Skip to main content
Log in

High-throughput screening of single-atom catalysts confined in monolayer black phosphorus for efficient nitrogen reduction reaction

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The discovery of metal-nitrogen centers as the active sites for electrolysis has aroused significant interest in utilizing single-atom catalysts for nitrogen reduction reaction (NRR). Properly designed nanostructured catalysts that strongly interact with nitrogen molecules (N2) can promote adsorption and activation, thereby resulting in efficient catalysts with high stability, activity, and selectivity. In this study, using density functional theory calculations, we selected monolayer black phosphorus (BP) as the substrate and screened a series of single-atom transition metals confined in tri-coordinated and tetra-coordinated active centers (without and with N dopants) to electro-catalyze NRR. As a result, we have identified two promising candidates (Hf1-N1P2-1 and Tc1-N4), which exhibit not only low overpotentials of 0.56 and 0.49 V but also high thermodynamic and electrochemical stability, as well as good selectivity towards NRR over the competing hydrogen evolution reaction. We also demonstrate the ability of Hf1-N1P2-1 and Tc1-N4 to activate and hydrogenate N2 by donating electrons and regulating charge transfer. This study not only predicts new BP-based promising catalysts but also provides guidance for the rational design of high-performance NRR electrocatalysts under ambient conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fu, X. B.; Pedersen, J. B.; Zhou, Y. Y.; Saccoccio, M.; Li, S. F.; Sažinas, R.; Li, K.; Andersen, S. Z.; Xu, A. N.; Deissler, N. H. et al. Continuous-flow electrosynthesis of ammonia by nitrogen reduction and hydrogen oxidation. Science 2023, 379, 707–712.

    ADS  CAS  PubMed  Google Scholar 

  2. Li, K.; Andersen, S. Z.; Statt, M. J.; Saccoccio, M.; Bukas, V. J.; Krempl, K.; Sažinas, R.; Pedersen, J. B.; Shadravan, V.; Zhou, Y. Y. et al. Enhancement of lithium-mediated ammonia synthesis by addition of oxygen. Science 2021, 374, 1593–1597.

    ADS  CAS  PubMed  Google Scholar 

  3. MacLeod, K. C.; Holland, P. L. Recent developments in the homogeneous reduction of dinitrogen by molybdenum and iron. Nat. Chem. 2013, 5, 559–565.

    CAS  PubMed  Google Scholar 

  4. van der Ham, C. J. M.; Koper, M. T. M.; Hetterscheid, D. G. H. Challenges in reduction of dinitrogen by proton and electron transfer. Chem. Soc. Rev. 2014, 43, 5183–5191.

    CAS  PubMed  Google Scholar 

  5. Qing, G.; Ghazfar, R.; Jackowski, S. T.; Habibzadeh, F.; Ashtiani, M. M.; Chen, C. P.; Smith III, M. R.; Hamann, T. W. Recent advances and challenges of electrocatalytic N2 reduction to ammonia. Chem. Rev. 2020, 120, 5437–5516.

    CAS  PubMed  Google Scholar 

  6. Jia, H. P.; Quadrelli, E. A. Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: Relevance of metal hydride bonds and dihydrogen. Chem. Soc. Rev. 2014, 43, 547–564.

    CAS  PubMed  Google Scholar 

  7. Bao, D.; Zhang, Q.; Meng, F. L.; Zhong, H. X.; Shi, M. M.; Zhang, Y.; Yan, J. M.; Jiang, Q.; Zhang, X. B. Electrochemical reduction of N2 under ambient conditions for artificial N2 fixation and renewable energy storage using N2/NH3 cycle. Adv. Mater. 2017, 29, 1604799.

    Google Scholar 

  8. Logadóttir, Á.; Nørskov, J. K. Ammonia synthesis over a Ru (0001) surface studied by density functional calculations. J. Catal. 2003, 220, 273–279.

    Google Scholar 

  9. Zhang, L.; Ji, X. Q.; Ren, X.; Ma, Y. J.; Shi, X. F.; Tian, Z. Q.; Asiri, A. M.; Chen, L.; Tang, B.; Sun, X. P. Electrochemical ammonia synthesis via nitrogen reduction reaction on a MoS2 catalyst: Theoretical and experimental studies. Adv. Mater. 2018, 30, 1800191.

