Skip to main content

Advertisement

Log in

Advanced glycation end products upregulate lysyl oxidase and endothelin-1 in human aortic endothelial cells via parallel activation of ERK1/2–NF-κB and JNK–AP-1 signaling pathways

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Endothelial dysfunction involves deregulation of the key extracellular matrix (ECM) enzyme lysyl oxidase (LOX) and the vasoconstrictor protein, endothelin-1 (ET-1), whose gene expression can be modulated by the transcriptional activators nuclear factor kappa B (NF-κB) and activator protein-1 (AP-1). Advanced glycation end products (AGEs) present an aggravating factor of endothelial dysfunction which upon engagement to their receptor RAGE induce upregulation of mitogen-activated protein kinases (MAPKs), leading to NF-κB and AP-1 potentiation. We hypothesized that AGEs could induce NF-κΒ- and AP-1-dependent regulation of LOX and ET-1 expression via the AGE/RAGE/MAPK signaling axis. Western blot, real-time qRT-PCR, FACS analysis and electrophoretic mobility-shift assays were employed in human aortic endothelial cells (HAECs) following treatment with AGE-bovine serum albumin (AGE-BSA) to investigate the signaling pathway towards this hypothesis. Furthermore, immunohistochemical analysis of AGEs, RAGE, LOX and ET-1 expression was conducted in aortic endothelium of a rat experimental model exposed to high- or low-AGE content diet. HAECs exposed to AGE-BSA for various time points exhibited upregulation of LOX and ET-1 mRNA levels in a dose- and time-dependent manner. Exposure of HAECs to AGE-BSA also showed specific elevation of phospho(p)-ERK1/2 and p-JNK levels in a dose- and time-dependent fashion. AGE administration significantly increased NF-κΒ- and AP-1-binding activity to both LOX and ET-1 cognate promoter regions. Moreover, LOX and ET-1 overexpression in rat aortic endothelium upon high-AGE content diet confirmed the functional interrelation of these molecules. Our findings demonstrate that AGEs trigger NF-κΒ- and AP-1-mediated upregulation of LOX and ET-1 via the AGE/RAGE/MAPK signaling cascade in human endothelial cells, thus contributing to distorted endothelial homeostasis by impairing endothelial barrier function, altering ECM biomechanical properties and cell proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AGEs:

Advanced glycation end products

AP-1:

Activator protein-1

BAECs:

Bovine aortic endothelial cells

COX-2:

Cyclo-oxygenase-2

CRP:

C-reactive protein

CVD:

Cardiovascular disease

ET-1:

Endothelin-1

HDL:

High-density lipoprotein

ICAM-1:

Intercellular adhesion molecule-1

IL-1β:

Interleukin-1 beta

LDL:

Low-density lipoprotein

LOX:

Lysyl oxidase

MAPK:

Mitogen-activated protein kinase

NF-κB:

Nuclear factor kappa B

NO:

Nitric oxide

PCOS:

Polycystic ovary syndrome

RAGE:

Receptor for AGEs

ROS:

Reactive oxygen species

VEGF:

Vascular endothelial growth factor

VSMCs:

Vascular smooth muscle cells

References

  1. Lloyd-Jones DM, Hong Y, Labarthe D, Mozaffarian D, Appel LJ, Van Horn L, Greenlund K, Daniels S, Nichol G, Tomaselli GF, Arnett DK, Fonarow GC, Ho PM, Lauer MS, Masoudi FA, Robertson RM, Roger V, Schwamm LH, Sorlie P, Yancy CW, Rosamond WD (2010) Defining and setting national goals for cardiovascular health promotion and disease reduction: the American Heart Association’s strategic Impact Goal through 2020 and beyond. Circulation 121(4):586–613. doi:10.1161/CIRCULATIONAHA.109.192703

    Article  PubMed  Google Scholar 

  2. Seals DR, Jablonski KL, Donato AJ (2011) Aging and vascular endothelial function in humans. Clin Sci (Lond) 120(9):357–375. doi:10.1042/CS20100476

    Article  CAS  Google Scholar 

  3. Kolluru GK, Bir SC, Kevil CG (2012) Endothelial dysfunction and diabetes: effects on angiogenesis, vascular remodeling, and wound healing. Int J Vasc Med 2012:918267. doi:10.1155/2012/918267

