Skip to main content
Log in

The synthesis and functionalization of metal organic frameworks and their applications for the selective separation of proteins/peptides

  • Critical Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Recently, proteins separation has drawn great interest for the full investigation of a proteome because the proteins separation is the precondition when conducting clinical research or proteomics research. Metal organic frameworks (MOFs) are fabricated via covalent connection between organic ligands and metal ions/clusters units. MOFs have attracted much attention due to the ultra-high specific surface area, tunable structure, more metal site or unsaturated site, and chemical stability. Over the past decade, different functionalization types of MOFs have been reported in combination with amino acids, nucleic acids, proteins, polymers, and nanoparticles for various applications. In this review, the synthesis and functionalization of MOFs have been thoroughly discussed, and we introduced the existing problems and development trends in these fields. Furthermore, MOFs as advanced adsorbents for selective separation of proteins/peptides are summarized. Additionally, we present a comprehensive prospects and challenges in the preparation of robust functional MOFs-based adsorbents and make a final outlook on their future development prospects in selective separation of proteins/peptides.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

4,4′-bpy:

4,4′-Bipyridine

TMA:

Benzene-1,3,5-tricarboxylate

BDC:

Terephthalic acid

BTB:

1,3,5-(4-Carboxylphenyl)-benzene

DABDC:

Diaminobenzenedicarboxylate or 2,5-diaminoterephthalate

BPTC:

Benzophenone-3,3′,4,4′-tetracarboxylate

EQCM:

Electrochemical quartz crystal microbalance

H3BTC:

Ttimesic acid

TCPP:

Tetrakis (4-carboxyphenyl) porphyrin

DMNP:

Dimethyl-4-nitrophenyl phosphate

BPA:

Bisphenol-A

CDs:

Carbon dots

BDCH2 :

1,4-Benzene dicarboxylate acid

DEF:

N, N′-diethylformamide

MeSA:

Methanesulfonic acid

PZDC:

Pyrazine-3,5-dicarboxylic acid

PVA:

Poly (vinyl alcohol)

AFI:

Air-flow impacting

H4HDTA:

2,5-Dihydroxyterephthalic acid

HepG2:

Hepatocellular carcinoma cells

Cyt c:

Cytochrome c

QPM:

Quaternized poly (2,6-dimethyl phenylene oxide)

PU:

Polyurethane

CTA:

Chain-transfer agent

IEM:

2-Isocyanatoethyl methacrylate

TETA:

Triethylenetetramine

PPy:

Polypyrrole

BSA:

Bovine serum albumin

HSA:

Human serum albumin

PDC:

2,5-Pyridinedicarboxylic acid

PA:

Phytic acid

T2DM:

Type 2 diabetes mellitus

Hb:

Hemoglobin

β-CN:

β-Casein

IgG:

Immunoglobulin G

FcgR:

Fcg receptors

FBP:

Fructose-1,6-bisphosphate trisodium

GO:

Graphene oxide

References

  1. Wilkins MR, Pasquali C, Appel RD, Ou K, Gola O, Sanchez J-C, Yan JX, Gooley AA, Hughes G, Humphery-Smith L, Wllliams KL, Hochstrasser DF. From proteins to proteomes: large scale protein identification by two-dimensional electrophoresis and amino acid analysis. Nature. 1996;14:61–5.

    CAS  Google Scholar 

  2. Gstaiger M, Aebersold R. Applying mass spectrometry-based proteomics to genetics, genomics and network biology. Nat Rev Genet. 2009;10:617–27.

    Article  CAS  PubMed  Google Scholar 

  3. Wang JD, Guan HY, Liang QL, Ding MY. Construction of copper (II) affinity-DTPA functionalized magnetic composite for efficient adsorption and specific separation of bovine hemoglobin from bovine serum. Compos Part B. 2020;198: 108248.

