Skip to main content
Log in

Efficient and 1,8-diiodooctane-free ternary organic solar cells fabricated via nanoscale morphology tuning using small-molecule dye additive

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The ternary strategy for incorporating multiple photon-sensitive components into a single junction has emerged as an effective method for optimizing the nanoscale morphology and improving the device performance of organic solar cells (OSCs). In this study, efficient and stable ternary OSCs were achieved by introducing the small-molecule dye (5E,5′E)-5,5′-(4′,4″-(1,2-diphenylethene-1,2-diyl)bis(biphenyl-4′,4-diyl))bis(methan-1-yl-1-ylidene)bis(3-ethyl-2-thioxothia zolidin-4-one) (BTPE-Rn) into poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b′]dithiophene-co-3-fluorothieno[3,4-b]thiophene-2-carboxylate] (PTB7-Th):[6,6]-phenyl C71 butyric acid methyl ester (PC71BM) blend films processed using a 1,8-diiodooctane (DIO)-free solvent. The incorporation of BTPE-Rn enhanced the short-circuit current density and fill factor of the ternary OSCs compared with those of binary OSCs. An investigation of the optical, electronic, and morphological properties of the ternary blends indicated that the third component of BTPE-Rn not only promoted the photon utilization of blends through the energy-transfer process but also improved the electron mobility of the blends owing to the fullerene-rich nanophase optimization. More importantly, this ternary strategy of utilizing a small-molecule dye to replace the photounstable DIO additive enhanced the operational stability of the OSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Savoie, B. M.; Dunaisky, S.; Marks, T. J.; Ratner, M. A. The scope and limitations of ternary blend organic photovoltaics. Adv. Energy Mater. 2015, 5, 1400891.

    Article  Google Scholar 

  2. Ameri, T.; Khoram, P.; Min, J.; Brabec, C. J. Organic ternary solar cells: A review. Adv. Mater. 2013, 25, 4245–4266.

    Article  Google Scholar 

  3. Lu, L. Y.; Kelly, M. A.; You, W.; Yu, L. P. Status and prospects for ternary organic photovoltaics. Nat. Photonics 2015, 9, 491–500.

    Article  Google Scholar 

  4. Koppe, M.; Egelhaaf, H.-J.; Dennler, G.; Scharber, M. C.; Brabec, C. J.; Schilinsky, P.; Hoth, C. N. Near IR sensitization of organic bulk heterojunction solar cells: Towards optimization of the spectral response of organic solar cells. Adv. Funct. Mater. 2010, 20, 338–346.

    Article  Google Scholar 

  5. Huang, J.-H.; Velusamy, M.; Ho, K.-C.; Lin, J.-T.; Chu, C.-W. A ternary cascade structure enhances the efficiency of polymer solar cells. J. Mater. Chem. 2010, 20, 2820–2825.

    Google Scholar 

  6. Lu, L. Y.; Xu, T.; Chen, W.; Landry, E. S.; Yu, L. P. Ternary blend polymer solar cells with enhanced power conversion efficiency. Nat. Photonics 2014, 8, 716–722.

    Article  Google Scholar 

  7. Ameri, T.; Min, J.; Li, N.; Machui, F.; Baran, D.; Forster, M.; Schottler, K. J.; Dolfen, D.; Scherf, U.; Brabec, C. J. Performance enhancement of the P3HT/PCBM solar cells through NIR sensitization using a small-bandgap polymer. Adv. Energy Mater. 2012, 2, 1198–1202.

    Article  Google Scholar 

  8. Zhang, S. H.; Zuo, L. J.; Chen, J. H.; Zhang, Z. Q.; Mai, J. Q.; Lau, T.-K.; Lu, X. H.; Shi, M. M.; Chen, H. Z. Improved photon-to-electron response of ternary blend organic solar cells with a low band gap polymer sensitizer and interfacial modification. J. Mater. Chem. A 2016, 4, 1702–1707.

    Article  Google Scholar 

  9. Liu, T.; Huo, L. J.; Sun, X. B.; Fan, B. B.; Cai, Y. H.; Kim, T.; Kim, J. Y.; Choi, H.; Sun, Y. M. Ternary organic solar cells based on two highly efficient polymer donors with enhanced power conversion efficiency. Adv. Energy Mater. 2016, 6, 1502109.