    PubMed  PubMed Central  Google Scholar 

  4. Tabit CE, Chung WB, Hamburg NM, Vita JA (2010) Endothelial dysfunction in diabetes mellitus: molecular mechanisms and clinical implications. Rev Endocr Metab Disord 11(1):61–74. doi:10.1007/s11154-010-9134-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Stirban A, Tschope D (2015) Vascular effects of dietary advanced glycation end products. Int J Endocrinol 2015:836498. doi:10.1155/2015/836498

    Article  PubMed  PubMed Central  Google Scholar 

  6. Brownlee M (1995) Advanced protein glycosylation in diabetes and aging. Annu Rev Med 46:223–234. doi:10.1146/annurev.med.46.1.223

    Article  CAS  PubMed  Google Scholar 

  7. Basta G, Lazzerini G, Massaro M, Simoncini T, Tanganelli P, Fu C, Kislinger T, Stern DM, Schmidt AM, De Caterina R (2002) Advanced glycation end products activate endothelium through signal-transduction receptor RAGE: a mechanism for amplification of inflammatory responses. Circulation 105(7):816–822

    Article  CAS  PubMed  Google Scholar 

  8. Harja E, Bu DX, Hudson BI, Chang JS, Shen X, Hallam K, Kalea AZ, Lu Y, Rosario RH, Oruganti S, Nikolla Z, Belov D, Lalla E, Ramasamy R, Yan SF, Schmidt AM (2008) Vascular and inflammatory stresses mediate atherosclerosis via RAGE and its ligands in apoE−/− mice. J Clin Invest 118(1):183–194. doi:10.1172/JCI32703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kajikawa M, Nakashima A, Fujimura N, Maruhashi T, Iwamoto Y, Iwamoto A, Matsumoto T, Oda N, Hidaka T, Kihara Y, Chayama K, Goto C, Aibara Y, Noma K, Takeuchi M, Matsui T, Yamagishi S, Higashi Y (2014) Ratio of serum levels of AGEs to soluble form of RAGE is a predictor of endothelial function. Diabetes Care 38(1):119–125. doi:10.2337/dc14-1435

    Article  PubMed  Google Scholar 

  10. Lander HM, Tauras JM, Ogiste JS, Hori O, Moss RA, Schmidt AM (1997) Activation of the receptor for advanced glycation end products triggers a p21(ras)-dependent mitogen-activated protein kinase pathway regulated by oxidant stress. J Biol Chem 272(28):17810–17814

    Article  CAS  PubMed  Google Scholar 

  11. Yeh CH, Sturgis L, Haidacher J, Zhang XN, Sherwood SJ, Bjercke RJ, Juhasz O, Crow MT, Tilton RG, Denner L (2001) Requirement for p38 and p44/p42 mitogen-activated protein kinases in RAGE-mediated nuclear factor-kappaB transcriptional activation and cytokine secretion. Diabetes 50(6):1495–1504

    Article  CAS  PubMed  Google Scholar 

  12. Bianchi R, Adami C, Giambanco I, Donato R (2007) S100B binding to RAGE in microglia stimulates COX-2 expression. J Leukoc Biol 81(1):108–118. doi:10.1189/jlb.0306198

    Article  CAS  PubMed  Google Scholar 

  13. Bianchi R, Giambanco I, Donato R (2010) S100B/RAGE-dependent activation of microglia via NF-kappaB and AP-1 Co-regulation of COX-2 expression by S100B, IL-1beta and TNF-alpha. Neurobiol Aging 31(4):665–677. doi:10.1016/j.neurobiolaging.2008.05.017

    Article  CAS  PubMed  Google Scholar 

  14. Xie J, Mendez JD, Mendez-Valenzuela V, Aguilar-Hernandez MM (2013) Cellular signalling of the receptor for advanced glycation end products (RAGE). Cell Signal 25(11):2185–2197. doi:10.1016/j.cellsig.2013.06.013

    Article  CAS  PubMed  Google Scholar 

  15. Rodriguez C, Martinez-Gonzalez J, Raposo B, Alcudia JF, Guadall A, Badimon L (2008) Regulation of lysyl oxidase in vascular cells: lysyl oxidase as a new player in cardiovascular diseases. Cardiovasc Res 79(1):7–13. doi:10.1093/cvr/cvn102