    Google Scholar 

  10. Choi, C.; Back, S.; Kim, N. Y.; Lim, J.; Kim, Y. H.; Jung, Y. Suppression of hydrogen evolution reaction in electrochemical N2 reduction using single-atom catalysts: A computational guideline. ACS Catal. 2018, 8, 7517–7525.

    CAS  Google Scholar 

  11. Zhang, Q.; Wang, X.; Zhang, F. C.; Fang, C. Y.; Liu, D.; Zhou, Q. J. A high-throughput screening toward efficient nitrogen fixation: Transition metal single-atom catalysts anchored on an emerging π–π conjugated graphitic carbon nitride (g-C10N3) substrate with Dirac dispersion. ACS Appl. Mater. Interfaces 2023, 15, 11812–11826.

    CAS  PubMed  Google Scholar 

  12. Yao, Y.; Zhu, S. Q.; Wang, H. J.; Li, H.; Shao, M. H. A spectroscopic study on the nitrogen electrochemical reduction reaction on gold and platinum surfaces. J. Am. Chem. Soc. 2018, 140, 1496–1501.

    CAS  PubMed  Google Scholar 

  13. Lin, X. Y.; Wang, Y. T.; Chang, X.; Zhen, S. Y.; Zhao, Z. J.; Gong, J. L. High-throughput screening of electrocatalysts for nitrogen reduction reactions accelerated by interpretable intrinsic descriptor. Angew. Chem., Int. Ed. 2023, 62, e202300122.

    CAS  Google Scholar 

  14. Chen, S. Y.; Gao, Y. Q.; Wang, W. G.; Prezhdo, O. V.; Xu, L. Prediction of three-metal cluster catalysts on two-dimensional W2N3 support with integrated descriptors for electrocatalytic nitrogen reduction. ACS Nano 2023, 17, 1522–1532.

    CAS  Google Scholar 

  15. Lei, F. C.; Xu, W. L.; Yu, J.; Li, K.; Xie, J. F.; Hao, P.; Cui, G. W.; Tang, B. Electrochemical synthesis of ammonia by nitrate reduction on indium incorporated in sulfur doped graphene. Chem. Eng. J. 2021, 426, 131317.

    CAS  Google Scholar 

  16. Shen, P.; Li, X. C.; Luo, Y. J.; Guo, Y. L.; Zhao, X. L.; Chu, K. High-efficiency N2 electroreduction enabled by Se-vacancy-rich WSe2−x in water-in-salt electrolytes. ACS Nano 2022, 16, 7915–7925.

    CAS  PubMed  Google Scholar 

  17. Laishram, D.; Kumar, D.; Shejale, K. P.; Saini, B.; Harikrishna; Krishnapriya, R.; Sharma, R. K. 2D transition metal carbides (MXenes) for applications in electrocatalysis. In Heterogeneous Nanocatalysis for Energy and Environmental Sustainability. Sudarsanam, P.; Yamauchi, Y.; Bharali, P., Eds.; John Wiley & Sons Ltd.: Hoboken, 2022; pp 165–198.

    Google Scholar 

  18. Yang, T.; Song, T. T.; Zhou, J.; Wang, S. J.; Chi, D. Z.; Shen, L.; Yang, M.; Feng, Y. P. High-throughput screening of transition metal single atom catalysts anchored on molybdenum disulfide for nitrogen fixation. Nano Energy 2020, 68, 104304.

    CAS  Google Scholar 

  19. Liu, X.; Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Building up a picture of the electrocatalytic nitrogen reduction activity of transition metal single-atom catalysts. J. Am. Chem. Soc. 2019, 141, 9664–9672.

    CAS  PubMed  Google Scholar 

  20. Paul, S.; Sarkar, S.; Adalder, A.; Kapse, S.; Thapa, R.; Ghorai, U. K. Strengthening the metal center of Co-N4 active sites in a 1D–2D heterostructure for nitrate and nitrogen reduction reaction to ammonia. ACS Sustain. Chem. Eng. 2023, 11, 6191–6200.