    Article  Google Scholar 

  10. Liu, W. Q.; Shi, H. Q.; Fu, W. F.; Zuo, L. J.; Wang, L.; Chen, H. Z. Efficient ternary blend polymer solar cells with a bipolar diketopyrrolopyrrole small molecule as cascade material. Org. Electron. 2015, 25, 219–224.

    Article  Google Scholar 

  11. Zhong, C. M.; Choi, H.; Kim, J. Y.; Woo, H. Y.; Nguyen, T. L.; Huang, F.; Cao, Y.; Heeger, A. J. Ultrafast charge transfer in operating bulk heterojunction solar cells. Adv. Mater. 2015, 27, 2036–2041.

    Article  Google Scholar 

  12. Cheng, P.; Li, Y. F.; Zhan, X. W. Efficient ternary blend polymer solar cells with indene-C60 bisadduct as an electroncascade acceptor. Energy Environ. Sci. 2014, 7, 2005–2011.

    Article  Google Scholar 

  13. Khlyabich, P. P.; Burkhart, B.; Thompson, B. C. Efficient ternary blend bulk heterojunction solar cells with tunable open-circuit voltage. J. Am. Chem. Soc. 2011, 133, 14534–14537.

    Article  Google Scholar 

  14. Khlyabich, P. P.; Burkhart, B.; Thompson, B. C. Compositional dependence of the open-circuit voltage in ternary blend bulk heterojunction solar cells based on two donor polymers. J. Am. Chem. Soc. 2012, 134, 9074–9077.

    Article  Google Scholar 

  15. Lu, L. Y.; Chen, W.; Xu, T.; Yu, L. P. High-performance ternary blend polymer solar cells involving both energy transfer and hole relay processes. Nat. Commun. 2015, 6, 7327.

    Article  Google Scholar 

  16. Gupta, V.; Bharti, V.; Kumar, M.; Chand, S.; Heeger, A. J. Polymer–polymer förster resonance energy transfer significantly boosts the power conversion efficiency of bulk-heterojunction solar cells. Adv. Mate. 2015, 27, 4398–4404.

    Article  Google Scholar 

  17. Benten, H.; Nishida, T.; Mori, D.; Xu, H. J.; Ohkita, H.; Ito, S. High-performance ternary blend all-polymer solar cells with complementary absorption bands from visible to nearinfrared wavelengths. Energy Environ. Sci. 2016, 9, 135–140.

    Article  Google Scholar 

  18. Cheng, P.; Yan, C. Q.; Wu, Y.; Wang, J. Y.; Qin, M.; An, Q. S.; Cao, J. M.; Huo, L. J.; Zhang, F. J.; Ding, L. M. et al. Alloy acceptor: Superior alternative to pcbm toward efficient and stable organic solar cells. Adv. Mater. 2016, 28, 8021–8028.

    Article  Google Scholar 

  19. Street, R. A.; Khlyabich, P. P.; Rudenko, A. E.; Thompson, B. C. Electronic states in dilute ternary blend organic bulk heterojunction solar cells. J. Phys. Chem. C 2014, 118, 26569–26576.

    Article  Google Scholar 

  20. Street, R. A.; Davies, D.; Khlyabich, P. P.; Burkhart, B.; Thompson, B. C. Origin of the tunable open-circuit voltage in ternary blend bulk heterojunction organic solar cells. J. Am. Chem. Soc. 2013, 135, 986–989.

    Article  Google Scholar 

  21. Yang, L. Q.; Zhou, H. X.; Price, S. C.; You, W. Parallel-like bulk heterojunction polymer solar cells. J. Am. Chem. Soc. 2012, 134, 5432–5435.

    Article  Google Scholar 

  22. Zhang, J. Q.; Zhang, Y. J.; Fang, J.; Lu, K.; Wang, Z. Y.; Ma, W.; Wei, Z. X. Conjugated polymer–small molecule alloy leads to high efficient ternary organic solar cells. J. Am. Chem. Soc. 2015, 137, 8176–8183.

    Article  Google Scholar 

  23. Zhang, Y. J.; Deng, D.; Lu, K.; Zhang, J. Q.; Xia, B. Z.; Zhao, Y. F.; Fang, J.; Wei, Z. X. Synergistic effect of polymer and small molecules for high-performance ternary organic solar cells. Adv. Mater. 2015, 27, 1071–1076.

