Skip to main content
Log in

Exploring 1,10-Phenanthroline, 2-Picolinic Acid Metal Complexes As the Superior Single Atom Electrocatalysts toward ORR/OER/HER

  • PHYSICAL CHEMISTRY OF NANOCLUSTERS, SUPRAMOLECULAR STRUCTURES, AND NANOMATERIALS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Single-atom catalyst has received extensive attention and application in recent years owing to the unparalleled high catalytic activity and maximum atom utilization, and it is also widely used in oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). In this work, the ORR/OER/HER catalytic performance of 1,10-phenanthroline, 2-picolinic acid metal complexes (named as M–N3O, M = 3d, 4d, and 5d transition metals) is explored by density functional theory methods. We firstly compute the formation energy and dissolution potential to evaluate the thermodynamic and electrochemical stabilities for M–N3O, respectively. The ten stable catalysts (Fe–, Co–, Ni–, Cu–, Ru–, Rh–, Pd–, Ir–, Pt–, and Au–N3O) are screened out. Next, among the studied materials, Pd–N3O and Ir–N3O are expected to be potential trifunctional electrocatalysts, and the corresponding values of overpotential (ηORROER) are respectively 0.33/0.48 and 0.62/0.29 V, and the ΔG*H values are 0.04 and –0.14 eV. In addition, the deformation charge density and density of states analyses reveal that the superb catalytic activity can be ascribed to electron transfer from metal to O atoms and orbitals hybridization between metal and O atoms near Fermi level. This work would open a new perspective to design the trifunctional electrocatalyst with ultra-high activity and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. V. R. Stamenkovic, D. Strmcnik, P. P. Lopes, et al., Nat. Mater. 16, 57 (2017).

    Article  CAS  Google Scholar 

  2. Q. Li, R. Cao, J. Cho, et al., Adv. Energy Mater. 4, 1301415 (2014).

  3. Y. Zhang, X. Chen, H. Zhang, et al., J. Colloid Sci. 609, 130 (2022).

    Article  CAS  Google Scholar 

  4. H. Wang, H.-W. Lee, Y. Deng, et al., Nat. Commun. 6, 7261 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. T. Zhang, H. Wang, J. Zhang, et al., Chem. Eng. J. 444, 136560 (2022).

  6. M. Liu, Z. Zhao, X. Duan, et al., Adv. Mater. 31, 1802234 (2018).

  7. L. Deng, Z. Yang, R. Li, et al., Front. Chem. Sci. Eng. 15, 1487 (2021).

    Article  CAS  Google Scholar 

  8. C. Yang, S. Zai, Y. Zhou, et al., Adv. Funct. Mater. 29, 1901949 (2019).

  9. X. Chen, H. Zhu, J. Zhu, et al., Chem. Eng. J. 451, 138998 (2023).

  10. Y. Zheng, Y. Jiao, Y. Zhu, et al., J. Am. Chem. Soc. 139, 3336 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. A. Zitolo, N. Ranjbar-Sahraie, T. Mineva, et al., Nat. Commun. 8, 957 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  12. H. Shang, W. Sun, R. Sui, et al., Nano Lett. 20, 5443 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. F. Li, G.-F. Han, H.-J. Noh, et al., Energy Environ. Sci. 11, 2263 (2018).

    Article  CAS  Google Scholar 

  14. Z. Lin, H. Huang, L. Cheng, et al., Adv. Mater. 33, 2107103 (2021).

  15. B. Ge, B. Chen, and L. Li, Mater. Today Commun. 25, 101524 (2020).

  16. J. Liu, J. Xiao, B. Luo, et al., Chem. Eng. J. 427, 132038 (2022).

  17. H. Fei, J. Dong, Y. Feng, et al., Nat. Catal. 1, 63 (2018).

    Article  CAS  Google Scholar 

  18. H. T. Chung, D. A. Cullen, D. Higgins, et al., Science (Washington, DC, U. S.) 357, 479 (2017).

    Article  CAS  Google Scholar 

  19. F. Ge, Q. Qiao, X. Chen, et al., Front. Chem. Sci. Eng. 15, 1206 (2021).

    Article  CAS  Google Scholar 

  20. K. Yuan, D. Lützenkirchen-Hecht, L. Li, et al., J. Am. Chem. Soc. 142, 2404 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. H. Jin, J. Wang, D. Su, et al., J. Am. Chem. Soc. 137, 2688 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. C. Zhu, Q. Shi, S. Feng, et al., ACS Energy Lett. 3, 1713 (2018).

    Article  CAS  Google Scholar 

  23. B. Delley, J. Chem. Phys. 92, 508 (1990).

    Article  CAS  Google Scholar 

  24. B. Delley, J. Chem. Phys. 113, 7756 (2000).

    Article  CAS  Google Scholar 

  25. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997).

    Article  CAS  Google Scholar 

  26. X. Zou, L. Wang, and B. I. Yakobson, Nanoscale 10, 1129 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. X. Zhang, Z. Yang, Z. Lu, et al., Carbon 130, 112 (2018).

    Article  CAS  Google Scholar 

  28. F. Calle-Vallejo, J. I. Martínez, and J. Rossmeisl, Phys. Chem. Chem. Phys. 13, 15639 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. X. Chen, H. Zhang, and Y. Zhang, Colloids Surf., A 630, 127628 (2021).

  30. B. Wei, Z. Fu, D. Legut, et al., Adv. Mater. 33, 2102595 (2021).

  31. T. He, G. Gao, L. Kou, et al., J. Catal. 354, 231 (2017).

    Article  CAS  Google Scholar 

  32. X. Chen, H. Zhang, and X. Li, Mol. Catal. 502, 111383 (2021).

  33. J. Shi, Y. Wei, D. Zhou, et al., ACS Catal. 12, 7760 (2022).

    Article  CAS  Google Scholar 

  34. J. Greeley, T. F. Jaramillo, J. Bonde, et al., Nat. Mater. 5, 909 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. J. K. Nørskov, T. Bligaard, A. Logadottir, et al., J. Electrochem. Soc. 152 (2), J23 (2005).

    Article  Google Scholar 

  36. X. Chen, F. Ge, J. Chang, et al., Int. J. Energy Res. 43, 7375 (2019).

    CAS  Google Scholar 

  37. J. Rossmeisl, Z.-W. Qu, H. Zhu, et al., J. Electroanal. Chem. 607, 83 (2007).

    Article  CAS  Google Scholar 

  38. X. Chen and R. Hu, Int. J. Hydrogen Energy 44, 15409 (2019).

    Article  CAS  Google Scholar 

  39. X. Chen, F. Sun, and J. Chang, J. Electrochem. Soc. 164, F616 (2017).

    Article  CAS  Google Scholar 

  40. J. Rossmeisl, Z.-W. Qu, H. Zhu, et al., J. Electroanal. Chem. 607, 83 (2007).

    Article  CAS  Google Scholar 

  41. Y. Chen, Y. Yue, C. Yang, et al., Appl. Surf. Sci. 565, 150547 (2021).

  42. Y. Zheng, Y. Jiao, Y. Zhu, et al., J. Am. Chem. Soc. 139, 3336 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

We acknowledge the National Supercomputing Center in Shenzhen for providing the computational resources and Materials Studio.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianjun Chen.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Li, L. & Zhang, S. Exploring 1,10-Phenanthroline, 2-Picolinic Acid Metal Complexes As the Superior Single Atom Electrocatalysts toward ORR/OER/HER. Russ. J. Phys. Chem. 97, 2258–2266 (2023). https://doi.org/10.1134/S0036024423100266

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024423100266

Keywords:

Navigation