    Article  CAS  Google Scholar 

  4. Wang JD, Tan SY, Liang QL, Guan HY, Han Q, Ding MY. Selective separation of bovine hemoglobin using magnetic mesoporous rare-earth silicate microspheres. Talanta. 2019;204:792–801.

    Article  CAS  PubMed  Google Scholar 

  5. Li H, Eddaoudi M, O’Keeffe M, Yaghi OM. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature. 1999;18:276–9.

    Article  Google Scholar 

  6. Hoskins BF, Robson R. Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments. J Am Chem Soc. 1989;111:5962–4.

    Article  CAS  Google Scholar 

  7. Annamalai J, Murugan P, Ganapathy D, Nallaswamy D, Atchudan R, Arya S, Khosla A, Barathi S, Sundramoorthy AK. Synthesis of various dimensional metal organic frameworks (MOFs) and their hybrid composites for emerging applications — a review. Chemosphere. 2022;298: 134184.

    Article  CAS  PubMed  Google Scholar 

  8. Ha L, Choi KM, Kim DP. Interwoven MOF-coated janus cells as a novel carrier of toxic proteins. ACS Appl Mater Interfaces. 2021;13:18545–53.

    Article  CAS  PubMed  Google Scholar 

  9. Liberman I, Ifraemov R, Shimoni R, Hod I. Localized electrosynthesis and subsequent electrochemical mapping of catalytically active metal–organic frameworks. Adv Funct Mater. 2022;32:2112517.

    Article  CAS  Google Scholar 

  10. Zhu C, Gerald RE II, Chen YZ, Huang J. Metal-organic framework portable chemical sensor. Sens Actuators B Chem. 2020;321: 128608.

    Article  CAS  Google Scholar 

  11. Shen Y, Pan T, Wang L, Ren Z, Zhang WN, Huo FW. Programmable logic in metal–organic frameworks for catalysis. Adv Mater. 2021;33:2007442.

    Article  CAS  Google Scholar 

  12. Deng YY, Wu YN, Chen GQ, Zheng XL, Dai M, Peng CS. Metal-organic framework membranes: recent development in the synthesis strategies and their application in oil-water separation. Chem Eng J. 2021;405: 127004.

    Article  CAS  Google Scholar 

  13. Ramulu B, Mule AR, Arbaz SJ, Yu JS. Design of high-mass loading metal–organic framework-based electrode materials with excellent redox activity for long-lasting electrochemical energy storage applications. Chem Eng J. 2023;455: 140905.

    Article  CAS  Google Scholar 

  14. Stock N, Biswas S. Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem Rev. 2012;112:933–69.

    Article  CAS  PubMed  Google Scholar 

  15. Meek BST, Greathouse JA, Allendorf MD. Metal-organic frameworks: a rapidly growing class of versatile nanoporous materials. Adv Mater. 2011;23:249–67.

    Article  CAS  PubMed  Google Scholar 

  16. Yaghi OM, Li HL. Hydrothermal synthesis of a metal-organic framework containing large rectangular channels. J Am Chem Soc. 1995;117:10401–2.

    Article  CAS  Google Scholar 

  17. ChuiA SS-Y, Lo SM-F, Charmant JPH, Orpen AG, Williams LD. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science. 1999;283:1148–50.

    Article  Google Scholar 

  18. Tang JT, Wang JL. Iron-copper bimetallic metal-organic frameworks for efficient Fentonlike degradation of sulfamethoxazole under mild conditions. Chemosphere. 2020;241: 125002.

    Article  CAS  PubMed  Google Scholar 

  19. Campagnol N, Van Assche TRC, Li MY, Stappers L, Dincă M, Denayer JFM, Binnemans K, De Vos DE, Fransaer J. On the electrochemical deposition of metal–organic frameworks. J Mater Chem A. 2016;4:3914.

    Article  CAS  Google Scholar 

  20. Khazalpour S, Safarifard V, Morsali A, Nematollahi D. Electrochemical synthesis of pillared layer mixed ligand metal–organic framework: DMOF-1–Zn. RSC Adv. 2015;5:36547.

