Skip to main content
Log in

An FPS-ZM1-encapsulated zeolitic imidazolate framework as a dual proangiogenic drug delivery system for diabetic wound healing

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Inhibitors that target diabetes pathology-related signaling pathways have great therapeutic potential for diabetic wound healing. Metal—organic frameworks (MOFs) are increasingly popular drug delivery systems that have high loading capacity and can release their intrinsic metal ions to act as bioactive agents. In light of this, a receptor for advanced glycation end products (RAGE) inhibitor, 4-chloro-N-cyclohexyl-N-(phenylmethyl)-benzamide (FPS-ZM1), was loaded into a cobalt (Co)-based MOF (zeolitic imidazolate framework-67, ZIF-67) to fabricate FPS-ZM1 encapsulated ZIF-67 (FZ@ZIF-67) nanoparticles (NPs). As a result, FZ@ZIF-67 NPs could dually deliver Co ions and FPS-ZM1 in a controlled manner for over 14 days. Our in vitro study showed that FZ@ZIF-67 NPs not only enhanced angiogenesis by delivering Co ions but also released FPS-ZM1 to promote M2 macrophage polarization and attenuated high glucose (HG)- and/or inflammation-induced impairment of angiogenesis through RAGE inhibition. Moreover, in an in vivo study, FZ@ZIF-67 NPs markedly improved re-epithelialization, collagen deposition, neovascularization, and relieved inflammation in diabetic wounds in rats. This study not only provides a low-cost, effective, and synergistic proangiogenic bioactive agent but also demonstrates that targeting diabetes-related pathological signaling pathways is necessary to ameliorate vascularization impairment during diabetic wound healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armstrong, D. G.; Boulton, A. J. M.; Bus, S. A. Diabetic foot ulcers and their recurrence. N. Engl. J. Med. 2017, 376, 2367–2375.

    Article  Google Scholar 

  2. Schneider, C.; Stratman, S.; Kirsner, R. S. Lower extremity ulcers. Med. Clin. North Am. 2021, 105, 663–679.

    Article  Google Scholar 

  3. Zhang, Y. Q.; Lazzarini, P. A.; McPhail, S. M.; Van Netten, J. J.; Armstrong, D. G.; Pacella, R. E. Global disability burdens of diabetes-related lower-extremity complications in 1990 and 2016. Diabetes Care 2020, 43, 964–974.

    Article  Google Scholar 

  4. Brem, H.; Tomic-Canic, M. Cellular and molecular basis of wound healing in diabetes. J. Clin. Invest. 2007, 117, 1219–1222.

    Article  CAS  Google Scholar 

  5. Veith, A. P.; Henderson, K.; Spencer, A.; Sligar, A. D.; Baker, A. B. Therapeutic strategies for enhancing angiogenesis in wound healing. Adv. Drug Deliv. Rev. 2019, 146, 97–125.

    Article  CAS  Google Scholar 

  6. Desmet, C. M.; Préat, V.; Gallez, B. Nanomedicines and gene therapy for the delivery of growth factors to improve perfusion and oxygenation in wound healing. Adv. Drug Deliv. Rev. 2018, 129, 262–284.

    Article  CAS  Google Scholar 

  7. Lee, D. E.; Ayoub, N.; Agrawal, D. K. Mesenchymal stem cells and cutaneous wound healing: Novel methods to increase cell delivery and therapeutic efficacy. Stem Cell Res. Ther. 2016, 7, 37.

    Article  CAS  Google Scholar 

  8. Wynn, T. A.; Vannella, K. M. Macrophages in tissue repair, regeneration, and fibrosis. Immunity 2016, 44, 450–462.

    Article  CAS  Google Scholar 

  9. Smith, T. D.; Nagalla, R. R.; Chen, E. Y.; Liu, W. F. Harnessing macrophage plasticity for tissue regeneration. Adv. Drug Deliv. Rev. 2017, 114, 193–205.

    Article  CAS  Google Scholar 

  10. Kim, S. Y.; Nair, M. G. Macrophages in wound healing: Activation and plasticity. Immunol. Cell Biol. 2019, 97, 258–267.

    Article  Google Scholar 

  11. Louiselle, A. E.; Niemiec, S. M.; Zgheib, C.; Liechty, K. W. Macrophage polarization and diabetic wound healing. Transl. Res. 2021, 236, 109–116.

    Article  CAS  Google Scholar 

  12. Jiang, Y.; Zhao, W.; Xu, S.; Wei, J.; Lasaosa, F. L.; He, Y.; Mao, H.; Bolea Bailo, R. M.; Kong, D.; Gu, Z. Bioinspired design of mannose-decorated globular lysine dendrimers promotes diabetic wound healing by orchestrating appropriate macrophage polarization. Biomaterials 2022, 280, 121323.

