar 

  3. Kwak, W. J.; Rosy; Sharon, D.; Xia, C.; Kim, H.; Johnson, L. R.; Bruce, P. G.; Nazar, L. F.; Sun, Y. K.; Frimer, A. A. et al. Lithium-oxygen batteries and related systems: Potential, status, and future. Chem. Rev. 2020, 120, 6626–6683.

    CAS  Google Scholar 

  4. Liu, T.; Vivek, J. P.; Zhao, E. W.; Lei, J.; Garcia-Araez, N.; Grey, C. P. Current challenges and routes forward for nonaqueous lithium-air batteries. Chem. Rev. 2020, 120, 6558–6625.

    CAS  Google Scholar 

  5. Wang, J.; Yin, Y. B.; Liu, T.; Yang, X. Y.; Chang, Z. W.; Zhang, X. B. Hybrid electrolyte with robust garnet-ceramic electrolyte for lithium anode protection in lithium-oxygen batteries. Nano Res. 2018, 11, 3434–3441.

    CAS  Google Scholar 

  6. Wang, B. X.; Liu, C. X.; Yang, L. J.; Wu, Q.; Wang, X. Z.; Hu, Z. Defect-induced deposition of manganese oxides on hierarchical carbon nanocages for high-performance lithium-oxygen batteries. Nano Res. 2022, 15, 4132–4136.

    CAS  Google Scholar 

  7. Yu, W.; Wang, H. W.; Qin, L.; Hu, J. Y.; Liu, L.; Li, B. H.; Zhai, D. Y.; Kang, F. Y. Controllable electrochemical fabrication of KO2-decorated binder-free cathodes for rechargeable lithium oxygen batteries. ACS Appl. Mater. Interfaces 2018, 10, 17156–17166.

    CAS  Google Scholar 

  8. Wang, L.; Zhang, Y. T.; Liu, Z. J.; Guo, L. M.; Peng, Z. Q. Understanding oxygen electrochemistry in aprotic Li-O2 batteries. Green Energy Environ. 2017, 2, 186–203.

    Google Scholar 

  9. Leverick, G.; Tułodziecki, M.; Tatara, R.; Bardé, F.; Shao-Horn, Y. Solvent-dependent oxidizing power of LiI redox couples for Li-O2 batteries. Joule 2019, 3, 1106–1126.

    CAS  Google Scholar 

  10. Chai, A. H.; Ji, C. H.; Yuan, D.; Yin, L. K.; Zhang, Y. S.; Zhuge, X. Q.; Luo, Z. H.; Li, Y. B.; Luo, K. Fluidic Ga-In liquid metal-modified cathode with improved cyclic performance and capacity of Li-O2 batteries. Rare Metals 2022, 41, 2223–2229.

    CAS  Google Scholar 

  11. Zhao, Z. F.; Liu, Y.; Wan, F.; Wang, S.; Zhang, N. N.; Liu, L. L.; Cao, A. Y.; Niu, Z. Q. Free-standing nitrogen doped graphene/Co(OH)2 composite films with superior catalytic activity for aprotic lithium-oxygen batteries. Chin. Chem. Lett. 2021, 32, 594–597.

    CAS  Google Scholar 

  12. Lim, H. D.; Song, H.; Gwon, H.; Park, K. Y.; Kim, J.; Bae, Y.; Kim, H.; Jung, S. K.; Kim, T.; Kim, Y. H. et al. A new catalyst-embedded hierarchical air electrode for high-performance Li-O2 batteries. Energy Environ. Sci. 2013, 6, 3570–3575.

    CAS  Google Scholar 

  13. Chang, Z. W.; Xu, J. J.; Zhang, X. B. Recent progress in electrocatalyst for Li-O2 batteries. Adv. Energy Mater. 2017, 7, 1700875.

    Google Scholar 

  14. Wu, X. B.; Yu, W.; Xu, W.; Zhang, Y. J.; Guan, S. D.; Zhang, Z.; Li, S. W.; Wang, H. C.; Wang, X. J.; Zhang, L. et al. Balancing oxygen evolution reaction and oxygen reduction reaction processes in Li-O2 batteries through tuning the bond distances of RuO2. Compos. B: Eng. 2022, 234, 109727.

