Skip to main content
Log in

Single-atom catalysts based on two-dimensional metalloporphyrin monolayers for ammonia synthesis under ambient conditions

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We systematically investigated the catalytic performance of 3d, 4d, and 5d transition metals anchored onto two-dimensional extended porphyrin (PP) substrates as nitrogen reduction reaction (NRR) electrocatalysts, employing density functional theory (DFT) calculations and four-step high-throughput screening. Four novel metalloporphyrin (MPP, M = Zr, Nb, Hf, and Re) single-atom catalyst candidates have been identified due to their excellent catalytic performance (low onset potential, high stability, and selectivity). Through comprehensive reaction path search, the maximum Gibbs free energy changes for NRR on the ZrPP (enzymatic-consecutive hybrid path), NbPP (consecutive path), HfPP (enzymatic-consecutive hybrid path), and RePP (distal path) catalysts are 0.38, 0.41, 0.53, and 0.53 eV, respectively. Band structures, projected density of states, and charge/spin distributions show that the high catalytic activity is due to significant orbital hybridizations and charge transfer between N2 and MPP catalysts. We hope our work will promote experimental synthesis of these NRR electrocatalysts and provide new opportunities to the electrochemical conversion of N2 to NH3 under ambient conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zamfirescu, C.; Dincer, I. Using ammonia as a sustainable fuel. J. Power Sources 2008, 185, 459–465.

    Article  CAS  Google Scholar 

  2. Erisman, J. W.; Sutton, M. A.; Galloway, J.; Klimont, Z.; Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 2008, 1, 636–639.

    Article  CAS  Google Scholar 

  3. Galloway, J. N.; Townsend, A. R.; Erisman, J. W.; Bekunda, M.; Cai, Z. C.; Freney, J. R.; Martinelli, L. A.; Seitzinger, S. P.; Sutton, M. A. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science 2008, 320, 889–892.

    Article  CAS  Google Scholar 

  4. Smil, V. Detonator of the population explosion. Nature 1999, 400, 415.

    Article  CAS  Google Scholar 

  5. Schlögl, R. Catalytic synthesis of ammonia—A “never-ending story”?. Angew. Chem., Int. Ed. 2003, 42, 2004–2008.

    Article  Google Scholar 

  6. Chen, J. G.; Crooks, R. M.; Seefeldt, L. C.; Bren, K. L.; Bullock, R. M.; Darensbourg, M. Y.; Holland, P. L.; Hoffman, B.; Janik, M. J.; Jones, A. K. et al. Beyond fossil fuel-driven nitrogen transformations. Science 2018, 360, eaar6611.

    Article  Google Scholar 

  7. Pickett, C. J.; Talarmin, J. Electrosynthesis of ammonia. Nature 1985, 317, 652–653.

    Article  CAS  Google Scholar 

  8. Rosca, V.; Duca, M.; de Groot, M. T.; Koper, M. T. M. Nitrogen cycle electrocatalysis. Chem. Rev. 2009, 109, 2209–2244.

    Article  CAS  Google Scholar 

  9. Giddey, S.; Badwal, S. P. S.; Kulkarni, A. Review of electrochemical ammonia production technologies and materials. Int. J. Hydrogen Energy 2013, 38, 14576–14594.

    Article  CAS  Google Scholar 

  10. Zhang, Y.; Du, H. T.; Ma, Y. J.; Ji, L.; Guo, H. R.; Tian, Z. Q.; Chen, H. Y.; Huang, H.; Cui, G. W.; Asiri, A. M. et al. Hexagonal boron nitride nanosheet for effective ambient N2 fixation to NH3. Nano Res. 2019, 12, 919–924.

    Article  CAS  Google Scholar 

  11. Fang, C.; An, W. Single-metal-atom site with high-spin state embedded in defective BN nanosheet promotes electrocatalytic nitrogen reduction. Nano Res. 2021, 14, 4211–4219.