    Article  CAS  Google Scholar 

  13. Wolf, S. J.; Melvin, W. J.; Gallagher, K. Macrophage-mediated inflammation in diabetic wound repair. Semin. Cell Dev. Biol. 2021, 119, 111–118.

    Article  CAS  Google Scholar 

  14. Gan, J. J.; Liu, C. Y.; Li, H. L.; Wang, S. C; Wang, Z. Z.; Kang, Z. Q.; Huang, Z.; Zhang, J. F.; Wang, C. M.; Lv, D. L. et al. Accelerated wound healing in diabetes by reprogramming the macrophages with particle-induced clustering of the mannose receptors. Biomaterials 2019, 219, 119340.

    Article  CAS  Google Scholar 

  15. Ferrante, C. J.; Leibovich, S. J. Regulation of macrophage polarization and wound healing. Adv. Wound Care 2012, 1, 10–16.

    Article  Google Scholar 

  16. Okizaki, S. I.; Ito, Y.; Hosono, K.; Oba, K.; Ohkubo, H.; Amano, H.; Shichiri, M.; Majima, M. Suppressed recruitment of alternatively activated macrophages reduces TGF-β1 and impairs wound healing in streptozotocin-induced diabetic mice. Biomed. Pharmacother. 2015, 70, 317–325.

    Article  CAS  Google Scholar 

  17. Ndip, A.; Wilkinson, F. L.; Jude, E. B.; Boulton, A. J. M.; Alexander, M. Y. RANKL-OPG and rage modulation in vascular calcification and diabetes: Novel targets for therapy. Diabetologia 2014, 57, 2251–2260.

    Article  CAS  Google Scholar 

  18. Yan, S. F.; Ramasamy, R.; Naka, Y.; Schmidt, A. M. Glycation, inflammation, and RAGE: A scaffold for the macrovascular complications of diabetes and beyond. Circ. Res. 2003, 93, 1159–1169.

    Article  CAS  Google Scholar 

  19. Adamopoulos, C.; Piperi, C.; Gargalionis, A. N.; Dalagiorgou, G.; Spilioti, E.; Korkolopoulou, P.; Diamanti-Kandarakis, E.; Papavassiliou, A. G. Advanced glycation end products upregulate lysyl oxidase and endothelin-1 in human aortic endothelial cells via parallel activation of erk1/2-NF-κB and JNK-AP-1 signaling pathways. Cell. Mol. Life Sci. 2016, 73, 1685–1698.

    Article  CAS  Google Scholar 

  20. Massey, N.; Puttachary, S.; Bhat, S. M.; Kanthasamy, A. G.; Charavaryamath, C. HMGB1-RAGE signaling plays a role in organic dust-induced microglial activation and neuroinflammation. Toxicol. Sci. 2019, 169, 579–592.

    Article  CAS  Google Scholar 

  21. Son, M.; Porat, A.; He, M. Z.; Suurmond, J.; Santiago-Schwarz, F.; Andersson, U.; Coleman, T. R.; Volpe, B. T.; Tracey, K. J.; Al-Abed, Y. et al. C1q and HMGB1 reciprocally regulate human macrophage polarization. Blood 2016, 128, 2218–2228.

    Article  CAS  Google Scholar 

  22. Wang, Z. W.; Zhang, J. Q.; Chen, L.; Li, J. J.; Zhang, H.; Guo, X. H. Glycine suppresses AGE/RAGE signaling pathway and subsequent oxidative stress by restoring glo1 function in the aorta of diabetic rats and in HUVECs. Oxid. Med. Cell. Longev. 2019, 2019, 4628962.

    Google Scholar 

  23. Su, C.; Liu, Y. Z.; Li, R. Z.; Wu, W.; Fawcett, J. P.; Gu, J. K. Absorption, distribution, metabolism and excretion of the biomaterials used in nanocarrier drug delivery systems. Adv. Drug Deliv. Rev. 2019, 143, 97–114.

    Article  CAS  Google Scholar 

  24. Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.

    Article  CAS  Google Scholar 

  25. Wang, X. P.; Chen, X. Z.; Alcantara, C. C. J.; Sevim, S.; Hoop, M.; Terzopoulou, A.; De Marco, C.; Hu, C. Z.; De Mello, A. J.; Falcaro, P. et al. MOFBOTS: Metal—organic framework-based biomedical microrobots. Adv. Mater. 2019, 31, 1901592.

