Skip to main content
Log in

Exploring ternary organic photovoltaics for the reduced nonradiative recombination and improved efficiency over 17.23% with a simple large-bandgap small molecular third component

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Ternary strategy is one of the most effective methods to further boost the power conversion efficiency (PCE) of organic photovoltaic cells (OPVs). In terms of high-efficiency PM6:Y6 binary systems, there is still room to further reduce energy loss (Eloss) through regulating molecular packing and aggregation by introducing a third component in the construction of ternary OPVs. Here we introduce a simple molecule BR1 based on an acceptor-donor-acceptor (A-D-A) structure with a wide bandgap and high crystallinity into PM6:Y6-based OPVs. It is proved that BR1 can be selectively dispersed into the donor phase in the PM6:Y6 and reduce disorder in the ternary blends, thus resulting in lower Eloss, non-rad and Eloss. Furthermore, the mechanism study reveals well-develop phase separation morphology and complemented absorption spectra in the ternary blends, leading to higher charge mobility, suppressed recombination, which concurrently contributes to the significantly improved PCE of 17.23% for the ternary system compared with the binary ones (16.21%). This work provides an effective approach to improve the performance of the PM6:Y6-based OPVs by adopting a ternary strategy with a simple molecule as the third component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Meng, L. X.; Zhang, Y. M.; Wan, X. J.; Li, C. X.; Zhang, X.; Wang, Y. B.; Ke, X.; Xiao, Z.; Ding, L. M.; Xia, R. X. et al. Organic and solution-processed tandem solar cells with 17.3% efficiency. Science 2018, 361, 1094–1098.

    Article  CAS  Google Scholar 

  2. Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 1995, 270, 1789–1791.

    Article  CAS  Google Scholar 

  3. Kan, B.; Ershad, F.; Rao, Z. Y.; Yu, C. J. Flexible organic solar cells for biomedical devices. Nano Res. 2021, 14, 2891–2903.

    Article  CAS  Google Scholar 

  4. Cheng, P.; Li, G.; Zhan, X. W.; Yang, Y. Next-generation organic photovoltaics based on non-fullerene acceptors. Nat. Photonics 2018, 12, 131–142.

    Article  CAS  Google Scholar 

  5. Zhang, Q.; Wan, X. J.; Xing, F.; Huang, L.; Long, G. K.; Yi, N. B.; Ni, W.; Liu, Z. B.; Tian, J. G.; Chen, Y. S. Solution-processable graphene mesh transparent electrodes for organic solar cells. Nano Res. 2013, 6, 478–484.

    Article  CAS  Google Scholar 

  6. Wang, J. Y.; Zhan, X. W. Fused-ring electron acceptors for photovoltaics and beyond. Acc. Chem. Res. 2021, 54, 132–143.

    Article  CAS  Google Scholar 

  7. Wadsworth, A.; Moser, M.; Marks, A.; Little, M. S.; Gasparini, N.; Brabec, C. J.; Baran, D.; McCulloch, I. Critical review of the molecular design progress in non-fullerene electron acceptors towards commercially viable organic solar cells. Chem. Soc. Rev. 2019, 48, 1596–1625.

    Article  CAS  Google Scholar 

  8. Yang, Y.; Feng, E. M.; Li, H. Y.; Shen, Z. C.; Liu, W. R.; Guo, J. B.; Luo, Q.; Zhang, J. D.; Lu, G. H.; Ma, C. Q. et al. Layer-by-layer slot-die coated high-efficiency organic solar cells processed using twin boiling point solvents under ambient condition. Nano Res. 2021, 14, 4236–4242.

    Article  CAS  Google Scholar 

  9. Mishra, A. Material perceptions and advances in molecular heteroacenes for organic solar cells. Energy Environ. Sci. 2020, 13, 4738–4793.

    Article  CAS  Google Scholar 

  10. Zhang, D. Y.; Fan, P.; Shi, J. Y.; Zheng, Y. F.; Zhong, J.; Yu, J. S. Control of vertical phase separation in high performance non-fullerene organic solar cell by introducing oscillating stratification preprocessing. Nano Res. 2021, 14, 1319–1325.