    CAS  Google Scholar 

  15. Wang, P. X.; Shao, L.; Zhang, N. Q.; Sun, K. N. Mesoporous CuCo2O4 nanoparticles as an efficient cathode catalyst for Li-O2 batteries. J. Power Sources 2016, 325, 506–512.

    CAS  Google Scholar 

  16. Li, P. F.; Sun, W.; Yu, Q. L.; Guan, M. J.; Qiao, J. S.; Wang, Z. H.; Rooney, D.; Sun, K. N. An effective three-dimensional ordered mesoporous ZnCo2O4 as electrocatalyst for Li-O2 batteries. Mater. Lett. 2015, 158, 84–87.

    CAS  Google Scholar 

  17. Pham, T. V.; Guo, H. P.; Luo, W. B.; Chou, S. L.; Wang, J. Z.; Liu, H. K. Carbon- and binder-free 3D porous perovskite oxide air electrode for rechargeable lithium-oxygen batteries. J. Mater. Chem. A 2017, 5, 5283–5289.

    CAS  Google Scholar 

  18. Wang, Z. D.; You, Y.; Yuan, J.; Yin, Y. X.; Li, Y. T.; Xin, S.; Zhang, D. W. Nickel-doped La0.8Sr0.2Mn1−xNixO3 nanoparticles containing abundant oxygen vacancies as an optimized bifunctional catalyst for oxygen cathode in rechargeable lithium-air batteries. ACS Appl. Mater. Interfaces 2016, 8, 6520–6528.

    CAS  Google Scholar 

  19. Bergner, B. J.; Schürmann, A.; Peppler, K.; Garsuch, A.; Janek, J. TEMPO: A mobile catalyst for rechargeable Li-O2 batteries. J. Am. Chem. Soc. 2014, 136, 15054–15064.

    CAS  Google Scholar 

  20. Chen, Y. H.; Freunberger, S. A.; Peng, Z. Q.; Fontaine, O.; Bruce, P. G. Charging a Li-O2 battery using a redox mediator. Nat. Chem. 2013, 5, 489–494.

    Google Scholar 

  21. Gao, X. W.; Chen, Y. H.; Johnson, L.; Bruce, P. G. Promoting solution phase discharge in Li-O2 batteries containing weakly solvating electrolyte solutions. Nat. Mater. 2016, 15, 882–888.

    CAS  Google Scholar 

  22. Sun, D.; Shen, Y.; Zhang, W.; Yu, L.; Yi, Z. Q.; Yin, W.; Wang, D.; Huang, Y. H.; Wang, J.; Wang, D. L. et al. A solution-phase bifunctional catalyst for lithium-oxygen batteries. J. Am. Chem. Soc. 2014, 136, 8941–8946.

    CAS  Google Scholar 

  23. Ryu, W. H.; Gittleson, F. S.; Thomsen, J. M.; Li, J. Y.; Schwab, M. J.; Brudvig, G. W.; Taylor, A. D. Heme biomolecule as redox mediator and oxygen shuttle for efficient charging of lithium-oxygen batteries. Nat. Commun. 2016, 7, 12925.

    CAS  Google Scholar 

  24. Kwak, W. J.; Hirshberg, D.; Sharon, D.; Afri, M.; Frimer, A. A.; Jung, H. G.; Aurbach, D.; Sun, Y. K. Li-O2 cells with LiBr as an electrolyte and a redox mediator. Energy Environ. Sci. 2016, 9, 2334–2345.

    CAS  Google Scholar 

  25. Liang, Z. J.; Lu, Y. C. Critical role of redox mediator in suppressing charging instabilities of lithium-oxygen batteries. J. Am. Chem. Soc. 2016, 138, 7574–7583.

    CAS  Google Scholar 

  26. Wu, X. B.; Yu, W.; Wen, K. H.; Wang, H. C.; Wang, X. J.; Nan, C. W.; Li, L. L. Strategies to suppress the shuttle effect of redox mediators in lithium-oxygen batteries. J. Energy Chem. 2021, 60, 135–149.

    CAS  Google Scholar 

  27. Kwak, W. J.; Kim, H.; Jung, H. G.; Aurbach, D.; Sun, Y. K. Review—A comparative evaluation of redox mediators for Li-O2 batteries: A critical review. J. Electrochem. Soc. 2018, 165, A2274–A2293.