    Article  CAS  Google Scholar 

  26. Wang, Y.; Yan, J. H.; Wen, N. C.; Xiong, H. J.; Cai, S. D.; He, Q. Y.; Hu, Y. Q.; Peng, D. M.; Liu, Z. B.; Liu, Y. F. Metal—organic frameworks for stimuli-responsive drug delivery. Biomaterials 2020, 230, 119619.

    Article  CAS  Google Scholar 

  27. Xu, M. R.; Hu, Y.; Ding, W. P.; Li, F. F.; Lin, J.; Wu, M.; Wu, J. J.; Wen, L. P.; Qiu, B. S.; Wei, P. F. et al. Rationally designed rapamycin-encapsulated ZIF-8 nanosystem for overcoming chemotherapy resistance. Biomaterials 2020, 258, 120308.

    Article  CAS  Google Scholar 

  28. Zheng, H. Q.; Zhang, Y. N.; Liu, L. F.; Wan, W.; Guo, P.; Nystrom, A. M.; Zou, X. D. One-pot synthesis of metal-organic frameworks with encapsulated target molecules and their applications for controlled drug delivery. J. Am. Chem. Soc. 2016, 138, 962–968.

    Article  CAS  Google Scholar 

  29. Zhao, H. Y.; Ye, H. S.; Zhou, J.; Tang, G. P.; Hou, Z. Y.; Bai, H. Z. Montmorillonite-enveloped zeolitic imidazolate framework as a nourishing oral nano-platform for gastrointestinal drug delivery. ACS Appl. Mater. Interfaces 2020, 12, 49431–49441.

    Article  CAS  Google Scholar 

  30. Vasconcelos, D. M.; Santos, S. G.; Lamghari, M.; Barbosa, M. A. The two faces of metal ions: From implants rejection to tissue repair/regeneration. Biomaterials 2016, 84, 262–275.

    Article  CAS  Google Scholar 

  31. Tanaka, T.; Kojima, I.; Ohse, T.; Ingelfinger, J. R.; Adler, S.; Fujita, T.; Nangaku, M. Cobalt promotes angiogenesis via hypoxia-inducible factor and protects tubulointerstitium in the remnant kidney model. Lab. Invest. 2005, 85, 1292–1307.

    Article  CAS  Google Scholar 

  32. Sun, Y.; Liu, X. Z.; Zhu, Y.; Han, Y.; Shen, J. J.; Bao, B. B.; Gao, T.; Lin, J. Q.; Huang, T. L.; Xu, J. et al. Tunable and controlled release of cobalt ions from metal-organic framework hydrogel nanocomposites enhances bone regeneration. ACS Appl. Mater. Interfaces 2021, 13, 59051–59066.

    Article  CAS  Google Scholar 

  33. Qiu, P. C.; Li, M. B.; Chen, K.; Fang, B.; Chen, P. F.; Tang, Z. B.; Lin, X. F.; Fan, S. W. Periosteal matrix-derived hydrogel promotes bone repair through an early immune regulation coupled with enhanced angio- and osteogenesis. Biomaterials 2020, 227, 119552.

    Article  CAS  Google Scholar 

  34. Saliba, D.; Ammar, M.; Rammal, M.; Al-Ghoul, M.; Hmadeh, M. Crystal growth of ZIF-8, ZIF-67, and their mixed-metal derivatives. J. Am. Chem. Soc. 2018, 140, 1812–1823.

    Article  CAS  Google Scholar 

  35. Zhuang, J.; Kuo, C. H.; Chou, L. Y.; Liu, D. Y.; Weerapana, E.; Tsung, C. K. Optimized metal-organic-framework nanospheres for drug delivery: Evaluation of small-molecule encapsulation. ACS Nano 2014, 8, 2812–2819.

    Article  CAS  Google Scholar 

  36. Qian, J. F.; Sun, F. A.; Qin, L. Z. Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals. Mater. Lett. 2012, 82, 220–223.

    Article  CAS  Google Scholar 

  37. Zhen, Z.; Liu, X. L.; Huang, T.; Xi, T. F.; Zheng, Y. F. Hemolysis and cytotoxicity mechanisms of biodegradable magnesium and its alloys. Mater. Sci. Eng. C 2015, 46, 202–206.

    Article  CAS  Google Scholar 

  38. Shen, J. J.; Sun, Y.; Liu, X. Z.; Zhu, Y.; Bao, B. B.; Gao, T.; Chai, Y. M.; Xu, J.; Zheng, X. Y. EGFL6 regulates angiogenesis and osteogenesis in distraction osteogenesis via Wnt/β-catenin signaling. Stem Cell Res. Ther. 2021, 12, 415.

