Skip to main content
Log in

Robust Co3O4 nanocatalysts supported on biomass-derived porous N-doped carbon toward low-pressure hydrogenation of furfural

  • Research Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

The catalytic conversion of biomass platform chemicals using abundant non-noble metal nanocatalysts is a challenging topic. Here, high-density cobalt oxide nanoparticles loaded on biomass-derived porous N-doped carbon (NC) was fabricated by a tandem hydrothermal pyrolysis and mild nitrate decomposition process, which is a green and cheap preparation method. The Co3O4 nanoparticles with the average size of 12 nm were uniformly distributed on the porous NC. The nanocomposites also possessed large surface area, high N content, good dispersibility in isopropanol, and furfural absorbability. Due to these characteristics, the novel cobalt nanocatalyst exhibited high catalytic activity for producing furfuryl alcohol, yielding 98.7% of the conversion and 97.1% of the selectivity at 160 °C for 6 h under 1 bar H2. The control experiments implied that both direct hydrogenation and transfer hydrogenation pathways co-existed in the hydrogenation reaction. The excellent catalytic activity of Co3O4@NC was attributed to the cooperative effects of porous NC and Co3O4 nanoparticles. This approach provides a new idea to design effective high-density nonnoble metal oxide nanocatalysts for hydrogenation reactions, which can make full use of sustainable natural biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shuai L, Amiri M T, Questell-Santiago Y M, et al. Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization. Science, 2016, 354(6310): 329–333

    Article  CAS  Google Scholar 

  2. Li Y, Yang W, Liu H, et al. Template-mediated strategy to regulate hierarchically nitrogen-sulfur co-doped porous carbon as superior anode material for lithium capacity. Frontiers of Materials Science, 2022, 16(1): 220584

    Article  Google Scholar 

  3. Chen F, Liu X, Wang Z, et al. Hierarchically porous CMC/rGO/CNFs aerogels for leakage-proof mirabilite phase change materials with superior energy thermal storage. Frontiers of Materials Science, 2022, 16(4): 220619

    Article  Google Scholar 

  4. Xu Z, He M, Zhou Y, et al. Spider web-like carbonized bacterial cellulose/MoSe nanocomposite with enhanced microwave attenuation performance and tunable absorption bands. Nano Research, 2021, 14(3): 738–746

    Article  CAS  Google Scholar 

  5. Song S, Zhang J, Gözaydın G, et al. Production of terephthalic acid from corn stover lignin. Angewandte Chemie - International Edition, 2019, 58(15): 4934–4937

    Article  CAS  Google Scholar 

  6. Wu J, Zhang X, Chen Q, et al. One-pot hydrogenation of furfural into tetrahydrofurfuryl alcohol under ambient conditions over PtNi alloy catalyst. Energy & Fuels, 2020, 34(2): 2178–2184

    Article  CAS  Google Scholar 

  7. Aellig C, Hermans I. Continuous D-fructose dehydration to 5-hydroxymethylfurfural under mild conditions. ChemSusChem, 2012, 5(9): 1737–1742

    Article  CAS  Google Scholar 

  8. Lange J P, van der Heide E, van Buijtenen J, et al. Furfural — a promising platform for lignocellulosic biofuels. ChemSusChem, 2012, 5(1): 150–166

    Article  CAS  Google Scholar 

  9. Yang Y X, Ochoa-Hernández C, O’Shea V A D, et al. Effect of metal―support interaction on the selective hydrodeoxygenation of anisole to aromatics over Ni-based catalysts. Applied Catalysis B: Environmental, 2014, 145: 91–100

    Article  Google Scholar 

  10. Khromova S A, Bykova M V, Bulavchenko O A, et al. Furfural hydrogenation to furfuryl alcohol over bimetallic Ni-Cu sol-gel catalyst: a model reaction for conversion of oxygenates in pyrolysis liquids. Topics in Catalysis, 2016, 59 (15–16): 1413–1423

    Article  CAS  Google Scholar 

  11. Scholz D, Aellig C, Hermans I. Catalytic transfer hydrogenation/hydrogenolysis for reductive upgrading of furfural and 5-(hydroxymethyl)furfural. ChemSusChem, 2014, 7(1): 268–275

    Article  CAS  Google Scholar 

  12. Ordomsky V V, Schouten J C, van der Schaaf J, et al. Biphasic single-reactor process for dehydration of xylose and hydrogenation of produced furfural. Applied Catalysis A: General, 2013, 451: 6–13