    Article  CAS  PubMed  Google Scholar 

  16. Raposo B, Rodriguez C, Martinez-Gonzalez J, Badimon L (2004) High levels of homocysteine inhibit lysyl oxidase (LOX) and downregulate LOX expression in vascular endothelial cells. Atherosclerosis 177(1):1–8. doi:10.1016/j.atherosclerosis.2004.06.015

    Article  CAS  PubMed  Google Scholar 

  17. Rodriguez C, Alcudia JF, Martinez-Gonzalez J, Raposo B, Navarro MA, Badimon L (2008) Lysyl oxidase (LOX) down-regulation by TNFalpha: a new mechanism underlying TNFalpha-induced endothelial dysfunction. Atherosclerosis 196(2):558–564. doi:10.1016/j.atherosclerosis.2007.06.002

    Article  CAS  PubMed  Google Scholar 

  18. Rodriguez C, Raposo B, Martinez-Gonzalez J, Casani L, Badimon L (2002) Low density lipoproteins downregulate lysyl oxidase in vascular endothelial cells and the arterial wall. Arterioscler Thromb Vasc Biol 22(9):1409–1414

    Article  CAS  PubMed  Google Scholar 

  19. Osawa T, Ohga N, Akiyama K, Hida Y, Kitayama K, Kawamoto T, Yamamoto K, Maishi N, Kondoh M, Onodera Y, Fujie M, Shinohara N, Nonomura K, Shindoh M, Hida K (2013) Lysyl oxidase secreted by tumour endothelial cells promotes angiogenesis and metastasis. Br J Cancer 109(8):2237–2247. doi:10.1038/bjc.2013.535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhu J, Huang S, Wu G, Huang C, Li X, Chen Z, Zhao L, Zhao Y (2015) Lysyl Oxidase is predictive of unfavorable outcomes and essential for regulation of vascular endothelial growth factor in hepatocellular carcinoma. Dig Dis Sci. 60(10):3019-3031. doi:10.1007/s10620-015-3734-5

    Article  CAS  PubMed  Google Scholar 

  21. Nuthakki VK, Fleser PS, Malinzak LE, Seymour ML, Callahan RE, Bendick PJ, Zelenock GB, Shanley CJ (2004) Lysyl oxidase expression in a rat model of arterial balloon injury. J Vasc Surg 40(1):123–129. doi:10.1016/j.jvs.2004.02.028

    Article  PubMed  Google Scholar 

  22. Bourque SL, Davidge ST, Adams MA (2011) The interaction between endothelin-1 and nitric oxide in the vasculature: new perspectives. Am J Physiol Regul Integr Comp Physiol 300(6):R1288–R1295. doi:10.1152/ajpregu.00397.2010

    Article  CAS  PubMed  Google Scholar 

  23. Pernow J, Shemyakin A, Bohm F (2012) New perspectives on endothelin-1 in atherosclerosis and diabetes mellitus. Life Sci 91(13–14):507–516. doi:10.1016/j.lfs.2012.03.029

    Article  CAS  PubMed  Google Scholar 

  24. Papachroni KK, Piperi C, Levidou G, Korkolopoulou P, Pawelczyk L, Diamanti-Kandarakis E, Papavassiliou AG (2010) Lysyl oxidase interacts with AGE signalling to modulate collagen synthesis in polycystic ovarian tissue. J Cell Mol Med 14(10):2460–2469. doi:10.1111/j.1582-4934.2009.00841.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chronopoulos A, Tang A, Beglova E, Trackman PC, Roy S (2010) High glucose increases lysyl oxidase expression and activity in retinal endothelial cells: mechanism for compromised extracellular matrix barrier function. Diabetes 59(12):3159–3166. doi:10.2337/db10-0365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Christakou C, Economou F, Livadas S, Piperi C, Adamopoulos C, Marinakis E, Diamanti-Kandarakis E (2011) Strong and positive association of endothelin-1 with AGEs in PCOS: a causal relationship or a bystander? Hormones (Athens) 10(4):292–297

    Article  Google Scholar 

  27. Bierhaus A, Chevion S, Chevion M, Hofmann M, Quehenberger P, Illmer T, Luther T, Berentshtein E, Tritschler H, Muller M, Wahl P, Ziegler R, Nawroth PP (1997) Advanced glycation end product-induced activation of NF-kappaB is suppressed by alpha-lipoic acid in cultured endothelial cells. Diabetes 46(9):1481–1490