    CAS  Google Scholar 

  21. Lv, X. S.; Wei, W.; Huang, B. B.; Dai, Y.; Frauenheim, T. High-throughput screening of synergistic transition metal dual-atom catalysts for efficient nitrogen fixation. Nano Lett. 2021, 21, 1871–1878.

    ADS  CAS  PubMed  Google Scholar 

  22. Geng, Z.; Liu, Y.; Kong, X.; Li, P.; Li, K.; Liu, Z.; Du, J.; Shu, M.; Si, R.; Zeng, J. Achieving a record-high yield rate of 120.9 µgNH3·mgcat.−1·h−1 for N2 electrochemical reduction over Ru single-atom catalysts. Advanced Materials 2018, 30, 1870301.

    Google Scholar 

  23. Shi, L.; Yin, Y.; Wang, S. B.; Sun, H. Q. Rational catalyst design for N2 reduction under ambient conditions: Strategies toward enhanced conversion efficiency. ACS Catal. 2020, 10, 6870–6899.

    CAS  Google Scholar 

  24. Ghoshal, S.; Ghosh, A.; Roy, P.; Ball, B.; Pramanik, A.; Sarkar, P. Recent progress in computational design of single-atom/cluster catalysts for electrochemical and solar-driven N2 fixation. ACS Catal. 2022, 12, 15541–15575.

    CAS  Google Scholar 

  25. Zhang, L. L.; Ding, L. X.; Chen, G. F.; Yang, X. F.; Wang, H. H. Ammonia synthesis under ambient conditions: Selective electroreduction of dinitrogen to ammonia on black phosphorus nanosheets. Angew. Chem. 2019, 131, 2638–2642.

    ADS  Google Scholar 

  26. Ou, P. F.; Zhou, X.; Meng, F. C.; Chen, C.; Chen, Y. Q.; Song, J. Single molybdenum center supported on N-doped black phosphorus as an efficient electrocatalyst for nitrogen fixation. Nanoscale 2019, 11, 13600–13611.

    CAS  PubMed  Google Scholar 

  27. Liu, K.; Fu, J. W.; Zhu, L.; Zhang, X. D.; Li, H. M.; Liu, H.; Hu, J. H.; Liu, M. Single-atom transition metals supported on black phosphorene for electrochemical nitrogen reduction. Nanoscale 2020, 12, 4903–4908.

    CAS  PubMed  Google Scholar 

  28. Liu, C. W.; Li, Q. Y.; Wu, C. Z.; Zhang, J.; Jin, Y. G.; MacFarlane, D. R.; Sun, C. H. Single-boron catalysts for nitrogen reduction reaction. J. Am. Chem. Soc. 2019, 141, 2884–2888.

    CAS  PubMed  Google Scholar 

  29. Shi, L.; Li, Q.; Ling, C. Y.; Zhang, Y. H.; Ouyang, Y. X.; Bai, X. W.; Wang, J. L. Metal-free electrocatalyst for reducing nitrogen to ammonia using a Lewis acid pair. J. Mater. Chem. A 2019, 7, 4865–4871.

    CAS  Google Scholar 

  30. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    ADS  CAS  Google Scholar 

  31. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    ADS  CAS  Google Scholar 

  32. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    ADS  Google Scholar 

  33. Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687.

    ADS  CAS  Google Scholar 

  34. Perdew, J. P.; Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 1992, 45, 13244–13249.

    ADS  CAS  Google Scholar 

  35. Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

    ADS  MathSciNet  Google Scholar 

  36. Henkelman, G.; Arnaldsson, A.; Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 2006, 36, 354–360.

    Google Scholar 

  37. Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

    ADS  CAS  Google Scholar 

  38. Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511–519.

    ADS  Google Scholar 

  39. Peterson, A. A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Nørskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 2010, 3, 1311–1315.

    CAS  Google Scholar 

  40. Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jønsson, H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 2004, 108, 17886–17892.