    Article  Google Scholar 

  24. Goh, T.; Huang, J.-S.; Yager, K. G.; Sfeir, M. Y.; Nam, C.-Y.; Tong, X.; Guard, L. M.; Melvin, P. R.; Antonio, F.; Bartolome, B. G. et al. Quaternary organic solar cells enhanced by cocrystalline squaraines with power conversion efficiencies >10%. Adv. Energy Mater. 2016, 6, 1600660.

    Article  Google Scholar 

  25. Gasparini, N.; Jiao, X. C.; Heumueller, T.; Baran, D.; Matt, G. J.; Fladischer, S.; Spiecker, E.; Ade, H.; Brabec, C. J.; Ameri, T. Designing ternary blend bulk heterojunction solar cells with reduced carrier recombination and a fill factor of 77%. Nat. Energy. 2016, 1, 16118.

    Article  Google Scholar 

  26. Nian, L.; Gao, K.; Liu, F.; Kan, Y. Y.; Jiang, X. F.; Liu, L. L.; Xie, Z. Q.; Peng, X. B.; Russell, T. P.; Ma, Y. G. 11% efficient ternary organic solar cells with high composition tolerance via integrated near-IR sensitization and interface engineering. Adv. Mater. 2016, 28, 8184–8190.

    Article  Google Scholar 

  27. Lu, H.; Zhang, J. C.; Chen, J. Y.; Liu, Q.; Gong, X.; Feng, S. Y.; Xu, X. J.; Ma, W.; Bo, Z. S. Ternary-blend polymer solar cells combining fullerene and nonfullerene acceptors to synergistically boost the photovoltaic performance. Adv. Mater. 2016, 28, 9559–9566.

    Article  Google Scholar 

  28. Zhang, G. C.; Zhang, K.; Yin, Q. W.; Jiang, X.-F.; Wang, Z. Y.; Xin, J. M.; Ma, W.; Yan, H.; Huang, F.; Cao, Y. High-performance ternary organic solar cell enabled by a thick active layer containing a liquid crystalline small molecule donor. J. Am. Chem. Soc. 2017, 139, 2387–2395.

    Article  Google Scholar 

  29. Khlyabich, P. P.; Rudenko, A. E.; Street, R. A.; Thompson, B. C. Influence of polymer compatibility on the open-circuit voltage in ternary blend bulk heterojunction solar cells. ACS Appl. Mater. Interfaces 2014, 6, 9913–9919.

    Article  Google Scholar 

  30. Yang, Y.; Chen, W.; Dou, L. T.; Chang, W.-H.; Duan, H.-S.; Bob, B.; Li, G.; Yang, Y. High-performance multiple-donor bulk heterojunction solar cells. Nat. Photonics 2015, 9, 190–198.

    Article  Google Scholar 

  31. Gasparini, N.; Salvador, M.; Fladischer, S.; Katsouras, A.; Avgeropoulos, A.; Spiecker, E.; Chochos, C. L.; Brabec, C. J.; Ameri, T. An alternative strategy to adjust the recombination mechanism of organic photovoltaics by implementing ternary compounds. Adv. Energy Mater. 2015, 5, 1501527.

    Article  Google Scholar 

  32. Mai, J. Q.; Lau, T.-K.; Li, J.; Peng, S.-H.; Hsu, C.-S.; Jeng, U. S.; Zeng, J. R.; Zhao, N.; Xiao, X. D.; Lu, X. H. Understanding morphology compatibility for high-performance ternary organic solar cells. Chem. Mater. 2016, 28, 6186–6195.

    Article  Google Scholar 

  33. Lee, T. H.; Uddin, M. A.; Zhong, C. M.; Ko, S.-J.; Walker, B.; Kim, T.; Yoon, Y. J.; Park, S. Y.; Heeger, A. J.; Woo, H. Y. et al. Investigation of charge carrier behavior in high performance ternary blend polymer solar cells. Adv. Energy Mater. 2016, 6, 1600637.

    Article  Google Scholar 

  34. Jørgensen, M.; Norrman, K.; Gevorgyan, S. A.; Tromholt, T.; Andreasen, B.; Krebs, F. C. Stability of polymer solar cells. Adv. Mater. 2012, 24, 580–612.

    Article  Google Scholar 

  35. Jørgensen, M.; Norrman, K.; Krebs, F. C. Stability/degradation of polymer solar cells. Sol. Energy Mater. Sol. Cells 2008, 92, 686–714.