    Article  CAS  Google Scholar 

  21. Asghar A, Iqbal N, Noor T, Kariuki BM, Kidwell L, Easun TL. Efficient electrochemical synthesis of a manganese-based metal–organic framework for H2 and CO2 uptake. Green Chem. 2021;23:1220.

    Article  CAS  Google Scholar 

  22. Hod I, Bury W, Karlin DM, Deria P, Kung C-W, Katz MJ, So M, Klahr B, Jin D, Chung Y-W, Odom TW, Farha OK, Hupp JT. Directed growth of electroactive metal-organic framework thin films using electrophoretic deposition. Adv Mater. 2014;26:6295–300.

    Article  CAS  PubMed  Google Scholar 

  23. Liu HP, Wang HM, Chu TS, Yu MH, Yang YY. An electrodeposited lanthanide MOF thin film as a luminescent sensor for carbonate detection in aqueous solution. J Mater Chem C. 2014;2:8683.

    Article  CAS  Google Scholar 

  24. Guo W, Monnens W, Zhang W, Xie SJ, Han N, Zhou ZY, Chanut N, Vanstreels K, Ameloot R, Zhang X, Fransaer J. Anodic electrodeposition of continuous metal-organic framework films with robust adhesion by pre-anchored strategy. Microporous Mesoporous Mater. 2023;350: 112443.

    Article  CAS  Google Scholar 

  25. Suslick KS, Hammerton DA, Cline RE Jr. The sonochemical hot spot. J Am Chem Soc. 1986;108:5641–2.

    Article  CAS  Google Scholar 

  26. Qiu L-G, Li Z-Q, Wu Y, Wang W, Xu T, Jiang X. Facile synthesis of nanocrystals of a microporous metalorganic framework by an ultrasonic method and selective sensing of organoamines. Chem Commun. 2008;31:3642–4.

    Article  Google Scholar 

  27. Son W-J, Kim J, Kim J, Ahn W-S. Sonochemical Synthesis of MOF-5. Chem Commun. 2008;47:6336–8.

    Article  Google Scholar 

  28. Yuan S, Feng L, Wang KC, Pang JD, Bosch M, Lollar C, Sun YJ, Qin JS, Yang XY, Zhang P, Wang Q, Zou LF, Zhang YM, Zhang LL, Fang Y, Li JL, Zhou H-C. Stable metal–organic frameworks: design, synthesis, and applications. Adv Mater. 2018;30:1704303.

    Article  Google Scholar 

  29. Yu KS, Lee Y-R, Seo JY, Baek K-Y, Chung Y-M. Sonochemical synthesis of Zr-based porphyrinic MOF-525 and MOF-545: enhancement in catalytic and adsorption properties. Microporous Mesoporous Mater. 2021;316: 110985.

    Article  CAS  Google Scholar 

  30. Ni Z, Masel MI. Rapid production of metal-organic frameworks via microwave-assisted solvothermal synthesis. J Am Chem Soc. 2006;128:12394–5.

    Article  CAS  PubMed  Google Scholar 

  31. Kong Y-R, Zhang R, Zhang J, Luo H-B, Liu YY, Zou Y, Ren X-M. Microwave-assisted rapid synthesis of nanoscale MOF-303 for hydrogel composites with superior proton conduction at ambient-humidity conditions. ACS Appl Energy Mater. 2021;4:14681–8.

    Article  CAS  Google Scholar 

  32. Li QL, Liu YB, Niu SY, Li CH, Chen C, Liu QQ, Huo J. Microwave-assisted rapid synthesis and activation of ultrathin trimetal–organic framework nanosheets for efficient electrocatalytic oxygen evolution. J Collid Interface Sci. 2021;603:148–56.

