Skip to main content
Log in

Biomass-assisted approach for large-scale construction of multi-functional isolated single-atom site catalysts

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In recent years, the isolated single-atom site (ISAS) catalysts have attracted much attention as they are cost-effective, can achieve 100% atom-utilization efficiency, and often display superior catalytic performance. Here, we developed a biomass-assisted pyrolysis-etching-activation (PEA) strategy to construct ISAS metal decorated on N and B co-doped porous carbon (ISAS M/NBPC, M = Co, Fe, or Ni) catalysts. This PEA strategy can be applied in the universal and large-scale preparation of ISAS catalysts. Interestingly, the ISAS M/NBPC (M = Co, Fe, or Ni) catalysts show multi-functional features and excellent catalytic activities. They can be used to conduct different types of catalytic reactions, such as O-silylation (OSI), oxidative dehydrogenation (ODH), and transfer hydrogenation (THG). In addition, we used the transfer hydrogenation of nitrobenzene as a typical reaction and revealed the difference between ISAS Co/NBPC and ISAS Co/NPC (N-doped porous carbon) catalysts by density functional theory (DFT) calculations, and which showed that the decreased barrier of the ratedetermining step and the low-lying potential energy diagram indicate that the catalytic activity is higher when ISAS Co/NBPC is used than that when ISAS Co/NPC is used. These results demonstrate that the catalytic performance can be effectively improved by adjusting the coordination environment around the ISAS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, Y. J., Ji, S. F., Chen, C., Peng, Q., Wang, D. S., Li, Y. D. Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule 2018, 2, 1242–1264.

    Article  CAS  Google Scholar 

  2. Li, Z., Ji, S. F., Liu, Y. W., Cao, X., Tian, S. B., Chen, Y. J., Niu, Z. Q., Li, Y. D. Well-defined materials for heterogeneous catalysis: From nanoparticles to isolated single-atom sites. Chem. Rev. 2020, 120, 623–682.

    Article  CAS  Google Scholar 

  3. Ji, S. F.; Chen, Y. J., Wang, X. L., Zhang, Z. D., Wang, D. S., Li, Y. D. Chemical synthesis of single atomic site catalysts. Chem. Rev. 2020, 120, 11900–11955.

    Article  CAS  Google Scholar 

  4. Yang, J. R., Li, W. H., Wang, D. S., Li, Y. D. Single-atom materials: Small structures determine macroproperties. Small Struct. 2021, 2, 2000051.

    Article  CAS  Google Scholar 

  5. Kaiser, S. K., Chen, Z. P., Akl, D. F., Mitchell, S.; Perez-Ramirez, J. Single-atom catalysts across the periodic table. Chem. Rev. 2020, 120, 11703–11809.

    Article  CAS  Google Scholar 

  6. Pan, Y., Zhang, C., Liu, Z., Chen, C., Li, Y. D. Structural regulation with atomic-level precision: From single-atomic site to diatomic and atomic interface catalysis. Matter 2020, 2, 78–110.

    Article  Google Scholar 

  7. Yang, X. F.; Wang, A. Q., Qiao, B. T., Li, J., Liu, J. Y., Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740–1748.

    Article  CAS  Google Scholar 

  8. Wang, J., Huang, Z. Q., Liu, W., Chang, C. R., Tang, H. L., Li, Z. J., Chen, W. X., Jia, C. J., Yao, T., Wei, S. Q. et al. Design of Ncoordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 2017, 139, 17281–17284.

    Article  CAS  Google Scholar 

  9. Qu, Y. T., Li, Z. J., Chen, W. X., Lin, Y., Yuan, T. W., Yang, Z. K., Zhao, C. M., Wang, J., Zhao, C., Wang, X. et al. Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms. Nat. Catal. 2018, 1, 781–786.