    Article  CAS  Google Scholar 

  13. Xu W, Wang H, Liu X, et al. Direct catalytic conversion of furfural to 1,5-pentanediol by hydrogenolysis of the furan ring under mild conditions over Pt/Co2AlO4 catalyst. Chemical Communications, 2011, 47(13): 3924–3926

    Article  CAS  Google Scholar 

  14. Nakagawa Y, Tamura M, Tomishige K. Catalytic reduction of biomass-derived furanic compounds with hydrogen. ACS Catalysis, 2013, 3(12): 2655–2668

    Article  CAS  Google Scholar 

  15. Corma A, Iborra S, Velty A. Chemical routes for the transformation of biomass into chemicals. Chemical Reviews, 2007, 107(6): 2411–2502

    Article  CAS  Google Scholar 

  16. Rao R, Dandekar A, Baker R T K, et al. Properties of copper chromite catalysts in hydrogenation reactions. Journal of Catalysis, 1997, 171(2): 406–419

    Article  CAS  Google Scholar 

  17. Hronec M, Fulajtarova K, Vavra I, et al. Carbon supported Pd–Cu catalysts for highly selective rearrangement of furfural to cyclopentanone. Applied Catalysis B: Environmental, 2016, 181: 210–219

    Article  CAS  Google Scholar 

  18. Ruan L, Zhang H, Zhou M, et al. A highly selective and efficient Pd/Ni/Ni(OH)2/C catalyst for furfural hydrogenation at low temperatures. Molecular Catalysis, 2020, 480: 110639

    Article  CAS  Google Scholar 

  19. Chen X, Zhang L, Zhang B, et al. Highly selective hydrogenation of furfural to furfuryl alcohol over Pt nanoparticles supported on g-C3N4 nanosheets catalysts in water. Scientific Reports, 2016, 6(1): 28558

    Article  Google Scholar 

  20. Jiang Y, Su J, Yang Y, et al. A facile surfactant-free synthesis of Rh flower-like nanostructures constructed from ultrathin nanosheets and their enhanced catalytic properties. Nano Research, 2016, 9(3): 849–856

    Article  CAS  Google Scholar 

  21. Sharma R V, Das U, Sammynaiken R, et al. Liquid phase chemo-selective catalytic hydrogenation of furfural to furfuryl alcohol. Applied Catalysis A: General, 2013, 454: 127–136

    Article  CAS  Google Scholar 

  22. Song T, Yang Y. Metal nanoparticles supported on biomass-derived hierarchical porous heteroatom-doped carbon from bamboo shoots: design, synthesis and applications. Chemical Record, 2019, 19(7): 1283–1301

    Article  CAS  Google Scholar 

  23. Zhu L, Zhang H, Ma N, et al. Tuning the interfaces in the ruthenium—nickel/carbon nanocatalysts for enhancing catalytic hydrogenation performance. Journal of Catalysis, 2019, 377: 299–308

    Article  CAS  Google Scholar 

  24. Lin H, Zhang Y, Wang G, et al. Cobalt-based layered double hydroxides as oxygen evolving electrocatalysts in neutral electrolyte. Frontiers of Materials Science, 2012, 6(2): 142–148

    Article  Google Scholar 

  25. Sethi M, Shenoy U S, Muthu S, et al. Facile solvothermal synthesis of NiFe2O4 nanoparticles for high-performance supercapacitor applications. Frontiers of Materials Science, 2020, 14(2): 120–132

    Article  Google Scholar 

  26. Wu K, Wang X Y, Guo L L, et al. Facile synthesis of Au embedded CuOx–CeO2 core/shell nanospheres as highly reactive and sinter-resistant catalysts for catalytic hydrogenation of p-nitrophenol. Nano Research, 2020, 13(8): 2044–2055

    Article  CAS  Google Scholar 

  27. Zhang G S, Zhu M M, Zhang Q, et al. Towards quantitative and scalable transformation of furfural to cyclopentanone with supported gold catalysts. Green Chemistry, 2016, 18(7): 2155–2164

    Article  CAS  Google Scholar 

  28. Ortel E, Sokolov S, Zielke C, et al. Supported mesoporous and hierarchical porous Pd/TiO2 catalytic coatings with controlled particle size and pore structure. Chemistry of Materials, 2012, 24(20): 3828–3838

    Article  CAS  Google Scholar 

  29. Algorabi S, Akmaz S, Koc S N. The investigation of hydrogenation behavior of furfural over sol-gel prepared Cu/ZrO2 catalysts. Journal of Sol-Gel Science and Technology, 2020, 96(1): 47–55