    Article  CAS  Google Scholar 

  33. González L, Gil-San-Millán R, Navarro JAR, Maldonado CR, Barea E, Carmona FJ. Green synthesis of zirconium MOF-808 for simultaneous phosphate recovery and organophosphorus pesticide detoxification in wastewater. J Mater Chem A. 2022;10:19606.

    Article  Google Scholar 

  34. Greifenstein R, Ballweg T, Hashem T, Gottwald E, Achauer D, Kirschhöfer F, Nusser M, Brenner-Weiß G, Sedghamiz E, Wenzel W, Mittmann E, Rabe KS, Niemeyer CM, Franzreb M, Wöll C. MOF-hosted enzymes for continuous flow catalysis in aqueous and organic solvents. Angew Chem Int Ed. 2022;6: e202117144.

    Google Scholar 

  35. Xie K, Fu Q, He Y, Kim J, Goh SJ, Nam E, Qiao GG, Webley PA. Synthesis of well dispersed polymer grafted metal–organic framework nanoparticles. Chem Commun. 2015;51:15566.

    Article  CAS  Google Scholar 

  36. Li SZ, Huo FW. Metal–organic framework composites: from fundamentals to applications. Nanoscale. 2015;7:7482.

    Article  CAS  PubMed  Google Scholar 

  37. Liu B, Jiang M, Zhu DZ, Zhang JM, Wei G. Metal-organic frameworks functionalized with nucleic acids and amino acids for structure- and function-specific applications: a tutorial review. Chem Eng J. 2022;428: 131118.

    Article  CAS  Google Scholar 

  38. Rasuli L, Dehghani MH, Alimohammadi M, Yaghmaeian K, Rastkari N, Salari M. Mesoporous metal organic frameworks functionalized with the amino acids as advanced sorbents for the removal of bacterial endotoxins from water: optimization, regression and kinetic models. J Mol Liq. 2021;339: 116801.

    Article  CAS  Google Scholar 

  39. Jahromi FB, Elhambakhsh A, Keshavarz P, Panahi F. Insight into the application of amino acid-functionalized MIL-101(Cr) micro fluids for high-efficiency CO2 absorption: effect of amine number and surface area. Fuel. 2023;334: 126603.

    Article  CAS  Google Scholar 

  40. Shu Y, Fujimoto Y, Taniguchi Y, Miyake K, Uchida Y, Nishiyama N. Amino-acid-functionalized metal–organic frameworks as excellent precursors toward bifunctional metal-free electrocatalysts. ACS Appl Energy Mater. 2022;5:11091–7.

    Article  CAS  Google Scholar 

  41. Wang SY, Duan LX, Jiang L, Liu KL, Wang SZ. Assembly of peptide linker to amino acid dehydrogenase and immobilized with metal–organic framework. J Chem Technol Biotechnol. 2022;97:741–8.

    Article  CAS  Google Scholar 

  42. Zhang GY, Shan D, Dong HF, Cosnier S, Al-Ghanim KA, Ahmad Z, Mahboob S, Zhang XJ. DNA-mediated nanoscale metal-organic frameworks for ultrasensitive photoelectrochemical enzyme-free immunoassay. Anal Chem. 2018;90:12284–91.

    Article  CAS  PubMed  Google Scholar 

  43. Li LL, Xing H, Zhang JJ, Lu Y. Functional DNA molecules enable selective and stimuli-responsive nanoparticles for biomedical applications. Acc Chem Res. 2019;52:2415–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tolentino MQ, Hartmann AK, Loe DT, Rouge JL. Controlled release of small molecules and proteins from DNA-surfactant stabilized metal organic frameworks. J Mater Chem B. 2020;8:5627–35.

    Article  CAS  PubMed  Google Scholar 

  45. Hua Y, Ma JM, Li DC, Wang RD. DNA-based biosensors for the biochemical analysis: A review. Biosensors. 2022;12:183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Long WX, Yang JJ, Zhao Q, Pan YC, Luan XW, He BS, Han X, Wang YZ, Song YJ. Metal-organic framework-DNA bio-barcodes amplified CRISPR/Cas12a assay for ultrasensitive detection of protein biomarkers. Anal Chem. 2023;95:1618–26.