    Article  CAS  Google Scholar 

  10. Wu, K. L., Chen, X., Liu, S. J., Pan, Y., Cheong, W. C., Zhu, W., Cao, X., Shen, R. A., Chen, W. X., Luo, J. et al. Porphyrin-like Fe-N4 sites with sulfur adjustment on hierarchical porous carbon for different rate-determining steps in oxygen reduction reaction. Nano Res. 2018, 11, 6260–6269.

    Article  CAS  Google Scholar 

  11. Jing, H. Y., Zhu, P., Zheng, X. B., Zhang, Z. D., Wang, D. S., Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater., in press, https://doi.org/10.1016/j.apmate.2021.10.004}.

  12. Yang, J. R., Li, W. H., Tan, S. D., Xu, K. N., Wang, Y., Wang, D. S., Li, Y. D. The electronic metal-support interaction directing the design of single atomic site catalysts: Achieving high efficiency towards hydrogen evolution. Angew. Chem., Int. Ed. 2021, 60, 19085–19091.

    Article  CAS  Google Scholar 

  13. Chen, P. Z., Zhou, T. P., Xing, L. L., Xu, K., Tong, Y., Xie, H., Zhang, L. D., Yan, W. S., Chu, W. S., Wu, C. Z. et al. Atomically dispersed iron-nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions. Angew. Chem., Int. Ed. 2017, 56, 610–614.

    Article  CAS  Google Scholar 

  14. Wu, K. L., Sun, K. A., Liu, S. J., Cheong, W. C., Chen, Z., Zhang, C., Pan, Y., Cheng, Y. S., Zhuang, Z. W., Wei, X. W. et al. Atomically dispersed Ni-Ru-P interface sites for high-efficiency pH-universal electrocatalysis of hydrogen evolution. Nano Energy 2021, 80, 105467.

    Article  CAS  Google Scholar 

  15. Pan, Y., Zhang, C., Lin, Y., Liu, Z., Wang, M. M., Chen, C. Electrocatalyst engineering and structure-activity relationship in hydrogen evolution reaction: From nanostructures to single atoms. Sci. China Mater. 2020, 63, 921–948.

    Article  CAS  Google Scholar 

  16. Liu, K. P., Tang, Y., Yu, Z. Y., Ge, B. H., Ren, G. Q., Ren, Y. J., Su, Y., Zhang, J. C., Sun, X. C., Chen, Z. Q. et al. High-loading and thermally stable Pt1/MgAl1.2Fe0.8O4 single-atom catalysts for high-temperature applications. Sci. China Mater. 2020, 63, 949–958.

    Article  CAS  Google Scholar 

  17. Song, J. J., Yang, Y. X., Liu, S. J., Li, L., Yu, N., Fan, Y. T., Chen, Z. M., Kuai, L., Geng, B. Y. Dispersion and support dictated properties and activities of Pt/metal oxide catalysts in heterogeneous CO oxidation. Nano Res. 2021, 14, 4841–4847.

    Article  CAS  Google Scholar 

  18. Wan, J. W., Chen, W. X., Jia, C. Y., Zheng, L. R., Dong, J. C., Zheng, X. S., Wang, Y., Yan, W. S., Chen, C., Peng, Q. et al. Defect effects on TiO2 nanosheets: Stabilizing single atomic site Au and promoting catalytic properties. Adv. Mater. 2018, 30, 1705369.

    Article  Google Scholar 

  19. Wang, F., Li, Z., Wang, H. H., Chen, M., Zhang, C. B., Ning, P., He, H. Nano-sized Ag rather than single-atom Ag determines CO oxidation activity and stability. Nano Res. 2022, 15, 452–456.

    Article  CAS  Google Scholar 

  20. Wei, S. J., Li, A., Liu, J. C., Li, Z., Chen, W. X., Gong, Y., Zhang, Q. H., Cheong, W. C., Wang, Y., Zheng, L. R. et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat. Nanotechnol. 2018, 13, 856–861.

    Article  CAS  Google Scholar 

  21. Chen, Y. J., Ji, S. F., Zhao, S., Chen, W. X., Dong, J. C., Cheong, W. C., Shen, R. A., Wen, X. D., Zheng, L. R., Rykov, A. I. et al. Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell. Nat. Commun. 2018, 9, 5422.