    Article  CAS  Google Scholar 

  12. Nong, W.; Liang, H. K.; Qin, S. H.; Li, Y.; Wang, C. X. Computational design of two-dimensional boron-containing compounds as efficient metal-free electrocatalysts toward nitrogen reduction independent of heteroatom doping. ACS Appl. Mater. Interfaces 2020, 12, 50505–50515.

    Article  CAS  Google Scholar 

  13. Cao, Y. Y.; Gao, Y. J.; Zhou, H.; Chen, X. L.; Hu, H.; Deng, S. W.; Zhong, X.; Zhuang, G. L.; Wang, J. G. Highly efficient ammonia synthesis electrocatalyst: Single Ru atom on naturally nanoporous carbon materials (Adv. Theory Simul. 5/2018). Adv. Theory Simul. 2018, 1, 1870012.

    Article  Google Scholar 

  14. Yang, T. T.; Tang, S. B.; Li, X. Y.; Sharman, E.; Jiang, J.; Luo, Y. Graphene oxide-supported transition metal catalysts for di-nitrogen reduction. J. Phys. Chem. C 2018, 122, 25441–25446.

    Article  CAS  Google Scholar 

  15. Zhao, W. H.; Zhang, L. F.; Luo, Q. Q.; Hu, Z. P.; Zhang, W. H.; Smith, S.; Yang, J. L. Single Mo1(Cr1) atom on nitrogen-doped graphene enables highly selective electroreduction of nitrogen into ammonia. ACS Catal. 2019, 9, 3419–3425.

    Article  CAS  Google Scholar 

  16. Li, L.; Li, B. H.; Guo, Q. Y.; Li, B. Theoretical screening of single-atom-embedded MoSSe nanosheets for electrocatalytic N2 fixation. J. Phys. Chem. C 2019, 123, 14501–14507.

    Article  CAS  Google Scholar 

  17. Ying, Y. R.; Fan, K.; Luo, X.; Huang, H. T. Predicting two-dimensional pentagonal transition metal monophosphides for efficient electrocatalytic nitrogen reduction. J. Mater. Chem. A 2019, 7, 11444–11451.

    Article  CAS  Google Scholar 

  18. Huang, Y.; Yang, T. T.; Yang, L.; Liu, R.; Zhang, G. Z.; Jiang, J.; Luo, Y.; Lian, P.; Tang, S. B. Graphene-boron nitride hybrid-supported single Mo atom electrocatalysts for efficient nitrogen reduction reaction. J. Mater. Chem. A 2019, 7, 15173–15180.

    Article  CAS  Google Scholar 

  19. Guo, X. Y.; Huang, S. P. Tuning nitrogen reduction reaction activity via controllable Fe magnetic moment: A computational study of single Fe atom supported on defective graphene. Electrochim. Acta 2018, 284, 392–399.

    Article  CAS  Google Scholar 

  20. Ma, B. Y.; Peng, Y.; Ma, D. W.; Deng, Z.; Lu, Z. S. Boron-doped InSe monolayer as a promising electrocatalyst for nitrogen reduction into ammonia at ambient conditions. Appl. Surf. Sci. 2019, 495, 143463.

    Article  CAS  Google Scholar 

  21. Yang, L. M.; Bačić, V.; Popov, I. A.; Boldyrev, A. I.; Heine, T.; Frauenheim, T.; Ganz, E. Two-dimensional Cu2Si monolayer with planar hexacoordinate copper and silicon bonding. J. Am. Chem. Soc. 2015, 137, 2757–2762.

    Article  CAS  Google Scholar 

  22. Song, B. Y.; Zhou, Y.; Yang, H. M.; Liao, J. H.; Yang, L. M.; Yang, X. B.; Ganz, E. Two-dimensional anti-van’t Hoff/Le Bel array AlB6 with high stability, unique motif, triple dirac cones, and superconductivity. J. Am. Chem. Soc. 2019, 141, 3630–3640.