    Article  CAS  PubMed  Google Scholar 

  28. Quehenberger P, Bierhaus A, Fasching P, Muellner C, Klevesath M, Hong M, Stier G, Sattler M, Schleicher E, Speiser W, Nawroth PP (2000) Endothelin 1 transcription is controlled by nuclear factor-kappaB in AGE-stimulated cultured endothelial cells. Diabetes 49(9):1561–1570

    Article  CAS  PubMed  Google Scholar 

  29. Quehenberger P, Exner M, Sunder-Plassmann R, Ruzicka K, Bieglmayer C, Endler G, Muellner C, Speiser W, Wagner O (2002) Leptin induces endothelin-1 in endothelial cells in vitro. Circ Res 90(6):711–718

    Article  CAS  PubMed  Google Scholar 

  30. Stow LR, Jacobs ME, Wingo CS, Cain BD (2011) Endothelin-1 gene regulation. FASEB J 25(1):16–28. doi:10.1096/fj.10-161612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    CAS  PubMed  Google Scholar 

  32. Guo XH, Huang QB, Chen B, Wang SY, Li Q, Zhu YJ, Hou FF, Fu N, Brunk UT, Zhao M (2006) Advanced glycation end products induce actin rearrangement and subsequent hyperpermeability of endothelial cells. APMIS 114(12):874–883. doi:10.1111/j.1600-0463.2006.apm_372.x

    Article  CAS  PubMed  Google Scholar 

  33. Shen C, Li Q, Zhang YC, Ma G, Feng Y, Zhu Q, Dai Q, Chen Z, Yao Y, Chen L, Jiang Y, Liu N (2010) Advanced glycation endproducts increase EPC apoptosis and decrease nitric oxide release via MAPK pathways. Biomed Pharmacother 64(1):35–43. doi:10.1016/j.biopha.2009.03.002

    Article  CAS  PubMed  Google Scholar 

  34. Sun C, Liang C, Ren Y, Zhen Y, He Z, Wang H, Tan H, Pan X, Wu Z (2009) Advanced glycation end products depress function of endothelial progenitor cells via p38 and ERK 1/2 mitogen-activated protein kinase pathways. Basic Res Cardiol 104(1):42–49. doi:10.1007/s00395-008-0738-8

    Article  CAS  PubMed  Google Scholar 

  35. Zhong Y, Cheng CF, Luo YZ, Tian CW, Yang H, Liu BR, Chen MS, Chen YF, Liu SM (2015) C-reactive protein stimulates RAGE expression in human coronary artery endothelial cells in vitro via ROS generation and ERK/NF-kappaB activation. Acta Pharmacol Sin 36(4):440–447. doi:10.1038/aps.2014.163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Halcox JP, Schenke WH, Zalos G, Mincemoyer R, Prasad A, Waclawiw MA, Nour KR, Quyyumi AA (2002) Prognostic value of coronary vascular endothelial dysfunction. Circulation 106(6):653–658

    Article  PubMed  Google Scholar 

  37. Widlansky ME, Gokce N, Keaney JF Jr, Vita JA (2003) The clinical implications of endothelial dysfunction. J Am Coll Cardiol 42(7):1149–1160. doi:10.1016/S0735-1097(03)00994-X

    Article  CAS  PubMed  Google Scholar 

  38. Cooke JP (2000) The endothelium: a new target for therapy. Vasc Med 5(1):49–53

    Article  CAS  PubMed  Google Scholar 

  39. Bonetti PO, Lerman LO, Lerman A (2003) Endothelial dysfunction: a marker of atherosclerotic risk. Arterioscler Thromb Vasc Biol 23(2):168–175

    Article  CAS  PubMed  Google Scholar 

  40. Vita JA (2002) Nitric oxide-dependent vasodilation in human subjects. Methods Enzymol 359:186–200

    Article  CAS  PubMed  Google Scholar 

  41. Deanfield JE, Halcox JP, Rabelink TJ (2007) Endothelial function and dysfunction: testing and clinical relevance. Circulation 115(10):1285–1295. doi:10.1161/CIRCULATIONAHA.106.652859

    PubMed  Google Scholar 

  42. Feletou M, Vanhoutte PM (2006) Endothelial dysfunction: a multifaceted disorder (The Wiggers Award Lecture). Am J Physiol Heart Circ Physiol 291(3):H985–1002. doi:10.1152/ajpheart.00292.2006