    Article  CAS  Google Scholar 

  22. Ding, R., Liu, Y. D., Rui, Z. Y., Li, J., Liu, J. G., Zou, Z. G. Facile grafting strategy synthesis of single-atom electrocatalyst with enhanced ORR performance. Nano Res. 2020, 13, 1519–1526.

    Article  CAS  Google Scholar 

  23. Li, J. Z., Chen, M. J., Cullen, D. A., Hwang, S., Wang, M. Y., Li, B. Y., Liu, K. X., Karakalos, S., Lucero, M., Zhang, H. G. et al. Atomically dispersed manganese catalysts for oxygen reduction in proton-exchange membrane fuel cells. Nat. Catal. 2018, 1, 935–945.

    Article  CAS  Google Scholar 

  24. Wang, Y. L., Shi, R., Shang, L., Waterhouse, G. I. N., Zhao, J. Q., Zhang, Q. H., Gu, L., Zhang, T. R. High-efficiency oxygen reduction to hydrogen peroxide catalyzed by nickel single-atom catalysts with tetradentate N2O2 coordination in a three-phase flow cell. Angew. Chem., Int. Ed. 2020, 59, 13057–13062.

    Article  CAS  Google Scholar 

  25. Zhang, T. Y., Han, X., Yang, H. B., Han, A. J., Hu, E. Y., Li, Y. P., Yang, X. Q., Wang, L., Liu, J. F., Liu, B. Atomically dispersed nickel(I) on an alloy-encapsulated nitrogen-doped carbon nanotube array for high-performance electrochemical CO2 reduction reaction. Angew. Chem., Int. Ed. 2020, 59, 12055–12061.

    Article  CAS  Google Scholar 

  26. Tao, H. C., Choi, C., Ding, L. X., Jiang, Z., Han, Z. S., Jia, M. W., Fan, Q., Gao, Y. N., Wang, H. H., Robertson, A. W. et al. Nitrogen fixation by Ru single-atom electrocatalytic reduction. Chem. 2019, 5, 204–214.

    Article  CAS  Google Scholar 

  27. Geng, Z. G., Liu, Y., Kong, X. D., Li, P., Li, K., Liu, Z. Y., Du, J. J., Shu, M., Si, R., Zeng, J. Achieving a record-high yield rate of 120. 9 μgNH3 mgcat.-1 h-1 for N2 electrochemical reduction over Ru single-atom catalysts. Adv. Mater. 2018, 30, 1803498.

    Article  Google Scholar 

  28. Lu, C., Chen, Y., Yang, Y., Chen, X. Single-atom catalytic materials for lean-electrolyte ultrastable lithium-sulfur batteries. Nano Lett. 2020, 20, 5522–5530.

    Article  CAS  Google Scholar 

  29. Zhang, S. L., Ao, X., Huang, J., Wei, B., Zhai, Y. L., Zhai, D., Deng, W. Q., Su, C. L., Wang, D. S., Li, Y. D. Isolated single-atom Ni-N5 catalytic site in hollow porous carbon capsules for efficient lithium-sulfur batteries. Nano Lett. 2021, 21, 9691–9698.

    Article  CAS  Google Scholar 

  30. Wu, K. L., Zhan, F., Tu, R. Y., Cheong, W. C., Cheng, Y. S., Zheng, L. R., Yan, W. S., Zhang, Q. H., Chen, Z., Chen, C. Dopamine polymer derived isolated single-atom site metals/N-doped porous carbon for benzene oxidation. Chem. Commun. 2020, 56, 8916–8919.

    Article  CAS  Google Scholar 

  31. Yang, F., Ding, S. P., Song, H. B., Yan, N. Single-atom Pd dispersed on nanoscale anatase TiO2 for the selective hydrogenation of phenylacetylene. Sci. China Mater. 2020, 63, 982–992.