    CAS  Google Scholar 

  28. Park, J. B.; Lee, S. H.; Jung, H. G.; Aurbach, D.; Sun, Y. K. Redox mediators for Li-O2 batteries: Status and perspectives. Adv. Mater. 2018, 30, 1704162.

    Google Scholar 

  29. Xiong, Q.; Huang, G.; Zhang, X. B. High-capacity and stable Li-O2 batteries enabled by a trifunctional soluble redox mediator. Angew. Chem., Int. Ed. 2020, 59, 19311–19319.

    CAS  Google Scholar 

  30. Landa-Medrano, I.; Lozano, I.; Ortiz-Vitoriano, N.; de Larramendi, I. R.; Rojo, T. Redox mediators: A shuttle to efficacy in metal-O2 batteries. J. Mater. Chem. A 2019, 7, 8746–8764.

    CAS  Google Scholar 

  31. Zhang, T.; Liao, K. M.; He, P.; Zhou, H. S. A self-defense redox mediator for efficient lithium-O2 batteries. Energy Environ. Sci. 2016, 9, 1024–1030.

    CAS  Google Scholar 

  32. Liu, J.; Wu, T.; Zhang, S. Q.; Li, D.; Wang, Y.; Xie, H. M.; Yang, J. H.; Sun, G. R. InBr3 as a self-defensed redox mediator for Li-O2 batteries: In situ construction of a stable indium-rich composite protective layer on the Li anode. J. Power Sources 2019, 439, 227095.

    CAS  Google Scholar 

  33. Togasaki, N.; Shibamura, R.; Naruse, T.; Momma, T.; Osaka, T. Prevention of redox shuttle using electropolymerized polypyrrole film in a lithium-oxygen battery. APL Mater. 2018, 6, 047704.

    Google Scholar 

  34. Park, S. H.; Lee, T. H.; Lee, Y. J.; Park, H. B.; Lee, Y. J. Graphene oxide sieving membrane for improved cycle life in high-efficiency redox-mediated Li-O2 batteries. Small 2018, 14, 1801456.

    Google Scholar 

  35. Li, D.; Kang, Z. Y.; Sun, H.; Wang, Y.; Xie, H. M.; Liu, J.; Zhu, J. F. A bifunctional MnxCo3−xO4-decorated separator for efficient Li-LiI-O2 batteries: A novel strategy to promote redox coupling and inhibit redox shuttling. Chem. Eng. J. 2022, 428, 131105.

    CAS  Google Scholar 

  36. Shi, L.; Li, Z.; Li, Y. P.; Wang, G.; Wu, M. F.; Wen, Z. Y. Suppressing redox shuttle with MXene-modified separators for Li-O2 batteries. ACS Appl. Mater. Interfaces 2021, 13, 30766–30775.

    CAS  Google Scholar 

  37. Ko, Y.; Park, H.; Lee, K.; Kim, S. J.; Park, H.; Bae, Y.; Kim, J.; Park, S. Y.; Kwon, J. E.; Kang, K. Anchored mediator enabling shuttle-free redox mediation in lithium-oxygen batteries. Angew. Chem., Int. Ed. 2020, 59, 5376–5380.

    CAS  Google Scholar 

  38. Liu, Z. J.; Ma, L. P.; Guo, L. M.; Peng, Z. Q. Promoting solution discharge of Li-O2 batteries with immobilized redox mediators. J. Phys. Chem. Lett. 2018, 9, 5915–5920.

    CAS  Google Scholar 

  39. Zhang, J. Q.; Sun, B.; Zhao, Y. F.; Kretschmer, K.; Wang, G. X. Modified tetrathiafulvalene as an organic conductor for improving performances of Li-O2 batteries. Angew. Chem., Int. Ed. 2017, 56, 8505–8509.

    CAS  Google Scholar 

  40. Zhang, J. Q.; Sun, B.; McDonagh, A. M.; Zhao, Y. F.; Kretschmer, K.; Guo, X.; Wang, G. X. A multi-functional gel co-polymer bridging liquid electrolyte and solid cathode nanoparticles: An efficient route to Li-O2 batteries with improved performance. Energy Storage Mater. 2017, 7, 1–7.

