Skip to main content
Log in

Assemblies of covalent organic framework microcrystals: multiple-dimensional manipulation for enhanced applications

  • Mini Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Covalent organic frameworks (COFs) are well known as the next generation of shape-persistent zeolite analogues, which have brought new impetus to the development of porous organic materials as well as two-dimensional polymers. Since the advent of COFs in 2005, many striking findings have definitely proven their great potentials expanding applications across energy, environment and healthcare fields. With thorough exploration over a decade, research interest has been drawn on the scientific challenges on chemistry, while making full play of COF values has remained far from satisfactory yet. Thus opening an avenue to modulating COF assemblies on the multi-scale is no longer just an option, but a necessity for matching the application requirements with enhanced performances. In this mini-review, we summarize the recent progress on design of nanoscale COFs with varying forms. Detailed description is concentrated on the synthetic strategies of COF assemblies such as spheres, fibers, tubes, coatings and films, thereby shedding light on the flexible manipulation over dimensions, compositions and morphologies. Meanwhile, the advanced applications of nanoscale COFs have been discussed here with comparison of their bulky counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mastalerz M. Angew Chem Int Ed, 2008, 47: 445–447

    Article  CAS  Google Scholar 

  2. Nagai A, Chen X, Feng X, Ding X, Guo Z, Jiang D. Angew Chem Int Ed, 2013, 52: 3770–3774

    Article  CAS  Google Scholar 

  3. Dalapati S, Jin E, Addicoat M, Heine T, Jiang D. J Am Chem Soc, 2016, 138: 5797–5800

    Article  CAS  PubMed  Google Scholar 

  4. Dalapati S, Jin S, Gao J, Xu Y, Nagai A, Jiang D. J Am Chem Soc, 2013, 135: 17310–17313

    Article  CAS  PubMed  Google Scholar 

  5. Wan S, Guo J, Kim J, Ihee H, Jiang D. Angew Chem, 2008, 120: 8958–8962

    Article  Google Scholar 

  6. Vyas VS, Haase F, Stegbauer L, Savasci G, Podjaski F, Ochsenfeld C, Lotsch BV. Nat Commun, 2015, 6: 8508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chandra S, Kundu T, Kandambeth S, Babarao R, Marathe Y, Kunjir SM, Banerjee R. J Am Chem Soc, 2014, 136: 6570–6573

    Article  CAS  PubMed  Google Scholar 

  8. Ma H, Liu B, Li B, Zhang L, Li YG, Tan HQ, Zang HY, Zhu G. J Am Chem Soc, 2016, 138: 5897–5903

    Article  CAS  PubMed  Google Scholar 

  9. Mulzer CR, Shen L, Bisbey RP, McKone JR, Zhang N, Abruña HD, Dichtel WR. ACS Cent Sci, 2016, 2: 667–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Côté AP, El-Kaderi HM, Furukawa H, Hunt JR, Yaghi OM. J Am Chem Soc, 2007, 129: 12914–12915

    Article  CAS  PubMed  Google Scholar 

  11. El-Kaderi HM, Hunt JR, Mendoza-Cortes JL, Cote AP, Taylor RE, O’Keeffe M, Yaghi OM. Science, 2007, 316: 268–272

    Article  CAS  PubMed  Google Scholar 

  12. Cai SL, Zhang K, Tan JB, Wang S, Zheng SR, Fan J, Yu Y, Zhang WG, Liu Y. ACS Macro Lett, 2016, 5: 1348–1352

    Article  CAS  Google Scholar 

  13. Liu Y, Ma Y, Zhao Y, Sun X, Gándara F, Furukawa H, Liu Z, Zhu H, Zhu C, Suenaga K, Oleynikov P, Alshammari AS, Zhang X, Terasaki O, Yaghi OM. Science, 2016, 351: 365–369