    Article  CAS  Google Scholar 

  32. Chen, Z., Zhang, Q., Chen, W. X., Dong, J. C., Yao, H. R., Zhang, X. B., Tong, X. J., Wang, D. S., Peng, Q., Chen, C. et al. Single-site AuI catalyst for silane oxidation with water. Adv. Mater. 2018, 30, 1704720.

    Article  Google Scholar 

  33. Xiong, Y., Sun, W. M., Han, Y. H., Xin, P. Y., Zheng, X. S., Yan, W. S., Dong, J. C., Zhang, J., Wang, D. S., Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res. 2021, 14, 2418–2423.

    Article  CAS  Google Scholar 

  34. Fu, N. H., Liang, X., Li, Z., Chen, W. X., Wang, Y., Zheng, L. R., Zhang, Q. H., Chen, C., Wang, D. S., Peng, Q. et al. Fabricating Pd isolated single atom sites on C3N4/rGO for heterogenization of homogeneous catalysis. Nano Res. 2020, 13, 947–951.

    Article  CAS  Google Scholar 

  35. Chen, F., Li, T. B., Pan, X. L., Guo, Y. L., Han, B., Liu, F., Qiao, B. T., Wang, A. Q., Zhang, T. Pd1/CeO2 single-atom catalyst for alkoxycarbonylation of aryl iodides. Sci. China Mater. 2020, 63, 959–964.

    Article  CAS  Google Scholar 

  36. Zhao, Y., Yu, Y. P., Gao, F., Wang, Z. Y., Chen, W. X., Chen, C., Yang, J., Yao, Y. C., Du, J. Y., Zhao, C. et al. A highly accessible copper single-atom catalyst for wound antibacterial application. Nano Res. 2021, 14, 4808–4813.

    Article  CAS  Google Scholar 

  37. Lu, X. Y., Gao, S. S., Lin, H., Yu, L. D., Han, Y. H., Zhu, P., Bao, W. C., Yao, H. L., Chen, Y., Shi, J. L. Bioinspired copper singleatom catalysts for tumor parallel catalytic therapy. Adv. Mater. 2020, 32, 2002246.

    Article  CAS  Google Scholar 

  38. Wang, X. W., Shi, Q. Q., Zha, Z. B., Zhu, D. D., Zheng, L. R., Shi, L. X., Wei, X. W., Lian, L., Wu, K. L., Cheng, L. Copper singleatom catalysts with photothermal performance and enhanced nanozyme activity for bacteria-infected wound therapy. Bioact. Mater. 2021, 6, 4389–4401.

    Article  CAS  Google Scholar 

  39. Xu, B. L., Wang, H., Wang, W. W., Gao, L. Z., Li, S. S., Pan, X. T., Wang, H. Y., Yang, H. L., Meng, X. Q., Wu, Q. W. et al. A singleatom nanozyme for wound disinfection applications. Angew. Chem., Int. Ed. 2019, 58, 4911–4916.

    Article  CAS  Google Scholar 

  40. Huang, L., Chen, J. X., Gan, L. F., Wang, J., Dong, S. J. Single-atom nanozymes. Sci. Adv. 2019, 5, eaav5490.

    Article  CAS  Google Scholar 

  41. Pan, Y., Chen, Y. J., Wu, K. L., Chen, Z., Liu, S. J., Cao, X., Cheong, W. C., Meng, T., Luo, J., Zheng, L. R. et al. Regulating the coordination structure of single-atom Fe-NxCy catalytic sites for benzene oxidation. Nat. Commun. 2019, 10, 4290.

    Article  Google Scholar 

  42. Wang, X. Q., Chen, Z., Zhao, X. Y., Yao, T., Chen, W. X., You, R., Zhao, C. M., Wu, G., Wang, J., Huang, W. X. et al. Regulation of coordination number over single Co sites: Triggering the efficient electroreduction of CO2. Angew. Chem., Int. Ed. 2018, 57, 1944–1948.