    CAS  PubMed  Google Scholar 

  47. Qing M, Chen SL, Xie SB, Tang Y, Zhang J, Yuan R. Encapsulation and release of recognition probes based on a rigid three-dimensional DNA “nanosafe-box” for construction of a electrochemical biosensor. Anal Chem. 2020;92:1811–7.

    Article  CAS  PubMed  Google Scholar 

  48. Liang K, Ricco R, Doherty CM, Styles MJ, Bell S, Kirby N, Mudie S, Haylock D, Hill AJ, Doonan CJ, Falcaro P. Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nat Commun. 2015;3:6.

    CAS  Google Scholar 

  49. Xu JF, Cao PK, Fan ZY, Luo XJ, Yang GQ, Qu TL, Gao JP. Rapid screening of lipase inhibitors in Scutellaria baicalensis by using porcine pancreatic lipase immobilized on magnetic core–shell metal–organic frameworks. Molecules. 2022;27:3475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Singh A, Karmakar S, Abraham IM, Rambabu D, Dave D, Manjithaya R, Maji TK. Unraveling the effect on luminescent properties by postsynthetic covalent and noncovalent grafting of gfp chromophore analogues in nanoscale MOF-808. Inorg Chem. 2020;59:8251–8.

    Article  CAS  PubMed  Google Scholar 

  51. Liao F-S, Lo W-S, Hsu Y-S, Wu C-C, Wang S-C, Shieh F-K, Morabito JV, Chou L-Y, Wu KC-W, Tsung C-K. Shielding against unfolding by embedding enzymes in metal−organic frameworks via a de novo approach. J Am Chem Soc. 2017;139:6530–3.

    Article  CAS  PubMed  Google Scholar 

  52. Vinogradov VV, Drozdov AS, Mingabudinova LR, Shabanova EM, Kolchina NO, Anastasova EI, Markova AA, Shtil AA, Milichko VA, Starova GL, Precker RLM, Vinogradov AV, Hey-Hawkins E, Pidko EA. Composites based on heparin and MIL-101(Fe): the drug releasing depot for anticoagulant therapy and advanced medical nanofabrication. J Mater Chem B. 2018;6:2450.

    Article  CAS  PubMed  Google Scholar 

  53. Giliopoulos D, Zamboulis A, Giannakoudakis D, Bikiaris D, Triantafyllidis K. Polymer/metal organic framework (MOF) nanocomposites for biomedical applications. Molecules. 2020;25:185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sharma P, Goswami R, Neogi S, Shahi VK. Devising ultra-robust mixed-matrix membrane separators using functionalized MOF–poly(phenylene oxide) for high-performance vanadium redox flow batteries. J Mater Chem A. 2022;10:11150.

    Article  CAS  Google Scholar 

  55. Gandara-Loe J, Souza BE, Missyul A, Giraldo G, Tan J-C, Silvestre-Albero J. MOF-based polymeric nanocomposite films as potential materials for drug delivery devices in ocular therapeutics. ACS Appl Mater Interfaces. 2020;12:30189–97.

    Article  CAS  PubMed  Google Scholar 

  56. Benzaqui M, Semino R, Carn F, Tavares SR, Menguy N, Giménez-Marqués M, Bellido E, Horcajada P, Berthelot T, Kuzminova AI, Dmitrenko ME, Penkova AV, Roizard D, Serre C, Maurin G, Steunou N. Covalent and selective grafting of polyethylene glycol brushes at the surface of ZIF8 for the processing of membranes for pervaporation. ACS Sustain Chem Eng. 2019;7:6629–39.

    Article  CAS  Google Scholar 

  57. Dai DJ, Wang HL, Li C, Qin XD, Li T. A physical entangling strategy for simultaneous interior and exterior modification of metal–organic framework with polymers. Angew Chem Int Ed. 2021;60:7389–96.