    Article  CAS  Google Scholar 

  11. Guo, Q.; Guo, Q.; Geng, Y. F.; Tang, A. L.; Zhang, M. J.; Du, M. Z.; Sun, X. N.; Zhou, E. J. Recent advances in PM6: Y6-based organic solar cells. Mater. Chem. Front. 2021, 5, 3257–3280.

    Article  CAS  Google Scholar 

  12. Yuan, J.; Zhang, Y. Q.; Zhou, L. Y.; Zhang, G. C.; Yip, H. L.; Lau, T. K.; Lu, X. H.; Zhu, C.; Peng, H. J.; Johnson, P. A. et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 2019, 3, 1140–1151.

    Article  CAS  Google Scholar 

  13. Li, S. X.; Li, C. Z.; Shi, M. M.; Chen, H. Z. New phase for organic solar cell research: Emergence of Y-series electron acceptors and their perspectives. ACS Energy Lett. 2020, 5, 1554–1567.

    Article  CAS  Google Scholar 

  14. Bi, P. Q.; Zhang, S. Q.; Chen, Z. C.; Xu, Y.; Cui, Y.; Zhang, T.; Ren, J. Z.; Qin, J. Z.; Hong, L.; Hao, X. T. et al. Reduced non-radiative charge recombination enables organic photovoltaic cell approaching 19% efficiency. Joule 2021, 5, 2408–2419.

    Article  CAS  Google Scholar 

  15. Li, C.; Zhou, J. D.; Song, J. L.; Xu, J. Q.; Zhang, H. T.; Zhang, X. N.; Guo, J.; Zhu, L.; Wei, D. H.; Han, G. C. et al. Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nat. Energy 2021, 6, 605–613.

    Article  CAS  Google Scholar 

  16. Liu, Q. S.; Jiang, Y. F.; Jin, K.; Qin, J. Q.; Xu, J. G.; Li, W. T.; Xiong, J.; Liu, J. F.; Xiao, Z.; Sun, K. et al. 18% Efficiency organic solar cells. Sci. Bull. 2020, 65, 272–275.

    Article  CAS  Google Scholar 

  17. Liu, F.; Zhou, L.; Liu, W. R.; Zhou, Z. C.; Yue, Q. H.; Zheng, W. Y.; Sun, R.; Liu, W. Y.; Xu, S. J.; Fan, H. J. et al. Organic solar cells with 18% efficiency enabled by an alloy acceptor: A two-in-one strategy. Adv. Mater. 2021, 33, 2100830.

    Article  CAS  Google Scholar 

  18. Ma, X. L.; Gao, W.; Yu, J. S.; An, Q. S.; Zhang, M.; Hu, Z. H.; Wang, J. X.; Tang, W. H.; Yang, C. L.; Zhang, F. J. Ternary nonfullerene polymer solar cells with efficiency > 13.7% by integrating the advantages of the materials and two binary cells. Energy Environ. Sci. 2018, 11, 2134–2141.

    Article  CAS  Google Scholar 

  19. Zhang, H.; Yao, H. F.; Hou, J. X.; Zhu, J.; Zhang, J. Q.; Li, W. N.; Yu, R. N.; Gao, B. W.; Zhang, S. Q.; Hou, J. H. Over 14% efficiency in organic solar cells enabled by chlorinated nonfullerene small-molecule acceptors. Adv. Mater. 2018, 30, 1800613.

    Article  Google Scholar 

  20. Zhou, D.; You, W.; Xu, H. T.; Tong, Y. F.; Hu, B.; Xie, Y.; Chen, L. Recent progress in ternary organic solar cells based on solution-processed non-fullerene acceptors. J. Mater. Chem. A 2020, 8, 23096–23122.

    Article  CAS  Google Scholar 

  21. Yang, W. T.; Ye, L.; Yao, F. F.; Jin, C. H.; Ade, H.; Chen, H. Z. Black phosphorus nanoflakes as morphology modifier for efficient fullerene-free organic solar cells with high fill-factor and better morphological stability. Nano Res. 2019, 12, 777–783.