    Article  CAS  PubMed  Google Scholar 

  14. Pang ZF, Xu SQ, Zhou TY, Liang RR, Zhan TG, Zhao X. J Am Chem Soc, 2016, 138: 4710–4713

    Article  CAS  PubMed  Google Scholar 

  15. Lin G, Ding H, Chen R, Peng Z, Wang B, Wang C. J Am Chem Soc, 2017, 139: 8705–8709

    Article  CAS  PubMed  Google Scholar 

  16. Qian C, Qi QY, Jiang GF, Cui FZ, Tian Y, Zhao X. J Am Chem Soc, 2017, 139: 6736–6743

    Article  CAS  PubMed  Google Scholar 

  17. Côté AP, Benin AI, Ockwig NW, O’Keeffe M, Matzger AJ, Yaghi OM. Science, 2005, 310: 1166–1170

    Article  CAS  PubMed  Google Scholar 

  18. Kuhn P, Antonietti M, Thomas A. Angew Chem Int Ed, 2008, 47: 3450–3453

    Article  CAS  Google Scholar 

  19. Uribe-Romo FJ, Hunt JR, Furukawa H, Klöck C, O’Keeffe M, Yaghi OM. J Am Chem Soc, 2009, 131: 4570–4571

    Article  CAS  PubMed  Google Scholar 

  20. Uribe-Romo FJ, Doonan CJ, Furukawa H, Oisaki K, Yaghi OM. J Am Chem Soc, 2011, 133: 11478–11481

    Article  CAS  PubMed  Google Scholar 

  21. Kandambeth S, Mallick A, Lukose B, Mane MV, Heine T, Banerjee R. J Am Chem Soc, 2012, 134: 19524–19527

    Article  CAS  PubMed  Google Scholar 

  22. Li H, Pan Q, Ma Y, Guan X, Xue M, Fang Q, Yan Y, Valtchev V, Qiu S. J Am Chem Soc, 2016, 138: 14783–14788

    Article  CAS  PubMed  Google Scholar 

  23. Wan S, Guo J, Kim J, Ihee H, Jiang D. Angew Chem Int Ed, 2009, 48: 5439–5442

    Article  CAS  Google Scholar 

  24. Ding X, Guo J, Feng X, Honsho Y, Guo J, Seki S, Maitarad P, Saeki A, Nagase S, Jiang D. Angew Chem Int Ed, 2011, 50: 1289–1293

    Article  CAS  Google Scholar 

  25. Wan S, Gándara F, Asano A, Furukawa H, Saeki A, Dey SK, Liao L, Ambrogio MW, Botros YY, Duan X, Seki S, Stoddart JF, Yaghi OM. Chem Mater, 2011, 23: 4094–4097

    Article  CAS  Google Scholar 

  26. Feng X, Chen L, Honsho Y, Saengsawang O, Liu L, Wang L, Saeki A, Irle S, Seki S, Dong Y, Jiang D. Adv Mater, 2012, 24: 3026–3031