    Article  CAS  Google Scholar 

  58. Liu C, Feng SN, Zhu ZW, Chen QH, Noh K, Kotaki M, Sue H-J. Manipulation of fracture behavior of poly(methyl methacrylate) nanocomposites by interfacial design of a metal−organic framework nanoparticle toughener. Langmuir. 2020;36:11938–47.

    Article  CAS  PubMed  Google Scholar 

  59. Drake JM, Paull EO, Graham NA, Lee JK, Smith BA, Titz B, Stoyanova T, Faltermeier CM, Uzunangelov V, Carlin DE, Fleming DT, Wong CK, Newton Y, Sudha S, Vashisht AA, Huang J, Wohlschlegel JA, Graeber TG, Witte ON, Stuart JM. Phosphoproteome integration reveals patient specific networks in prostate cancer. Cell. 2016;166:1041–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang JD, Han Q, Wang K, Li SR, Luo W, Liang QL, Zhong JM, Ding MY. Recent advances in development of functional magnetic adsorbents for selective separation of proteins/peptides. Talanta. 2023;253: 123919.

    Article  CAS  PubMed  Google Scholar 

  61. Wu YL, Chen HL, Chen YJ, Sun NR, Deng CH. Metal organic frameworks as advanced extraction adsorbents for separation and analysis in proteomics and environmental research. Sci China Chem. 2022;65:650–77.

    Article  CAS  Google Scholar 

  62. Anastassiades M, Lehotay SJ. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. J AOAC Int. 2003;86:412–31.

    Article  CAS  PubMed  Google Scholar 

  63. Cohen P. The origins of protein phosphorylation. Nat Cell Biol. 2002;4:E127–30.

    Article  CAS  PubMed  Google Scholar 

  64. Hunter T. Signaling—2000 and beyond. Cell. 2000;100:113–27.

    Article  CAS  PubMed  Google Scholar 

  65. Alonso A, Sasin J, Bottini N, Friedberg L, Friedberg I, Osterman A, Godzik A, Hunter T, Dixon J, Mustelin T. Protein tyrosine phosphatases in the human genome. Cell. 2004;117:699–711.

    Article  CAS  PubMed  Google Scholar 

  66. Xiao J, Yang S-S, Wu J-X, Wu N, Yu XZ, Shang WB, Gu Z-Y. Sn-based metal-organic framework for highly selective capture of monophosphopeptides. Talanta. 2021;224: 121812.

    Article  CAS  PubMed  Google Scholar 

  67. Chen LF, Ou JJ, Wang HW, Liu ZS, Ye ML, Zou HF. Tailor-made stable Zr(IV)-based metal−organic frameworks for laser desorption/ionization mass spectrometry analysis of small molecules and simultaneous enrichment of phosphopeptides. ACS Appl Mater Interfaces. 2016;8:20292–300.

    Article  CAS  PubMed  Google Scholar 

  68. Cao LC, Zhao YM, Chu ZY, Zhang XM, Zhang WB. Core-shell magnetic bimetallic MOF material for synergistic enrichment of phosphopeptides. Talanta. 2020;206: 120165.

    Article  CAS  PubMed  Google Scholar 

  69. Yan S, Luo B, He J, Lan F, Wu Y. Phytic acid functionalized magnetic bimetallic metal–organic frameworks for phosphopeptide enrichment. J Mater Chem B. 2021;9:1811.

    Article  CAS  PubMed  Google Scholar 

  70. Xiao J, Yang S-S, Wu J-X, Wang H, Yu XZ, Shang WB, Chen G-Q, Gu Z-Y. Highly selective capture of monophosphopeptides by two-dimensional metal−organic framework nanosheets. Anal Chem. 2019;91:9093–101.