    Article  CAS  Google Scholar 

  30. Jiang H, Zhang H, Kang Q, et al. Rapid solvent-evaporation strategy for three-dimensional cobalt-based complex hierarchical architectures as catalysts for water oxidation. Scientific Reports, 2019, 9(1): 15681

    Article  Google Scholar 

  31. Zhu L, Zhang H, Hu W, et al. Nickel hydroxide–cobalt hydroxide nanoparticle supported ruthenium–nickel–cobalt islands as an efficient nanocatalyst for the hydrogenation reaction. ChemCatChem, 2018, 10(9): 1998–2002

    Article  CAS  Google Scholar 

  32. Han S, Chen W T, Gao Z T, et al. Mechanochemical-assisted synthesis of nitrogen-doped carbon supported cobalt catalysts for efficient and selective hydrogenation of furfural. Catalysis Letters, 2022, in press

  33. Chu J, Sun L, Huang D J, et al. Hierarchical nitrogen-doped porous carbon-supported cobalt nanoparticles for promoting catalytic transfer hydrogenation of furfural. Chinese Journal of Inorganic Chemistry, 2022, 38(7): 1327–1336 (in Chinese)

    CAS  Google Scholar 

  34. Koji A, Iqbal J, Yu R H, et al. Synthesis temperature dependence of morphologies and properties of cobalt oxide and silicon nanocrystals. Frontiers of Materials Science, 2011, 5(3): 311–321

    Article  Google Scholar 

  35. Han X, Lv J, Huang S, et al. Size dependence of carbon-encapsulated iron-based nanocatalysts for Fischer-Trposch synthesis. Nano Research, 2023, in press

  36. Chen K, Yu J, Liu B, et al. Simple strategy synthesizing stable CuZnO/SiO2 methanol synthesis catalyst. Journal of Catalysis, 2019, 372: 163–173

    Article  CAS  Google Scholar 

  37. Shi Y, Zhou Y, Lou Y, et al. Homogeneity of supported singleatom active sites boosting the selective catalytic transformations. Advanced Science, 2022, 9(24): 2201520

    Article  CAS  Google Scholar 

  38. Ro I, Resasco J, Christopher P. Approaches for understanding and controlling interfacial effects in oxide-supported metal catalysts. ACS Catalysis, 2018, 8(8): 7368–7387

    Article  CAS  Google Scholar 

  39. Zhu L, Zhang H, Zhong L, et al. RuNiCo-based nanocatalysts with different nanostructures for naphthalene selective hydrogenation. Fuel, 2018, 216: 208–217

    Article  CAS  Google Scholar 

  40. Yao Y, Huang Z, Xie P, et al. High temperature shockwave stabilized single atoms. Nature Nanotechnology, 2019, 14(9): 851–857

    Article  CAS  Google Scholar 

  41. Figueroba A, Kovacs G, Bruix A, et al. Towards stable single-atom catalysts: strong binding of atomically dispersed transition metals on the surface of nanostructured ceria. Catalysis Science & Technology, 2016, 6(18): 6806–6813

    Article  CAS  Google Scholar 

  42. Westerhaus F A, Jagadeesh R V, Wienhöfer G, et al. Heterogenized cobalt oxide catalysts for nitroarene reduction by pyrolysis of molecularly defined complexes. Nature Chemistry, 2013, 5(6): 537–543

    Article  CAS  Google Scholar 

  43. Sakamaki A, Ogihara H, Yoshida-Hirahara M, et al. Precursor accumulation on nanocarbons for the synthesis of LaCoO3 nanoparticles as electrocatalysts for oxygen evolution reaction. RSC Advances, 2021, 11(33): 20313–20321

    Article  CAS  Google Scholar 

  44. Wang B, Tang C, Wang H F, et al. A nanosized CoNi hydroxide@hydroxysulfide core–shell heterostructure for enhanced oxygen evolution. Advanced Materials, 2019, 31(4): 1805658

    Article  Google Scholar 

  45. Azor A, Ruiz-Gonzalez M L, Gonell F, et al. Nickel-doped sodium cobaltite 2D nanomaterials: synthesis and electrocatalytic properties. Chemistry of Materials, 2018, 30(15): 4986–4994

    Article  CAS  Google Scholar 

  46. Xu Z, Long Q, Deng Y, et al. In situ synthesis and catalytic application of reduced graphene oxide supported cobalt nanowires. Applied Surface Science, 2018, 441: 955–964