    Article  CAS  Google Scholar 

  43. Pan, Y., Lin, R., Chen, Y. J., Liu, S. J., Zhu, W., Cao, X., Chen, W. X., Wu, K. L., Cheong, W. C., Wang, Y. et al. Design of single-atom Co-N5 catalytic site: A robust electrocatalyst for CO2 reduction with nearly 100% CO selectivity and remarkable stability. J. Am. Chem. Soc. 2018, 140, 4218–4221.

    Article  CAS  Google Scholar 

  44. Zhang, Y., Jiao, L., Yang, W. J., Xie, C. F., Jiang, H. L. Rational fabrication of low-coordinate single-atom Ni electrocatalysts by MOFs for highly selective CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 7607–7611.

    Article  CAS  Google Scholar 

  45. Zhang, J., Zheng, C. Y., Zhang, M. L., Qiu, Y. J., Xu, Q., Cheong, W. C., Chen, W. X., Zheng, L. R., Gu, L., Hu, Z. P. et al. Controlling N-doping type in carbon to boost single-atom site Cu catalyzed transfer hydrogenation of quinoline. Nano Res. 2020, 13, 3082–3087.

    Article  Google Scholar 

  46. Shang, H. S., Zhou, X. Y., Dong, J. C., Li, A., Zhao, X., Liu, Q. H., Lin, Y., Pei, J. J., Li, Z., Jiang, Z. L. et al. Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nat. Commun. 2020, 11, 3049.

    Article  CAS  Google Scholar 

  47. Chen, Y. J., Gao, R., Ji, S. F., Li, H. J., Tang, K., Jiang, P., Hu, H. B., Zhang, Z. D., Hao, H. G., Qu, Q. Y. et al. Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal-organic frameworks: Enhanced oxygen reduction performance. Angew. Chem., Int. Ed. 2021, 60, 3212–3221.

    Article  CAS  Google Scholar 

  48. Hou, Y., Qiu, M., Kim, M. G., Liu, P., Nam, G., Zhang, T., Zhuang, X. D., Yang, B., Cho, J., Chen, M. W. et al. Atomically dispersed nickel-nitrogen-sulfur species anchored on porous carbon nanosheets for efficient water oxidation. Nat. Commun. 2019, 10, 1392.

    Article  Google Scholar 

  49. Wang, J., Liu, W., Luo, G., Li, Z. J., Zhao, C., Zhang, H. R., Zhu, M. Z., Xu, Q., Wang, X. Q., Zhao, C. M. et al. Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction. Energy Environ. Sci. 2018, 11, 3375–3379.

    Article  CAS  Google Scholar 

  50. Xiong, Y., Wang, S. B., Chen, W. X., Zhang, J., Li, Q. H., Hu, H. S., Zheng, L. R., Yan, W. S., Gu, L., Wang, D. S. et al. Construction of dual-active-site copper catalyst containing both Cu-N3 and Cu-N4 sites. Small 2021, 17, 2006834.

    Article  CAS  Google Scholar 

  51. Ren, W. H., Tan, X., Yang, W. F., Jia, C., Xu, S. M., Wang, K. X., Smith, S. C., Zhao, C. Isolated diatomic Ni-Fe metal-nitrogen sites for synergistic electroreduction of CO2. Angew. Chem., Int. Ed. 2019, 58, 6972–6976.

    Article  CAS  Google Scholar 

  52. Zhang, J., Huang, Q. A., Wang, J., Wang, J., Zhang, J. J., Zhao, Y. F. Supported dual-atom catalysts: Preparation, characterization, and potential applications. Chin. J. Catal. 2020, 41, 783–798.

    Article  CAS  Google Scholar 

  53. Bai, L. C., Hsu, C. S., Alexander, D. T. L., Chen, H. M., Hu, X. L. A cobalt-iron double-atom catalyst for the oxygen evolution reaction. J. Am. Chem. Soc. 2019, 141, 14190–14199.