    Article  CAS  PubMed  Google Scholar 

  71. Yan S, Luo B, Yu LZ, Lan F, Wu Y. Fabrication of Zr-BTB@TiO2@Fe3O4 nanosheets via combining dielectric barrier discharge and in situ growth method for the enrichment of phosphopeptides. ACS Sustain Chem Eng. 2022;10:14220–9.

    Article  CAS  Google Scholar 

  72. Sha QY, Wu YK, Wang C, Sun BY, Zhang ZH, Zhang L, Lin YW, Liu X. Cellulose microspheres-filled pipet tips for purification and enrichment of glycans and glycopeptides. J Chromatogr A. 2018;1569:8–16.

    Article  CAS  PubMed  Google Scholar 

  73. Zhu TY, Gu QY, Liu QN, Zou X, Zhao HL, Zhang Y, Pu CL, Lan MB. Nanostructure stable hydrophilic hierarchical porous metal-organic frameworks for highly efficient enrichment of glycopeptides. Talanta. 2022;240: 123193.

    Article  CAS  PubMed  Google Scholar 

  74. Yang S-S, Wang C, Xiao J, Yu XZ, Shang WB, Chen DDY, Gu Z-Y. Highly efficient enrichment of N-glycopeptides by two-dimensional Hf-based metal–organic framework nanosheets. Analyst. 2020;145:4432.

    Article  CAS  PubMed  Google Scholar 

  75. Wang JX, Wang XM, Li J, Xia Y, Gao MX, Zhang XM, Huang L-H. A novel hydrophilic MOFs-303-functionalized magnetic probe for the highly efficient analysis of N-linked glycopeptides. J Mater Chem B. 2022;10:2011.

    Article  CAS  PubMed  Google Scholar 

  76. Pu CL, Zhao HL, Hong YY, Zhan QL, Lan MB. Facile preparation of hydrophilic mesoporous metal−organic framework via synergistic etching and surface functionalization for glycopeptides analysis. Anal Chem. 2020;92:1940–7.

    Article  CAS  PubMed  Google Scholar 

  77. Lu JY, Luan JY, Li YJ, He XW, Chen LX, Zhang YK. Hydrophilic maltose-modified magnetic metal-organic framework for highly efficient enrichment of N-linked glycopeptides. J Chromatogr A. 2020;1615: 460754.

    Article  CAS  PubMed  Google Scholar 

  78. Wu JN, Jin XT, Zhu CH, Yan YH, Ding C-F, Tang KQ. Gold nanoparticle-glutathione functionalized MOFs as hydrophilic materials for the selective enrichment of glycopeptides. Talanta. 2021;228: 122263.

    Article  CAS  PubMed  Google Scholar 

  79. Zhong HF, Li YM, Huang YY, Zhao R. Metal–organic frameworks as advanced materials for sample preparation of bioactive peptides. Anal Methods. 2021;13:862.

    Article  CAS  PubMed  Google Scholar 

  80. Ali MM, Zhu ZY, Wang MY, Hussain D, Gao X, Wang JF, Du ZX. Melamine foam assisted in-tip packed amine-functionalized titanium m etal–organic framework for the selective enrichment of endogenous glycopeptides. J Chromatogr A. 2021;1636: 461711.

    Article  CAS  PubMed  Google Scholar 

  81. Wei JP, Wang H, Luo T, Zhou Z-J, Huang Y-F, Qiao B. Enrichment of serum biomarkers by magnetic metal-organic framework composites. Anal Bioanal Chem. 2017;409:1895–904.

    Article  CAS  PubMed  Google Scholar 

  82. Zhao M, Deng CH, Zhang XM, Yang PY. Facile synthesis of magnetic metal organic frameworks for the enrichment of low-abundance peptides for MALDI-TOF MS analysis. Proteomics. 2013;13:3387–92.

    Article  CAS  PubMed  Google Scholar 

  83. Zhao M, Xie YQ, Chen HM, Deng CH. Efficient extraction of low-abundance peptides from digested proteins and simultaneous exclusion of large-sized proteins with novel hydrophilic magnetic zeolitic imidazolate frameworks. Talanta. 2017;167:392–7.