    Article  CAS  Google Scholar 

  22. Zhang, S. H.; Shah, M. N.; Liu, F.; Zhang, Z. Q.; Hu, Q.; Russell, T. P.; Shi, M. M.; Li, C. Z.; Chen, H. Z. Efficient and 1, 8-diiodooctane-free ternary organic solar cells fabricated via nanoscale morphology tuning using small-molecule dye additive. Nano Res. 2017, 10, 3765–3774.

    Article  CAS  Google Scholar 

  23. Hou, J. H.; Inganäs, O.; Friend, R. H.; Gao, F. Organic solar cells based on non-fullerene acceptors. Nat. Mater. 2018, 17, 119–128.

    Article  CAS  Google Scholar 

  24. Qian, D. P.; Zheng, Z. L.; Yao, H. F.; Tress, W.; Hopper, T. R.; Chen, S. L.; Li, S. S.; Liu, J.; Chen, S. S.; Zhang, J. B. et al. Design rules for minimizing voltage losses in high-efficiency organic solar cells. Nat. Mater. 2018, 17, 703–709.

    Article  CAS  Google Scholar 

  25. Liu, J.; Chen, S. S.; Qian, D. P.; Gautam, B.; Yang, G. F.; Zhao, J. B.; Bergqvist, J.; Zhang, F. L.; Ma, W.; Ade, H. et al. Fast charge separation in a non-fullerene organic solar cell with a small driving force. Nat. Energy 2016, 1, 16089.

    Article  CAS  Google Scholar 

  26. Vandewal, K.; Albrecht, S.; Hoke, E. T.; Graham, K. R.; Widmer, J.; Douglas, J. D.; Schubert, M.; Mateker, W. R.; Bloking, J. T.; Burkhard, G. F. et al. Efficient charge generation by relaxed charge-transfer states at organic interfaces. Nat. Mater. 2014, 13, 63–68.

    Article  CAS  Google Scholar 

  27. Vandewal, K.; Tvingstedt, K.; Gadisa, A.; Inganäs, O.; Manca, J. V. On the origin of the open-circuit voltage of polymer-fullerene solar cells. Nat. Mater. 2009, 8, 904–909.

    Article  CAS  Google Scholar 

  28. Benduhn, J.; Tvingstedt, K.; Piersimoni, F.; Ullbrich, S.; Fan, Y. L.; Tropiano, M.; McGarry, K. A.; Zeika, O.; Riede, M. K.; Douglas, C. J. et al. Intrinsic non-radiative voltage losses in fullerene-based organic solar cells. Nat. Energy 2017, 2, 17053.

    Article  CAS  Google Scholar 

  29. Vandewal, K.; Tvingstedt, K.; Gadisa, A.; Inganäs, O.; Manca, J. V. Relating the open-circuit voltage to interface molecular properties of donor: Acceptor bulk heterojunction solar cells. Phys. Rev. B 2010, 81, 125204.

    Article  Google Scholar 

  30. Liu, S. H.; Jiang, R. B.; You, P.; Zhu, X. Z.; Wang, J. F.; Yan, F. Au/Ag core-shell nanocuboids for high-efficiency organic solar cells with broadband plasmonic enhancement. Energy Environ. Sci. 2016, 9, 898–905.

    Article  CAS  Google Scholar 

  31. Qin, Y. P.; Zhang, S. Q.; Xu, Y.; Ye, L.; Wu, Y.; Kong, J. Y.; Xu, B. W.; Yao, H. F.; Ade, H.; Hou, J. H. Reduced nonradiative energy loss caused by aggregation of nonfullerene acceptor in organic solar cells. Adv. Energy Mater. 2019, 9, 1901823.

    Article  Google Scholar 

  32. Xie, Y. P.; Li, T. F.; Guo, J.; Bi, P. Q.; Xue, X. N.; Ryu, H. S.; Cai, Y. H.; Min, J.; Huo, L. J.; Hao, X. T. et al. Ternary organic solar cells with small nonradiative recombination loss. ACS Energy Lett. 2019, 4, 1196–1203.