    Article  CAS  Google Scholar 

  47. Chen X, Zhang L, Zhang B, et al. Highly selective hydrogenation of furfural to furfuryl alcohol over Pt nanoparticles supported on g-C3N4 nanosheets catalysts in water. Scientific Reports, 2016, 6(1): 28558

    Article  Google Scholar 

  48. Liu X, Zhang B, Fei B, et al. Tunable and selective hydrogenation of furfural to furfuryl alcohol and cyclopentanone over Pt supported on biomass-derived porous heteroatom doped carbon. Faraday Discussions, 2017, 202: 79–98

    Article  CAS  Google Scholar 

  49. Ji G, Duan Y, Zhang S, et al. Selective semihydrogenation of alkynes catalyzed by Pd nanoparticles immobilized on heteroatom-doped hierarchical porous carbon derived from bamboo shoots. ChemSusChem, 2017, 10(17): 3427–3434

    Article  CAS  Google Scholar 

  50. Song T, Duan Y, Chen X, et al. Switchable access to amines and imines from reductive coupling of nitroarenes with alcohols catalyzed by biomass-derived cobalt nanoparticles. Catalysts, 2019, 9(2): 116

    Article  Google Scholar 

  51. Song T, Ren P, Duan Y, et al. Cobalt nanocomposites on N-doped hierarchical porous carbon for highly selective formation of anilines and imines from nitroarenes. Green Chemistry, 2018, 20(20): 4629–4637

    Article  CAS  Google Scholar 

  52. Li Q, Chen X, Yang Y. Biomass-derived nitrogen-doped porous carbon for highly efficient ambient electro-synthesis of NH3. Catalysts, 2020, 10(3): 353

    Article  CAS  Google Scholar 

  53. Zhou S, Qi H. A sustainable natural nanofibrous confinement strategy to obtain ultrafine Co3O4 nanocatalysts embedded in N-enriched carbon fibers for efficient biomass-derivative in situ hydrogenation. Nanoscale, 2020, 12(33): 17373–17384

    Article  CAS  Google Scholar 

  54. Tsyganova S I, Mel’nikov A N, Korol’kova I V, et al. Synthesis of porous carbon materials from birch sawdust modified with ZnCl2. Russian Journal of Applied Chemistry, 2007, 80(6): 920–923

    Article  CAS  Google Scholar 

  55. Zhao X, Long R, Liu D, et al. Pd–Ag alloy nanocages: integration of Ag plasmonic properties with Pd active sites for light-driven catalytic hydrogenation. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(18): 9390–9394

    Article  CAS  Google Scholar 

  56. Chen Z, Chen J, Li Y. Metal-organic-framework-based catalysts for hydrogenation reactions. Chinese Journal of Catalysis, 2017, 38(7): 1108–1126

    Article  CAS  Google Scholar 

  57. Ke Y, Hu W, Fang H, et al. Preparation, heat-treatment and oxygen reduction performance of porous carbon with high nitrogen content. Journal of Wuhan Institute of Technology, 2021, 43(6): 626–631 (in Chinese)

    Google Scholar 

  58. Liu D, Chen X, Xu G, et al. Iridium nanoparticles supported on hierarchical porous N-doped carbon: an efficient water-tolerant catalyst for bio-alcohol condensation in water. Scientific Reports, 2016, 6(1): 21365

    Article  Google Scholar 

  59. Wang X, Tang Y, Shi P, et al. Self-evaporating from inside to outside to construct cobalt oxide nanoparticles-embedded nitrogen-doped porous carbon nanofibers for high-performance lithium ion batteries. Chemical Engineering Journal, 2018, 334: 1642–1649

    Article  CAS  Google Scholar 

  60. Guo X C, Yu B, Wang Z Z, et al. Selective hydrogenation of furfural to furfuryl alcohol over Cu/CeCoOx in aqueous phase. Molecular Catalysis, 2022, 529: 112553

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the Scientific Research Foundation of Zhejiang Sci-Tech University (19212450-Y).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiufang Chen.

Additional information

Disclosure of potential conflicts of interests

The authors declare that they have no conflict of interests.

Electronic Supplementary Material

11706_2023_645_MOESM1_ESM.pdf

Robust Co3O4 nanocatalysts supported on biomass-derived porous N-doped carbon toward low-pressure hydrogenation of furfural

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Cheng, L., Hu, Y. et al. Robust Co3O4 nanocatalysts supported on biomass-derived porous N-doped carbon toward low-pressure hydrogenation of furfural. Front. Mater. Sci. 17, 230645 (2023). https://doi.org/10.1007/s11706-023-0645-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11706-023-0645-9

Keywords

Navigation