    Google Scholar 

  41. Xu, C. Y.; Xu, G. Y.; Zhang, Y. D.; Fang, S.; Nie, P.; Wu, L. Y.; Zhang, X. G. Bifunctional redox mediator supported by an anionic surfactant for long-cycle Li-O2 batteries. ACS Energy Lett. 2017, 2, 2659–2666.

    CAS  Google Scholar 

  42. Kwak, W. J.; Park, S. J.; Jung, H. G.; Sun, Y. K. Optimized concentration of redox mediator and surface protection of Li metal for maintenance of high energy efficiency in Li-O2 batteries. Adv. Energy Mater. 2018, 8, 1702258.

    Google Scholar 

  43. Kim, M. C.; Choi, S.; Kim, H.; Han, S. B.; Moon, S. H.; Kim, E. S.; Kim, Y. S.; Park, K. W. Polymeric redox mediator as a stable cathode catalyst for lithium-O2 batteries. J. Power Sources 2020, 453, 227850.

    CAS  Google Scholar 

  44. Yu, W.; Wu, X. B.; Liu, S. J.; Nishihara, H.; Li, L. L.; Nan, C. W. A volatile redox mediator boosts the long-cycle performance of lithium-oxygen batteries. Energy Storage Mater. 2021, 38, 571–580.

    Google Scholar 

  45. Yoo, E.; Zhou, H. S. LiF protective layer on a Li anode: Toward improving the performance of Li-O2 batteries with a redox mediator. ACS Appl. Mater. Interfaces 2020, 12, 18490–18495.

    CAS  Google Scholar 

  46. Wang, Y.; Li, D.; Zhang, S. Q.; Kang, Z. Y.; Xie, H. M.; Liu, J. Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)- decorated separator in Li-O2 batteries: Suppressing the shuttle effect of dual redox mediators by Coulombic interactions. J. Power Sources 2020, 466, 228336.

    CAS  Google Scholar 

  47. Qiao, Y.; He, Y. B.; Wu, S. C.; Jiang, K. Z.; Li, X.; Guo, S. H.; He, P.; Zhou, H. S. MOF-based separator in Li-O2 battery: An effective strategy to restrain the shuttling of dual redox mediators. ACS Energy Lett. 2018, 3, 463–468.

    CAS  Google Scholar 

  48. Liu, K. L.; Sun, H. G.; Dong, S. M.; Lu, C. L.; Li, Y.; Cheng, J. M.; Zhang, J. J.; Wang, X. G.; Chen, X.; Cui, G. L. A rational design of high-performance sandwich-structured quasisolid state Li-O2 battery with redox mediator. Adv. Mater. Interfaces 2017, 4, 1700693.

    Google Scholar 

  49. Chen, Z. F.; Lin, X. D.; Xia, H.; Hong, Y. H.; Liu, X. Y.; Cai, S. R.; Duan, J. N.; Yang, J. J.; Zhou, Z. Y.; Chang, J. K. et al. A functionalized membrane for lithium-oxygen batteries to suppress the shuttle effect of redox mediators. J. Mater. Chem. A 2019, 7, 14260–14270.

    CAS  Google Scholar 

  50. Yu, W.; Xue, C. J.; Hu, B. K.; Xu, B. Q.; Li, L. L.; Nan, C. W. Oxygen- and dendrite-resistant ultra-dry polymer electrolytes for solid-state Li-O2 batteries. Energy Storage Mater. 2020, 27, 244–251.

    Google Scholar 

  51. Yu, W.; Wang, H. W.; Hu, J.; Yang, W.; Qin, L.; Liu, R. L.; Li, B. H.; Zhai, D. Y.; Kang, F. Y. Molecular sieve induced solution growth of Li2O2 in the Li-O2 battery with largely enhanced discharge capacity. ACS Appl. Mater. Interfaces 2018, 10, 7989–7995.

    CAS  Google Scholar 

  52. Thotiyl, M. M. O.; Freunberger, S. A.; Peng, Z. Q.; Bruce, P. G. The carbon electrode in nonaqueous Li-O2 cells. J. Am. Chem. Soc. 2013, 135, 494–500.