    Article  CAS  Google Scholar 

  33. Xu, X. P.; Feng, K.; Lee, Y. W.; Woo, H. Y.; Zhang, G. J.; Peng, Q. Subtle polymer donor and molecular acceptor design enable efficient polymer solar cells with a very small energy loss. Adv. Funct. Mater. 2020, 30, 1907570.

    Article  CAS  Google Scholar 

  34. Ma, R. J.; Liu, T.; Luo, Z. H.; Gao, K.; Chen, K.; Zhang, G. Y.; Gao, W.; Xiao, Y. Q.; Lau, T. K.; Fan, Q. P. et al. Adding a third component with reduced miscibility and higher LUMO level enables efficient ternary organic solar cells. ACS Energy Lett. 2020, 5, 2711–2720.

    Article  CAS  Google Scholar 

  35. Chen, S. H.; Yan, T. T.; Fanady, B.; Song, W.; Ge, J. F.; Wei, Q.; Peng, R. X.; Chen, G. H.; Zou, Y. P.; Ge, Z. Y. High efficiency ternary organic solar cells enabled by compatible dual-donor strategy with planar conjugated structures. Sci. China Chem. 2020, 63, 917–923.

    Article  CAS  Google Scholar 

  36. Ma, Y. L.; Zhou, X. B.; Cai, D. D.; Tu, Q. S.; Ma, W.; Zheng, Q. D. A minimal benzo[c][1, 2, 5]thiadiazole-based electron acceptor as a third component material for ternary polymer solar cells with efficiencies exceeding 16.0%. Mater. Horiz. 2020, 7, 117–124.

    Article  CAS  Google Scholar 

  37. Wang, H. T.; Yang, L. Q.; Lin, P. C.; Chueh, C. C.; Liu, X.; Qu, S. Y.; Guang, S.; Yu, J. S.; Tang, W. H. A simple dithieno[3, 2-b: 2′, 3′-d]pyrrol-rhodanine molecular third component enables over 16. 7% efficiency and stable organic solar cells. Small 2021, 17, 2007746.

    Article  CAS  Google Scholar 

  38. Xu, L. Y.; Tao, W. X.; Liu, H.; Ning, J. H.; Huang, M. H.; Zhao, B.; Lu, X. H.; Tan, S. T. Achieving 17.38% efficiency of ternary organic solar cells enabled by a large-bandgap donor with noncovalent conformational locking. J. Mater. Chem. A 2021, 9, 11734–11740.

    Article  CAS  Google Scholar 

  39. Lee, S. M.; Kumari, T.; Lee, B.; Cho, Y.; Lee, J.; Oh, J.; Jeong, M.; Jung, S.; Yang, C. Horizontal-, vertical-, and cross-conjugated small molecules: Conjugated pathway-performance correlations along operation mechanisms in ternary non-fullerene organic solar cells. Small 2020, 16, 1905309.

    Article  CAS  Google Scholar 

  40. Ma, X. L.; Wang, J.; Gao, J. H.; Hu, Z. H.; Xu, C. Y.; Zhang, X. L.; Zhang, F. J. Achieving 17.4% efficiency of ternary organic photovoltaics with two well-compatible nonfullerene acceptors for minimizing energy loss. Adv. Energy Mater. 2020, 10, 2001404.

    Article  CAS  Google Scholar 

  41. Cui, Y.; Yao, H. F.; Zhang, J. Q.; Zhang, T.; Wang, Y. M.; Hong, L.; Xian, K. H.; Xu, B. W.; Zhang, S. Q.; Peng, J. et al. Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages. Nat. Commun. 2019, 10, 2515.

    Article  Google Scholar 

  42. Liu, S.; Yuan, J.; Deng, W. Y.; Luo, M.; Xie, Y.; Liang, Q. B.; Zou, Y. P.; He, Z. C.; Wu, H. B.; Cao, Y. High-efficiency organic solar cells with low non-radiative recombination loss and low energetic disorder. Nat. Photonics 2020, 14, 300–305.