    Article  CAS  PubMed  Google Scholar 

  43. Anderson TJ, Uehata A, Gerhard MD, Meredith IT, Knab S, Delagrange D, Lieberman EH, Ganz P, Creager MA, Yeung AC et al (1995) Close relation of endothelial function in the human coronary and peripheral circulations. J Am Coll Cardiol 26(5):1235–1241. doi:10.1016/0735-1097(95)00327-4

    Article  CAS  PubMed  Google Scholar 

  44. Takase B, Uehata A, Akima T, Nagai T, Nishioka T, Hamabe A, Satomura K, Ohsuzu F, Kurita A (1998) Endothelium-dependent flow-mediated vasodilation in coronary and brachial arteries in suspected coronary artery disease. Am J Cardiol 82(12):1535–1539, A1537–A1538. doi:10.1016/S0002-9149(98)00702-4

  45. Chua BH, Chua CC, Diglio CA, Siu BB (1993) Regulation of endothelin-1 mRNA by angiotensin II in rat heart endothelial cells. Biochim Biophys Acta 1178(2):201–206. doi:10.1016/0167-4889(93)90010-M

    Article  CAS  PubMed  Google Scholar 

  46. Dekker GA, Kraayenbrink AA, Zeeman GG, van Kamp GJ (1991) Increased plasma levels of the novel vasoconstrictor peptide endothelin in severe pre-eclampsia. Eur J Obstet Gynecol Reprod Biol 40(3):215–220

    Article  CAS  PubMed  Google Scholar 

  47. Marsden PA, Brenner BM (1992) Transcriptional regulation of the endothelin-1 gene by TNF-alpha. Am J Physiol 262(4 Pt 1):C854–C861

    CAS  PubMed  Google Scholar 

  48. Schini VB, Hendrickson H, Heublein DM, Burnett JC Jr, Vanhoutte PM (1989) Thrombin enhances the release of endothelin from cultured porcine aortic endothelial cells. Eur J Pharmacol 165(2–3):333–334. doi:10.1016/0014-2999(89)90733-4

    Article  CAS  PubMed  Google Scholar 

  49. Yoshizumi M, Kurihara H, Morita T, Yamashita T, Oh-hashi Y, Sugiyama T, Takaku F, Yanagisawa M, Masaki T, Yazaki Y (1990) Interleukin 1 increases the production of endothelin-1 by cultured endothelial cells. Biochem Biophys Res Commun 166(1):324–329. doi:10.1016/0006-291X(90)91948-R

    Article  CAS  PubMed  Google Scholar 

  50. Bruel A, Oxlund H (1996) Changes in biomechanical properties, composition of collagen and elastin, and advanced glycation endproducts of the rat aorta in relation to age. Atherosclerosis 127(2):155–165. doi:10.1016/S0021-9150(96)05947-3

    Article  CAS  PubMed  Google Scholar 

  51. Semba RD, Nicklett EJ, Ferrucci L (2010) Does accumulation of advanced glycation end products contribute to the aging phenotype? J Gerontol A Biol Sci Med Sci 65(9):963–975. doi:10.1093/gerona/glq074

    Article  PubMed  Google Scholar 

  52. Vlassara H, Fuh H, Makita Z, Krungkrai S, Cerami A, Bucala R (1992) Exogenous advanced glycosylation end products induce complex vascular dysfunction in normal animals: a model for diabetic and aging complications. Proc Natl Acad Sci U S A 89(24):12043–12047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schmidt AM, Vianna M, Gerlach M, Brett J, Ryan J, Kao J, Esposito C, Hegarty H, Hurley W, Clauss M et al (1992) Isolation and characterization of two binding proteins for advanced glycosylation end products from bovine lung which are present on the endothelial cell surface. J Biol Chem 267(21):14987–14997

    CAS  PubMed  Google Scholar 

  54. Zieman SJ, Melenovsky V, Clattenburg L, Corretti MC, Capriotti A, Gerstenblith G, Kass DA (2007) Advanced glycation endproduct crosslink breaker (alagebrium) improves endothelial function in patients with isolated systolic hypertension. J Hypertens 25(3):577–583. doi:10.1097/HJH.0b013e328013e7dd