    Article  CAS  PubMed  Google Scholar 

  27. Ding SY, Dong M, Wang YW, Chen YT, Wang HZ, Su CY, Wang W. J Am Chem Soc, 2016, 138: 3031–3037

    Article  CAS  PubMed  Google Scholar 

  28. Wang X, Han X, Zhang J, Wu X, Liu Y, Cui Y. J Am Chem Soc, 2016, 138: 12332–12335

    Article  CAS  PubMed  Google Scholar 

  29. Xu HS, Ding SY, An WK, Wu H, Wang W. J Am Chem Soc, 2016, 138: 11489–11492

    Article  CAS  PubMed  Google Scholar 

  30. Han X, Xia Q, Huang J, Liu Y, Tan C, Cui Y. J Am Chem Soc, 2017, 139: 8693–8697

    Article  CAS  PubMed  Google Scholar 

  31. Zhang J, Han X, Wu X, Liu Y, Cui Y. J Am Chem Soc, 2017, 139: 8277–8285

    Article  CAS  PubMed  Google Scholar 

  32. Kandambeth S, Venkatesh V, Shinde DB, Kumari S, Halder A, Verma S, Banerjee R. Nat Commun, 2015, 6: 6786

    Article  CAS  PubMed  Google Scholar 

  33. Ding SY, Wang W. Chem Soc Rev, 2013, 42: 548–568

    Article  CAS  PubMed  Google Scholar 

  34. Xu L, Zhou X, Tian WQ, Gao T, Zhang YF, Lei S, Liu ZF. Angew Chem Int Ed, 2014, 53: 9564–9568

    Article  CAS  Google Scholar 

  35. Zhou TY, Lin F, Li ZT, Zhao X. Macromolecules, 2013, 46: 7745–7752

    Article  CAS  Google Scholar 

  36. Halder A, Kandambeth S, Biswal BP, Kaur G, Roy NC, Addicoat M, Salunke JK, Banerjee S, Vanka K, Heine T, Verma S, Banerjee R. Angew Chem, 2016, 128: 7937–7941

    Article  Google Scholar 

  37. Tan J, Namuangruk S, Kong W, Kungwan N, Guo J, Wang C. Angew Chem, 2016, 128: 14185–14190

    Article  Google Scholar 

  38. Sun B, Wang D, Wan L. Sci China Chem, 2017, 60: 1098–1102

    Article  CAS  Google Scholar 

  39. Smith BJ, Parent LR, Overholts AC, Beaucage PA, Bisbey RP, Chavez AD, Hwang N, Park C, Evans AM, Gianneschi NC, Dichtel WR. ACS Cent Sci, 2017, 3: 58–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen L, Zhang L, Chen Z, Liu H, Luque R, Li Y. Chem Sci, 2016, 7: 6015–6020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shi X, Yao Y, Xu Y, Liu K, Zhu G, Chi L, Lu G. ACS Appl Mater Interfaces, 2017, 9: 7481–7488

    Article  CAS  PubMed  Google Scholar 

  42. Bavykina AV, Rozhko E, Goesten MG, Wezendonk T, Seoane B, Kapteijn F, Makkee M, Gascon J. ChemCatChem, 2016, 8: 2217–2221

    Article  CAS  Google Scholar 

  43. Pachfule P, Kandmabeth S, Mallick A, Banerjee R. Chem Commun, 2015, 51: 11717–11720

    Article  CAS  Google Scholar 

  44. Sun B, Liu J, Cao A, Song W, Wang D. Chem Commun, 2017, 53: 6303–6306

    Article  CAS  Google Scholar 

  45. Chavez AD, Smith BJ, Smith MK, Beaucage PA, Northrop BH, Dichtel WR. Chem Mater, 2016, 28: 4884–4888

    Article  CAS  Google Scholar 

  46. Salonen LM, Medina DD, Carbó-Argibay E, Goesten MG, Mafra L, Guldris N, Rotter JM, Stroppa DG, Rodríguez-Abreu C. Chem Commun, 2016, 52: 7986–7989

    Article  CAS  Google Scholar 

  47. Jiang Y, Huang W, Wang J, Wu Q, Wang H, Pan L, Liu X. J Mater Chem A, 2014, 2: 8201–8204

    Article  CAS  Google Scholar 

  48. Rodríguez San Miguel D, Abrishamkar A, Navarro JA, Rodriguez Trujillo R, Amabilino DB, Mas Ballesté R, Zamora F, Puigmartí Luis J. Chem Commun, 2016, 52: 9212–9215

    Article  CAS  Google Scholar 

  49. Colson JW, Woll AR, Mukherjee A, Levendorf MP, Spitler EL, Shields VB, Spencer MG, Park J, Dichtel WR. Science, 2011, 332: 228–231

    Article  CAS  PubMed  Google Scholar 

  50. Spitler EL, Colson JW, Uribe-Romo FJ, Woll AR, Giovino MR, Saldivar A, Dichtel WR. Angew Chem Int Ed, 2012, 51: 2623–2627

    Article  CAS  Google Scholar 

  51. DeBlase CR, Hernández-Burgos K, Silberstein KE, Rodríguez-Calero GG, Bisbey RP, Abruña HD, Dichtel WR. ACS Nano, 2015, 9: 3178–3183