    Article  CAS  Google Scholar 

  43. Ma, Q.; Jia, Z. R.; Meng, L.; Zhang, J. Y.; Zhang, H. T.; Huang, W. C.; Yuan, J.; Gao, F.; Wan, Y.; Zhang, Z. J. et al. Promoting charge separation resulting in ternary organic solar cells efficiency over 17.5%. Nano Energy 2020, 78, 105272.

    Article  CAS  Google Scholar 

  44. Blom, P. W. M.; Mihailetchi, V. D.; Koster, L. J. A.; Markov, D. E. Device physics of polymer: Fullerene bulk heterojunction solar cells. Adv. Mater. 2007, 19, 1551–1566.

    Article  CAS  Google Scholar 

  45. Honda, S.; Ohkita, H.; Benten, H.; Ito, S. Selective dye loading at the heterojunction in polymer/fullerene solar cells. Adv. Energy Mater. 2011, 1, 588–598.

    Article  CAS  Google Scholar 

  46. Cheng, T. W.; Keskkula, H.; Paul, D. R. Property and morphology relationships for ternary blends of polycarbonate, brittle polymers and an impact modifier. Polymer 1992, 33, 1606–1619.

    Article  CAS  Google Scholar 

  47. Li, D.; Neumann, A. W. A reformulation of the equation of state for interfacial tensions. J. Colloid Interface Sci. 1990, 137, 304–307.

    Article  CAS  Google Scholar 

  48. Nilsson, S.; Bernasik, A.; Budkowski, A.; Moons, E. Morphology and phase segregation of spin-casted films of polyfluorene/PCBM blends. Macromolecules 2007, 40, 8291–8301.

    Article  CAS  Google Scholar 

  49. Clint, J. H. Adhesion and components of solid surface energies. Curr. Opin. Colloid Interface Sci. 2001, 6, 28–33.

    Article  CAS  Google Scholar 

  50. Makkonen, L. Young’s equation revisited. J. Phys.:Condens. Matter 2016, 28, 135001.

    Google Scholar 

  51. Adil, M. A.; Zhang, J. Q.; Wang, Y. H.; Yu, J. D.; Yang, C.; Lu, G. H.; Wei, Z. X. Regulating the phase separation of ternary organic solar cells via 3D architectured AIE molecules. Nano Energy 2020, 68, 104271.

    Article  CAS  Google Scholar 

  52. Ye, L.; Hu, H. W.; Ghasemi, M.; Wang, T. H.; Collins, B. A.; Kim, J. H.; Jiang, K.; Carpenter, J. H.; Li, H.; Li, Z. K. et al. Quantitative relations between interaction parameter, miscibility and function in organic solar cells. Nat. Mater. 2018, 17, 253–260.

    Article  CAS  Google Scholar 

  53. Fan, H. Y.; Yang, H.; Wu, Y.; Yildiz, O.; Zhu, X. M.; Marszalek, T.; Blom, P. W. M.; Cui, C. H.; Li, Y. F. Anthracene-assisted morphology optimization in photoactive layer for high-efficiency polymer solar cells. Adv. Funct. Mater. 2021, 31, 2103944.

    Article  CAS  Google Scholar 

  54. Zhang, X. Q.; Liu, M. Y.; Yang, B.; Zhang, X. Y.; Chi, Z. G.; Liu, S. W.; Xu, J. R.; Wei, Y. Cross-linkable aggregation induced emission dye based red fluorescent organic nanoparticles and their cell imaging applications. Polym. Chem. 2013, 4, 5060–5064.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 22005234 and 61904134) and Zhejiang Lab (No. 2021MC0AB02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huanran Feng.

Electronic Supplementary Material

12274_2021_3945_MOESM1_ESM.pdf

Exploring ternary organic photovoltaics for the reduced nonradiative recombination and improved efficiency over 17.23% with a simple large-bandgap small molecular third component

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, H., Dai, Y., Guo, L. et al. Exploring ternary organic photovoltaics for the reduced nonradiative recombination and improved efficiency over 17.23% with a simple large-bandgap small molecular third component. Nano Res. 15, 3222–3229 (2022). https://doi.org/10.1007/s12274-021-3945-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3945-3

Keywords

Navigation