    Article  CAS  Google Scholar 

  39. Erdem, J. S.; Alswady-Hoff, M.; Ervik, T. K.; Skare, Ø.; Ellingsen, D. G.; Zienolddiny, S. Cellulose nanocrystals modulate alveolar macrophage phenotype and phagocytic function. Biomaterials 2019, 203, 31–42.

    Article  CAS  Google Scholar 

  40. Sun, Y.; Zhu, Y.; Liu, X. Z.; Chai, Y. M.; Xu, J. Morroniside attenuates high glucose-induced BMSC dysfunction by regulating the Glo1/AGE/RAGE axis. Cell Prolif. 2020, 53, e12866.

    CAS  Google Scholar 

  41. Zhu, Y.; Wang, Y. M.; Jia, Y. C.; Xu, J.; Chai, Y. M. Catalpol promotes the osteogenic differentiation of bone marrow mesenchymal stem cells via the Wnt/β-catenin pathway. Stem Cell Res. Ther. 2019, 10, 37.

    Article  CAS  Google Scholar 

  42. Tang, Q.; Lim, T.; Wei, X. J.; Wang, Q. Y.; Xu, J. C.; Shen, L. Y.; Zhu, Z. Z.; Zhang, C. Q. A free-standing multilayer film as a novel delivery carrier of platelet lysates for potential wound-dressing applications. Biomaterials 2020, 255, 120138.

    Article  CAS  Google Scholar 

  43. ISO 10993-5: 2009. Biological evaluation of medical devices—Part 5: Tests for in vitro cytotoxicity, International Organization for Standardization: US-ANSI, 2009.

  44. Eming, S. A.; Martin, P.; Tomic-Canic, M. Wound repair and regeneration: Mechanisms, signaling, and translation. Sci. Transl. Med. 2014, 6, 265sr6.

    Article  CAS  Google Scholar 

  45. Nowak-Sliwinska, P.; Alitalo, K.; Allen, E.; Anisimov, A.; Aplin, A. C.; Auerbach, R.; Augustin, H. G.; Bates, D. O.; Van Beijnum, J. R.; Bender, R. H. F. et al. Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis 2018, 21, 425–532.

    Article  Google Scholar 

  46. Colás-Algora, N.; García-Weber, D.; Cacho-Navas, C.; Barroso, S.; Caballero, A.; Ribas, C.; Correas, I.; Millán, J. Compensatory increase of VE-cadherin expression through ETS1 regulates endothelial barrier function in response to TNFα. Cell. Mol. Life Sci. 2020, 77, 2125–2140.

    Article  CAS  Google Scholar 

  47. Moens, S.; Goveia, J.; Stapor, P. C.; Cantelmo, A. R.; Carmeliet, P. The multifaceted activity of VEGF in angiogenesis-implications for therapy responses. Cytokine Growth Factor Rev. 2014, 25, 473–482.

    Article  CAS  Google Scholar 

  48. Janssens, R.; Struyf, S.; Proost, P. Pathological roles of the homeostatic chemokine CXCL12. Cytokine Growth Factor Rev. 2018, 44, 51–68.

    Article  CAS  Google Scholar 

  49. Jha, J. C.; Ho, F.; Dan, C.; Jandeleit-Dahm, K. A causal link between oxidative stress and inflammation in cardiovascular and renal complications of diabetes. Clin. Sci. 2018, 132, 1811–1836.

    Article  CAS  Google Scholar 

  50. Jin, X.; Yao, T. Q.; Zhou, Z. E.; Zhu, J.; Zhang, S.; Hu, W.; Shen, C. X. Advanced glycation end products enhance macrophages polarization into M1 phenotype through activating RAGE/NF-κB pathway. BioMed Res. Int. 2015, 2015, 732450.

    Google Scholar 

  51. Vanhoutte, P. M.; Shimokawa, H.; Feletou, M.; Tang, E. H. C. Endothelial dysfunction and vascular disease-a 30th anniversary update. Acta Physiol. 2017, 219, 22–96.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the National Natural Science Foundation of China (Nos. 81930069, 81772338, 81974331, and 81802156) and supported by the Major Scientific Research and Innovation Project of Shanghai Municipal Education Commission (No. 2019-01-07-00-02-E00043).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jia Xu, Yimin Chai or Xianyou Zheng.

Electronic Supplementary Material

12274_2022_4106_MOESM1_ESM.pdf

An FPS-ZM1-encapsulated zeolitic imidazolate framework as a dual proangiogenic drug delivery system for diabetic wound healing

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Bao, B., Zhu, Y. et al. An FPS-ZM1-encapsulated zeolitic imidazolate framework as a dual proangiogenic drug delivery system for diabetic wound healing. Nano Res. 15, 5216–5229 (2022). https://doi.org/10.1007/s12274-022-4106-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4106-z

Keywords

Navigation