    Article  CAS  PubMed  Google Scholar 

  52. Medina DD, Werner V, Auras F, Tautz R, Dogru M, Schuster J, Linke S, Döblinger M, Feldmann J, Knochel P, Bein T. ACS Nano, 2014, 8: 4042–4052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cai SL, Zhang YB, Pun AB, He B, Yang J, Toma FM, Sharp ID, Yaghi OM, Fan J, Zheng SR, Zhang WG, Liu Y. Chem Sci, 2014, 5: 4693–4700

    Article  CAS  Google Scholar 

  54. Dong W, Wang L, Ding H, Zhao L, Wang D, Wang C, Wan LJ. Langmuir, 2015, 31: 11755–11759

    Article  CAS  PubMed  Google Scholar 

  55. Dong WL, Li SY, Yue JY, Wang C, Wang D, Wan LJ. Phys Chem Chem Phys, 2016, 18: 17356–17359

    Article  CAS  PubMed  Google Scholar 

  56. Bisbey RP, DeBlase CR, Smith BJ, Dichtel WR. J Am Chem Soc, 2016, 138: 11433–11436

    Article  CAS  PubMed  Google Scholar 

  57. Medina DD, Rotter JM, Hu Y, Dogru M, Werner V, Auras F, Markiewicz JT, Knochel P, Bein T. J Am Chem Soc, 2015, 137: 1016–1019

    Article  CAS  PubMed  Google Scholar 

  58. Berlanga I, Ruiz-González ML, González-Calbet JM, Fierro JLG, Mas-Ballesté R, Zamora F. Small, 2011, 7: 1207–1211

    Article  CAS  PubMed  Google Scholar 

  59. Bunck DN, Dichtel WR. J Am Chem Soc, 2013, 135: 14952–14955

    Article  CAS  PubMed  Google Scholar 

  60. Das G, Biswal BP, Kandambeth S, Venkatesh V, Kaur G, Addicoat M, Heine T, Verma S, Banerjee R. Chem Sci, 2015, 6: 3931–3939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Biswal BP, Chandra S, Kandambeth S, Lukose B, Heine T, Banerjee R. J Am Chem Soc, 2013, 135: 5328–5331

    Article  CAS  PubMed  Google Scholar 

  62. Chandra S, Kandambeth S, Biswal BP, Lukose B, Kunjir SM, Chaudhary M, Babarao R, Heine T, Banerjee R. J Am Chem Soc, 2013, 135: 17853–17861

    Article  CAS  PubMed  Google Scholar 

  63. Wang S, Wang Q, Shao P, Han Y, Gao X, Ma L, Yuan S, Ma X, Zhou J, Feng X, Wang B. J Am Chem Soc, 2017, 139: 4258–4261

    Article  CAS  PubMed  Google Scholar 

  64. Mitra S, Kandambeth S, Biswal BP, Khayum M. A, Choudhury CK, Mehta M, Kaur G, Banerjee S, Prabhune A, Verma S, Roy S, Kharul UK, Banerjee R. J Am Chem Soc, 2016, 138: 2823–2828

    CAS  PubMed  Google Scholar 

  65. Khayum MA, Kandambeth S, Mitra S, Nair SB, Das A, Nagane SS, Mukherjee R, Banerjee R. Angew Chem Int Ed, 2016, 55: 15604–15608

    Article  CAS  Google Scholar 

  66. Dai W, Shao F, Szczerbinski J, McCaffrey R, Zenobi R, Jin Y, Schlüter AD, Zhang W. Angew Chem Int Ed, 2016, 55: 213–217

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21474015, 21774023), and Science and Technology Commission of Shanghai Municipality (14ZR1402300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, F., Tan, J. & Guo, J. Assemblies of covalent organic framework microcrystals: multiple-dimensional manipulation for enhanced applications. Sci. China Chem. 61, 143–152 (2018). https://doi.org/10.1007/s11426-017-9162-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-017-9162-3

Keywords

Navigation