    Article  CAS  Google Scholar 

  54. Jiao, J. Q., Lin, R., Liu, S. J., Cheong, W. C., Zhang, C., Chen, Z., Pan, Y., Tang, J. G., Wu, K. L., Hung, S. F. et al. Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2. Nat. Chem. 2019, 11, 222–228.

    Article  CAS  Google Scholar 

  55. Li, H. L., Wang, L. B., Dai, Y. Z., Pu, Z. T., Lao, Z. H., Chen, Y. W., Wang, M. L., Zheng, X. S., Zhu, J. F., Zhang, W. H. et al. Synergetic interaction between neighbouring platinum monomers in CO2 hydrogenation. Nat. Nanotechnol. 2018, 13, 411–417.

    Article  CAS  Google Scholar 

  56. Perdew, J. P., Burke, K., Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  57. Kresse, G., Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  CAS  Google Scholar 

  58. Monkhorst, H. J., Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

    Article  Google Scholar 

  59. Henkelman, G., Uberuaga, B. P., Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.

    Article  CAS  Google Scholar 

  60. Henkelman, G., Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 2000, 113, 9978–9985.

    Article  CAS  Google Scholar 

  61. Henkelman, G., Jónsson, H. A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives. J. Chem. Phys. 1999, 111, 7010–7022.

    Article  CAS  Google Scholar 

  62. Min, Y., Zhou, X., Chen, J. J., Chen, W. X., Zhou, F. Y., Wang, Z. Y., Yang, J., Xiong, C., Wang, Y., Li, F. T. et al. Integrating singlecobalt- site and electric field of boron nitride in dechlorination electrocatalysts by bioinspired design. Nat. Commun. 2021, 12, 303.

    Article  CAS  Google Scholar 

  63. Chen, S. C., Chen, Z. H., Siahrostami, S., Higgins, D., Nordlund, D., Sokaras, D., Kim, T. R., Liu, Y. Z., Yan, X. Z., Nilsson, E. et al. Designing boron nitride islands in carbon materials for efficient electrochemical synthesis of hydrogen peroxide. J. Am. Chem. Soc. 2018, 140, 7851–7859.

    Article  CAS  Google Scholar 

  64. Shang, S. S., Chen, P. P., Wang, L. Y., Lv, Y., Li, W. X., Gao, S. Metal-free nitrogen- and boron-codoped mesoporous carbons for primary amides synthesis from primary alcohols via direct oxidative dehydrogenation. ACS Catal. 2018, 8, 9936–9944.

    Article  CAS  Google Scholar 

  65. Cao, L. L., Luo, Q. Q., Liu, W., Lin, Y., Liu, X. K., Cao, Y. J., Zhang, W., Wu, Y. E., Yang, J. L., Yao, T. et al. Identification of single-atom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution. Nat. Catal. 2019, 2, 134–141.

    Article  CAS  Google Scholar 

  66. Fang, S., Zhu, X. R., Liu, X. K., Gu, J., Liu, W., Wang, D. H., Zhang, W., Lin, Y., Lu, J. L., Wei, S. Q. et al. Uncovering near-free platinum single-atom dynamics during electrochemical hydrogen evolution reaction. Nat. Commun. 2020, 11, 1029.

    Article  CAS  Google Scholar 

  67. Fei, H. L., Dong, J. C., Feng, Y. X., Allen, C. S., Wan, C. Z., Volosskiy, B., Li, M. F., Zhao, Z. P., Wang, Y. L., Sun, H. Y. et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 2018, 1, 63–72.

    Article  CAS  Google Scholar 

  68. Brena, B., Siegbahn, P. E. M., Ågren, H. Modeling near-edge fine structure X-ray spectra of the manganese catalytic site for water oxidation in photosystem II. J. Am. Chem. Soc. 2012, 134, 17157–17167.

    Article  CAS  Google Scholar 

  69. Tian, S. B., Hu, M., Xu, Q., Gong, W. B., Chen, W. X., Yang, J. R., Zhu, Y. Q., Chen, C., He, J., Liu, Q. et al. Single-atom Fe with Fe1N3 structure showing superior performances for both hydrogenation and transfer hydrogenation of nitrobenzene. Sci. China Mater. 2021, 64, 642–650.