    Article  CAS  PubMed  Google Scholar 

  55. Simm A, Munch G, Seif F, Schenk O, Heidland A, Richter H, Vamvakas S, Schinzel R (1997) Advanced glycation endproducts stimulate the MAP-kinase pathway in tubulus cell line LLC-PK1. FEBS Lett 410(2–3):481–484. doi:10.1016/S0014-5793(97)00644-3

    Article  CAS  PubMed  Google Scholar 

  56. Diamanti-Kandarakis E, Piperi C, Kalofoutis A, Creatsas G (2005) Increased levels of serum advanced glycation end-products in women with polycystic ovary syndrome. Clin Endocrinol (Oxf) 62(1):37–43. doi:10.1111/j.1365-2265.2004.02170.x

    Article  CAS  Google Scholar 

  57. Henle T, Miyata T (2003) Advanced glycation end products in uremia. Adv Ren Replace Ther 10(4):321–331. doi:10.1053/j.arrt.2003.08.006

    Article  PubMed  Google Scholar 

  58. Cai L, Kang YJ (2001) Oxidative stress and diabetic cardiomyopathy: a brief review. Cardiovasc Toxicol 1(3):181–193. doi:10.1385/CT:1:3:181

    Article  CAS  PubMed  Google Scholar 

  59. Libby P, Ridker PM, Hansson GK (2011) Progress and challenges in translating the biology of atherosclerosis. Nature 473(7347):317–325. doi:10.1038/nature10146

    Article  CAS  PubMed  Google Scholar 

  60. Munzel T, Gori T, Bruno RM, Taddei S (2010) Is oxidative stress a therapeutic target in cardiovascular disease? Eur Heart J 31(22):2741–2748. doi:10.1093/eurheartj/ehq396

    Article  PubMed  Google Scholar 

  61. Tinkel J, Hassanain H, Khouri SJ (2012) Cardiovascular antioxidant therapy: a review of supplements, pharmacotherapies, and mechanisms. Cardiol Rev 20(2):77–83. doi:10.1097/CRD.0b013e31823dbbad

    PubMed  Google Scholar 

  62. Devaraj S, Kumaresan PR, Jialal I (2011) C-reactive protein induces release of both endothelial microparticles and circulating endothelial cells in vitro and in vivo: further evidence of endothelial dysfunction. Clin Chem 57(12):1757–1761. doi:10.1373/clinchem.2011.169839

    Article  CAS  PubMed  Google Scholar 

  63. Kagan HM, Raghavan J, Hollander W (1981) Changes in aortic lysyl oxidase activity in diet-induced atherosclerosis in the rabbit. Arteriosclerosis 1(4):287–291

    Article  CAS  PubMed  Google Scholar 

  64. Maki JM, Sormunen R, Lippo S, Kaarteenaho-Wiik R, Soininen R, Myllyharju J (2005) Lysyl oxidase is essential for normal development and function of the respiratory system and for the integrity of elastic and collagen fibers in various tissues. Am J Pathol 167(4):927–936. doi:10.1016/S0002-9440(10)61183-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Bacon CR, Cary NR, Davenport AP (1996) Endothelin peptide and receptors in human atherosclerotic coronary artery and aorta. Circ Res 79(4):794–801

    Article  CAS  PubMed  Google Scholar 

  66. Donato AJ, Gano LB, Eskurza I, Silver AE, Gates PE, Jablonski K, Seals DR (2009) Vascular endothelial dysfunction with aging: endothelin-1 and endothelial nitric oxide synthase. Am J Physiol Heart Circ Physiol 297(1):H425–H432. doi:10.1152/ajpheart.00689.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Goel A, Su B, Flavahan S, Lowenstein CJ, Berkowitz DE, Flavahan NA (2010) Increased endothelial exocytosis and generation of endothelin-1 contributes to constriction of aged arteries. Circ Res 107(2):242–251. doi:10.1161/CIRCRESAHA.109.210229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanasios G. Papavassiliou.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest with any financial organization regarding the material discussed in the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adamopoulos, C., Piperi, C., Gargalionis, A.N. et al. Advanced glycation end products upregulate lysyl oxidase and endothelin-1 in human aortic endothelial cells via parallel activation of ERK1/2–NF-κB and JNK–AP-1 signaling pathways. Cell. Mol. Life Sci. 73, 1685–1698 (2016). https://doi.org/10.1007/s00018-015-2091-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-2091-z

Keywords

Navigation