    Article  CAS  Google Scholar 

  23. Yang, L. M.; Popov, I. A.; Frauenheim, T.; Boldyrev, A. I.; Heine, T.; Bačić, V.; Ganz, E. Revealing unusual chemical bonding in planar hyper-coordinate Ni2Ge and quasi-planar Ni2Si two-dimensional crystals. Phys. Chem. Chem. Phys. 2015, 17, 26043–26048.

    Article  CAS  Google Scholar 

  24. Yang, L. M.; Popov, I. A.; Boldyrev, A. I.; Heine, T.; Frauenheim, T.; Ganz, E. Post-anti-van’ t Hoff-Le Bel motif in atomically thin germanium-copper alloy film. Phys. Chem. Chem. Phys. 2015, 17, 17545–17551.

    Article  CAS  Google Scholar 

  25. Yang, L. M.; Ganz, E. Adding a new dimension to the chemistry of phosphorus and arsenic. Phys. Chem. Chem. Phys. 2016, 18, 17586–17591.

    Article  CAS  Google Scholar 

  26. Chen, Y. J.; Ji, S. F.; Chen, C.; Peng, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysts: Synthetic strategies and electrochemical applications. Joule 2018, 2, 1242–1264.

    Article  CAS  Google Scholar 

  27. Pan, Y.; Zhang, C.; Liu, Z.; Chen, C.; Li, Y. D. Structural regulation with atomic-level precision: From single-atomic site to diatomic and atomic interface catalysis. Matter 2020, 2, 78–110.

    Article  Google Scholar 

  28. Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81.

    Article  CAS  Google Scholar 

  29. Xu, L.; Yang, L. M.; Ganz, E. Electrocatalytic reduction of N2 using metal-doped borophene. ACS Appl. Mater. Interfaces 2021, 13, 14091–14101.

    Article  CAS  Google Scholar 

  30. Ren, C. J.; Jiang, Q. Y.; Lin, W.; Zhang, Y. F.; Huang, S. P.; Ding, K. N. Density functional theory study of single-atom V, Nb, and Ta catalysts on graphene and carbon nitride for selective nitrogen reduction. ACS Appl. Nano Mater. 2020, 3, 5149–5159.

    Article  CAS  Google Scholar 

  31. Maibam, A.; Govindaraja, T.; Selvaraj, K.; Krishnamurty, S. Dinitrogen activation on graphene anchored single atom catalysts: Local site activity or surface phenomena. J. Phys. Chem. C 2019, 123, 27492–27500.

    Article  CAS  Google Scholar 

  32. Liu, X.; Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Building up a picture of the electrocatalytic nitrogen reduction activity of transition metal single-atom catalysts. J. Am. Chem. Soc. 2019, 141, 9664–9672.

    Article  CAS  Google Scholar 

  33. Ma, X. G.; Hu, J. S.; Zheng, M. K.; Li, D.; Lv, H.; He, H.; Huang, C. Y. N2 reduction using single transition-metal atom supported on defective WS2 monolayer as promising catalysts: A DFT study. Appl. Surf. Sci. 2019, 489, 684–692.

    Article  CAS  Google Scholar 

  34. Huang, B.; Li, N.; Ong, W. J.; Zhou, N. G. Single atom-supported MXene: How single-atomic-site catalysts tune the high activity and selectivity of electrochemical nitrogen fixation. J. Mater. Chem. A 2019, 7, 27620–27631.

    Article  CAS  Google Scholar 

  35. Ling, C. Y.; Ouyang, Y. X.; Li, Q.; Bai, X. W.; Mao, X.; Du, A. J.; Wang, J. L. A general two-step strategy-based high-throughput screening of single atom catalysts for nitrogen fixation. Small Methods 2019, 3, 1800376.

    Article  Google Scholar 

  36. Han, M. M.; Wang, G. Z.; Zhang, H. M.; Zhao, H. J. Theoretical study of single transition metal atom modified MoP as a nitrogen reduction electrocatalyst. Phys. Chem. Chem. Phys. 2019, 21, 5950–5955.