    Article  CAS  Google Scholar 

  70. Peng, Y. H., Geng, Z. G., Zhao, S. T., Wang, L. B., Li, H. L., Wang, X., Zheng, X. S., Zhu, J. F., Li, Z. Y., Si, R. et al. Pt single atoms embedded in the surface of Ni nanocrystals as highly active catalysts for selective hydrogenation of nitro compounds. Nano Lett. 2018, 18, 3785–3791.

    Article  CAS  Google Scholar 

  71. Xu, Q., Guo, C. X., Tian, S. B., Zhang, J., Chen, W. X., Cheong, W. C., Gu, L., Zheng, L. R., Xiao, J. P., Liu, Q. et al. Coordination structure dominated performance of single-atomic Pt catalyst for anti- Markovnikov hydroboration of alkenes. Sci. China Mater. 2020, 63, 972–981.

    Article  CAS  Google Scholar 

  72. Lou, Y., Zheng, Y. P., Li, X., Ta, N., Xu, J., Nie, Y. F., Cho, K., Liu, J. Y. Pocket-like active site of Rh1/MoS2 single-atom catalyst for selective crotonaldehyde hydrogenation. J. Am. Chem. Soc. 2019, 141, 19289–19295.

    Article  CAS  Google Scholar 

  73. Li, B. B., Ju, Z. F., Zhou, M., Su, K. Z., Yuan, D. Q. A reusable MOF-supported single-site zinc(II) catalyst for efficient intramolecular hydroamination of o-alkynylanilines. Angew. Chem., Int. Ed. 2019, 58, 7687–7691.

    Article  CAS  Google Scholar 

  74. Tian, S. B., Wang, B. X., Gong, W. B., He, Z. Z., Xu, Q., Chen, W. X., Zhang, Q. H., Zhu, Y. Q., Yang, J. R., Fu, Q. et al. Dual-atom Pt heterogeneous catalyst with excellent catalytic performances for the selective hydrogenation and epoxidation. Nat. Commun. 2021, 12, 3181.

    Article  CAS  Google Scholar 

  75. Wu, Z. Y., Xu, S. L., Yan, Q. Q., Chen, Z. Q., Ding, Y. W., Li, C., Liang, H. W., Yu, S. H. Transition metal-assisted carbonization of small organic molecules toward functional carbon materials. Sci. Adv. 2018, 4, eaat0788.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21771003, 51902003, 21901007, 22002085, and 21501004), the University Synergy Innovation Program of Anhui Province (No. GXXT-2021-020), the Anhui Province Natural Science Foundation (Nos. 2008085QB53 and 2008085QB83), the Natural Science Research Project of Anhui Province Education Department (No. KJ2019A0581), the Open Project of Key Laboratory of Metallurgical Emission Reduction & Resources Recycling of Ministry of Education (No. JKF21-03), and the Open Foundation of Anhui Laboratory of Clean Catalytic Engineering (No. LCCE-01). We acknowledge the 1W1B beamline station of Beijing Synchrotron Radiation Facility (BSRF), and the Institute of Physics of Chinese Academy of Sciences. We acknowledge the National Synchrotron Radiation Laboratory (NSRL) of Hefei. We also thank Prof. Lirong Zheng, Prof. Wensheng Yan, Prof. Qinghua Zhang, and Prof. Jun Luo for their help in catalyst characterizations. Thanks to Prof. Chen Chen of Tsinghua University and Prof. Junjie Mao of Anhui Normal University for their help in materials characterizations and catalytic testing. We thank LetPub (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Binbin Jiang, Zheng Chen or Konglin Wu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, T., Li, S., Liu, S. et al. Biomass-assisted approach for large-scale construction of multi-functional isolated single-atom site catalysts. Nano Res. 15, 3980–3990 (2022). https://doi.org/10.1007/s12274-022-4091-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4091-2

Keywords

Navigation