    Article  CAS  PubMed  Google Scholar 

  84. Liu Q, Song YY, Ma YH, Zhou Y, Cong HJ, Wang C, Wu J, Hu GL, O’Keeffe M, Deng HX. Mesoporous cages in chemically robust MOFs created by a large number of vertices with reduced connectivity. J Am Chem Soc. 2019;141:488–96.

    Article  CAS  PubMed  Google Scholar 

  85. Wang JD, Guan HY, Han Q, Tan SY, Liang QL, Ding MY. Fabrication of Yb(3+)-immobilized hydrophilic phytic-acid-coated magnetic nanocomposites for the selective separation of bovine hemoglobin from bovine serum. ACS Biomater Sci Eng. 2019;5:2740–9.

    Article  CAS  PubMed  Google Scholar 

  86. Wang JD, Tan SY, Liang QL, Sun SA, Han Q, Ding MY. Preparation of magnetic microspheres functionalized by lanthanide oxides for selective isolation of bovine hemoglobin. Talanta. 2018;190:210–8.

    Article  CAS  PubMed  Google Scholar 

  87. Wang XL, Xiao H, Li A, Li Z, Liu SJ, Zhang QH, Gong Y, Zheng LR, Zhu YQ, Chen C, Wang DS, Peng Q, Gu L, Han XD, Li J, Li YD. Constructing NiCo/Fe3O4 heteroparticles within MOF-74 for efficient oxygen evolution reactions. J Am Chem Soc. 2018;140:15336–41.

    Article  CAS  PubMed  Google Scholar 

  88. Xu HJ, Guo JL, Li CW, Zhao JJ, Gao ZD, Song Y-Y. Nanoarchitectonics of a MOF-in-nanochannel (HKUST-1/TiO2) membrane for multitarget selective enrichment and staged recovery. ACS Appl Mater Interfaces. 2022;14:22006–15.

    Article  CAS  PubMed  Google Scholar 

  89. He WL, Guo XH, Zheng J, Xu JL, Hayat T, Alharbi NS, Zhang M. Structural evolution and compositional modulation of ZIF-8-derived hybrids comprised of metallic Ni nanoparticles and silica as interlayer. Inorg Chem. 2019;58:7255–66.

    Article  CAS  PubMed  Google Scholar 

  90. Harre SC, Lang R, Pfeifle Y, Rombouts S, Frühbeiβer K, Amara H, Bang A, Lux CA, Koeleman W, Baum K, Dietel F, Gröhn V, Malmström L, Klareskog G, Krönke R, Kocijan F, Nimmerjahn RE, Toes M, Herrmann HU, Scherer G. Schett, Glycosylation of immunoglobulin G determines osteoclast differentiation and bone loss. Nat Commun. 2015;6:6651.

    Article  CAS  PubMed  Google Scholar 

  91. Hu ZJ, Wang XM, Chen XW. Bisphosphorylated fructose-modified magnetic Zr-organic framework: a dual-hydrophilic sorbent for selective adsorption of immunoglobulin G. Anal Chim Acta. 2020;1112:16–23.

    Article  CAS  PubMed  Google Scholar 

  92. Hu ZJ, Wang XM, Wang JH, Chen XW. PEGylation of metal-organic framework for selective isolation of glycoprotein immunoglobulin G. Talanta. 2020;208: 120433.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program of China (2016YFA0203101), Natural Science Foundation of China (Nos. 21575076 and 21621003), and the Natural Science Foundation of Ningxia Province (2023AAC03892).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tingxia Hu, Jingming Zhong or Mingyu Ding.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Hu, T., Han, Q. et al. The synthesis and functionalization of metal organic frameworks and their applications for the selective separation of proteins/peptides. Anal Bioanal Chem 415, 5859–5874 (2023). https://doi.org/10.1007/s00216-023-04843-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-023-04843-z

Keywords

Navigation