    Google Scholar 

  53. Lee, D. J.; Lee, H.; Kim, Y. J.; Park, J. K.; Kim, H. T. Sustainable redox mediation for lithium-oxygen batteries by a composite protective layer on the lithium-metal anode. Adv. Mater. 2016, 28, 857–863.

    CAS  Google Scholar 

  54. Bergner, B. J.; Hofmann, C.; Schürmann, A.; Schröder, D.; Peppler, K.; Schreiner, P. R.; Janek, J. Understanding the fundamentals of redox mediators in Li-O2 batteries: A case study on nitroxides. Phys. Chem. Chem. Phys. 2015, 17, 31769–31779.

    Google Scholar 

  55. Fish, J. R.; Swarts, S. G.; Sevilla, M. D.; Malinski, T. Electrochemistry and spectroelectrochemistry of nitroxyl free radicals. J. Phys. Chem. 1988, 92, 3745–3751.

    CAS  Google Scholar 

  56. Tebben, L.; Studer, A. Nitroxides: Applications in synthesis and in polymer chemistry. Angew. Chem., Int. Ed. 2011, 50, 5034–5068.

    CAS  Google Scholar 

  57. Suga, T.; Yoshimura, K.; Nishide, H. Nitroxide-substituted polyether as a new material for batteries. Macromol. Symp. 2006, 245–246, 416–422.

    Google Scholar 

  58. Kobayashi, H.; Ueda, T.; Miyakubo, K.; Toyoda, J.; Eguchi, T.; Tani, A. Preparation and characterization of a new inclusion compound with a 1D molecular arrangement of organic radicals using a one-dimensional organic homogeneous nanochannel template. J. Mater. Chem. 2005, 15, 872–879.

    CAS  Google Scholar 

  59. Lo, C. H.; Liao, K. S.; Hung, W. S.; De Guzman, M.; Hu, C. C.; Lee, K. R.; Lai, J. Y. Investigation on positron annihilation characteristics of CO2-exposed zeolite. Microporous Mesoporous Mater. 2011, 141, 140–145.

    CAS  Google Scholar 

  60. Tuyen, L. A.; Szilágyi, E.; Kótai, E.; Lázár, K.; Bottyán, L.; Dung, T. Q.; Cuong, L. C.; Khiem, D. D.; Phuc, P. T.; Nguyen, L. L. et al. Structural effects induced by 2.5 MeV proton beam on zeolite 4A: Positron annihilation and X-ray diffraction study. Radiat. Phys. Chem. 2015, 106, 355–359.

    CAS  Google Scholar 

  61. Kaushik, V. K.; Vijayalakshmi, R. P.; Choudary, N. V.; Bhat, S. G. T. XPS studies on cation exchanged zeolite A. Microporous Mesoporous Mater. 2002, 51, 139–144.

    CAS  Google Scholar 

  62. Zhang, X.; Han, J.; Niu, X. F.; Xin, C. Z.; Xue, C. J.; Wang, S.; Shen, Y.; Zhang, L.; Li, L. L.; Nan, C. W. High cycling stability for solid-state Li metal batteries via regulating solvation effect in poly(vinylidene fluoride)-based electrolytes. Batter. Supercaps 2020, 3, 876–883.

    CAS  Google Scholar 

  63. Andrews, R. E.; Gawarkiewicz, J. J.; Winterkorn, H. F. Comparison of the interaction of three clay minerals with water, dimethyl sulfoxide and dimethyl formamide. Highw. Res. Rec. 1967, 209, 66–78.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. U21A2080 and 51788104), Beijing Natural Science Foundation (No. L223008), and National Key Research and Development Program of China (No. 2022YFB2404403).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuanjun Wang or Liangliang Li.

Electronic Supplementary Material

12274_2023_5663_MOESM1_ESM.pdf

A molecular sieve-containing protective separator to suppress the shuttle effect of redox mediators in lithium-oxygen batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Wu, H., Guan, S. et al. A molecular sieve-containing protective separator to suppress the shuttle effect of redox mediators in lithium-oxygen batteries. Nano Res. 16, 9453–9460 (2023). https://doi.org/10.1007/s12274-023-5663-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5663-5

Keywords

Navigation