    Article  CAS  Google Scholar 

  37. Zhou, H. Y.; Li, J. C.; Wen, Z.; Jiang, Q. Tuning the catalytic activity of a single Mo atom supported on graphene for nitrogen reduction via Se atom doping. Phys. Chem. Chem. Phys. 2019, 21, 14583–14588.

    Article  CAS  Google Scholar 

  38. Lv, S. Y.; Huang, C. X.; Li, G. L.; Yang, L. M. Electrocatalytic mechanism of N2 reduction reaction by single-atom catalyst rectangular TM-TCNQ monolayers. ACS Appl. Mater. Interfaces 2021, 13, 29641–29653.

    Article  CAS  Google Scholar 

  39. Zhao, M. R.; Song, B. Y.; Yang, L. M. Two-dimensional singleatom catalyst TM3(HAB)2 monolayers for electrocatalytic dinitrogen reduction using hierarchical high-throughput screening. ACS Appl. Mater. Interfaces 2021, 13, 26109–26122.

    Article  CAS  Google Scholar 

  40. Liu, J. H.; Yang, L. M.; Ganz, E. Electrocatalytic reduction of CO2 by two-dimensional transition metal porphyrin sheets. J. Mater. Chem. A 2019, 7, 11944–11952.

    Article  CAS  Google Scholar 

  41. Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

    Article  CAS  Google Scholar 

  42. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  CAS  Google Scholar 

  43. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

    Article  Google Scholar 

  44. Perdew, J.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  45. Montoya, J. H.; Tsai, C.; Vojvodic, A.; Nørskov, J. K. The challenge of electrochemical ammonia synthesis: A new perspective on the role of nitrogen scaling relations. ChemSusChem 2015, 1, 2180–2186.

    Article  Google Scholar 

  46. Huang, C. X.; Li, G. L.; Yang, L. M.; Ganz, E. Ammonia synthesis using single-atom catalysts based on two-dimensional organometallic metal phthalocyanine monolayers under ambient conditions. ACS Appl. Mater. Interfaces 2021, 13, 608–621.

    Article  CAS  Google Scholar 

  47. Choi, C.; Back, S.; Kim, N. Y.; Lim, J.; Kim, Y. H.; Jung, Y. Suppression of hydrogen evolution reaction in electrochemical N2 reduction using single-atom catalysts: A computational guideline. ACS Catal. 2018, 1, 7517–7525.

    Article  Google Scholar 

  48. Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

    Article  Google Scholar 

  49. Computational chemistry comparison and benchmark database [Online]. http://cccbdb.nist.gov/. (accessed May 10, 2021).

Download references

Acknowledgements

C.-X. H., S.-Y. L., C. L., and L.-M. Y. gratefully acknowledge support from the National Natural Science Foundation of China (Nos. 22073033, 21873032, 21673087, and 21903032), the startup fund (Nos. 2006013118 and 3004013105) from Huazhong University of Science and Technology, the Fundamental Research Funds for the Central Universities (No. 2019kfyRCPY116), and the Innovation and Talent Recruitment Base of New Energy Chemistry and Device (B21003). C.-X. H., S.-Y. L., and G.-L. L. gratefully acknowledge support from Guangdong Basic and Applied Basic Research Foundation (No. 2021A1515010382). This work was carried out at the computing clusters of the Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education & School of Chemistry, South China Normal University. The work was carried out at the LvLiang Cloud Computing Center of China, and the calculations were performed on TianHe-2. The computing work in this paper is supported by the Public Service Platform of High Performance Computing by Network and Computing Center of HUST.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guoliang Li or Li-Ming Yang.

Additional information

Conflicts of interest

There are no conflicts to declare.

Electronic supplementary material

12274_2021_4009_MOESM1_ESM.pdf

Single-atom catalysts based on two-dimensional metalloporphyrin monolayers for ammonia synthesis under ambient conditions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, CX., Lv, SY., Li, C. et al. Single-atom catalysts based on two-dimensional metalloporphyrin monolayers for ammonia synthesis under ambient conditions. Nano Res. 15, 4039–4047 (2022). https://doi.org/10.1007/s12274-021-4009-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-4009-4

Keywords

Navigation