    Google Scholar 

  41. Umer, M.; Umer, S.; Zafari, M.; Ha, M. R.; Anand, R.; Hajibabaei, A.; Abbas, A.; Lee, G.; Kim, K. S. Machine learning assisted high-throughput screening of transition metal single atom based superb hydrogen evolution electrocatalysts. J. Mater. Chem. A 2022, 10, 6679–6689.

    CAS  Google Scholar 

  42. Boonpalit, K.; Wongnongwa, Y.; Prommin, C.; Nutanong, S.; Namuangruk, S. Data-driven discovery of graphene-based dual-atom catalysts for hydrogen evolution reaction with graph neural network and DFT calculations. ACS Appl. Mater. Interfaces 2023, 15, 12936–12945.

    CAS  PubMed  Google Scholar 

  43. Greeley, J.; Nørskov, J. K. Electrochemical dissolution of surface alloys in acids: Thermodynamic trends from first-principles calculations. Electrochim. Acta 2007, 52, 5829–5836.

    CAS  Google Scholar 

  44. Guo, X. Y.; Gu, J. X.; Lin, S. R.; Zhang, S. L.; Chen, Z. F.; Huang, S. P. Tackling the activity and selectivity challenges of electrocatalysts toward the nitrogen reduction reaction via atomically dispersed biatom catalysts. J. Am. Chem. Soc. 2020, 142, 5709–5721.

    CAS  PubMed  Google Scholar 

  45. Guo, X. Y.; Lin, S. R.; Gu, J. X.; Zhang, S. L.; Chen, Z. F.; Huang, S. P. Simultaneously achieving high activity and selectivity toward two-electron O2 electroreduction: The power of single-atom catalysts. ACS Catal. 2019, 9, 11042–11054.

    CAS  Google Scholar 

  46. Ling, C. Y.; Ouyang, Y. X.; Li, Q.; Bai, X. W.; Mao, X.; Du, A. J.; Wang, J. L. A general two-step strategy-based high-throughput screening of single atom catalysts for nitrogen fixation. Small Methods 2019, 3, 1800376.

    Google Scholar 

  47. Ma, L. H.; Xu, F. F.; Zhang, L. L.; Nie, Z. F.; Xia, K.; Guo, M. X.; Li, M. Z.; Ding, X. Breaking the linear correlations for enhanced electrochemical nitrogen reduction by carbon-encapsulated mixed-valence Fe7(PO4)6. J. Energy Chem. 2022, 71, 182–187.

    CAS  Google Scholar 

  48. Skúlason, E.; Bligaard, T.; Gudmundsdóttir, S.; Studt, F.; Rossmeisl, J.; Abild-Pedersen, F.; Vegge, T.; Jónsson, H.; Nørskov, J. K. A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction. Phys. Chem. Chem. Phys. 2012, 14, 1235–1245.

    PubMed  Google Scholar 

  49. Chen, Z. Z.; Zhang, X.; Lu, G. Overpotential for CO2 electroreduction lowered on strained penta-twinned Cu nanowires. Chem. Sci. 2015, 6, 6829–6835.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the National Natural Science Foundation of China (No. 11404230) and the Foundation of Science and Technology Bureau of Sichuan Province (No. 2013JY0085). We also acknowledge the Niagara supercomputer at the SciNet HPC Consortium. SciNet is funded by: the Canada Foundation for Innovation; the Government of Ontario; the Ontario Research Fund-Research Excellence; and the University of Toronto. The authors also acknowledge the computing resources from the High-Performance Computing Center of Sichuan Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengfei Ou.

Electronic Supplementary Material

12274_2023_6068_MOESM1_ESM.pdf

High-throughput screening of single-atom catalysts confined in monolayer black phosphorus for efficient nitrogen reduction reaction

Supplementary material, approximately 26.7 KB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, XY., Duan, M. & Ou, P. High-throughput screening of single-atom catalysts confined in monolayer black phosphorus for efficient nitrogen reduction reaction. Nano Res. 17, 2360–2367 (2024). https://doi.org/10.1007/s12274-023-6068-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-6068-1

Keywords

Navigation