    Article  Google Scholar 

  36. Williams, G.; Wang, Q.; Aziz, H. The photo-stability of polymer solar cells: Contact photo-degradation and the benefits of interfacial layers. Adv. Funct. Mater. 2013, 23, 2239–2247.

    Article  Google Scholar 

  37. Cao, H. Q.; He, W. D.; Mao, Y. W.; Lin, X.; Ishikawa, K.; Dickerson, J. H.; Hess, W. P. Recent progress in degradation and stabilization of organic solar cells. J. Power Sources 2014, 264, 168–183.

    Article  Google Scholar 

  38. Chao, Y.-H.; Huang, Y.-Y.; Chang, J.-Y.; Peng, S.-H.; Tu, W.-Y.; Cheng, Y.-J.; Hou, J. H.; Hsu, C.-S. A crosslinked fullerene matrix doped with an ionic fullerene as a cathodic buffer layer toward high-performance and thermally stable polymer and organic metallohalide perovskite solar cells. J. Mater. Chem. A 2015, 3, 20382–20388.

    Article  Google Scholar 

  39. Yin, Z. G.; Zheng, Q. D.; Chen, S.-C.; Li, J. X.; Cai, D. D.; Ma, Y. L.; Wei, J. J. Solution-derived poly(ethylene glycol)- TiOx nanocomposite film as a universal cathode buffer layer for enhancing efficiency and stability of polymer solar cells. Nano Res. 2015, 8, 456–468.

    Article  Google Scholar 

  40. Kim, W.; Kim, J. K.; Kim, E.; Ahn, T. K.; Wang, D. H.; Park, J. H. Conflicted effects of a solvent additive on PTB7: PC71BM bulk heterojunction solar cells. J. Phys. Chem. C 2015, 119, 5954–5961.

    Article  Google Scholar 

  41. Pearson, A. J.; Hopkinson, P. E.; Couderc, E.; Domanski, K.; Abdi-Jalebi, M.; Greenham, N. C. Critical light instability in CB/DIO processed PBDTTT-EFT:PC71BM organic photovoltaic devices. Org. Electron. 2016, 30, 225–236.

    Article  Google Scholar 

  42. Tremolet de Villers, B. J.; O’Hara, K. A.; Ostrowski, D. P.; Biddle, P. H.; Shaheen, S. E.; Chabinyc, M. L.; Olson, D. C.; Kopidakis, N. Removal of residual diiodooctane improves photostability of high-performance organic solar cell polymers. Chem. Mater. 2016, 28, 876–884.

    Article  Google Scholar 

  43. Lee, S.; Kong, J.; Lee, K. Air-stable organic solar cells using an iodine-free solvent additive. Adv. Energy Mater. 2016, 6, 1600970.

    Article  Google Scholar 

  44. Hong, Y. N.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission: Phenomenon, mechanism and applications. Chem. Commun. 2009, 4332–4353.

    Google Scholar 

  45. Murgatroyd, P. N. Theory of space-charge-limited current enhanced by frenkel effect. J. Phys. D: Appl. Phys. 1970, 3, 151–156.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support from the National Basic Research Program of China (No. 2014CB643503). The work was also partly supported by the National Natural Science Foundation of China (Nos. 21474088 and 21674093). F. L. and C. Z. L. thank the support from Young 1000 Talents Global Recruitment Program of China. T. P. R. were supported by the U.S. Office of Naval Research under contract N00014-15-1-2244. Portions of this research were carried out at beamline 7.3.3 and 11.0.1.2 at the Advanced Light Source, Molecular Foundry, and National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, which was supported by the DOE, Office of Science, and Office of Basic Energy Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Liu, Chang-Zhi Li or Hongzheng Chen.

Electronic supplementary material

12274_2017_1589_MOESM1_ESM.pdf

Efficient and 1,8-diiodooctane-free ternary organic solar cells fabricated via nanoscale morphology tuning using small-molecule dye additive

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Shah, M.N., Liu, F. et al. Efficient and 1,8-diiodooctane-free ternary organic solar cells fabricated via nanoscale morphology tuning using small-molecule dye additive. Nano Res. 10, 3765–3774 (2017). https://doi.org/10.1007/s12274-017-1589-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1589-0

Keywords

Navigation