Skip to main content
Log in

Highly efficient ternary organic solar cells with excellent open-circuit voltage and fill factor via precisely tuning molecular stacking and morphology

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The micro-morphology and molecular stacking play a key role in determining the charge transport process and nonradiative energy loss, thus impacting the performances of organic solar cells (OSCs). To address this issue, a non-fullerene acceptor PhC6-IC-F with alkylbenzene side-chain, possessing optimized molecular stacking, complementary absorption spectra and forming a cascade energy level alignment in the PM6:BTP-eC9 blend, is introduced as guest acceptor to improve efficiency of ternary OSCs. The bulky phenyl in the side-chain can regulate crystallinity and optimizing phase separation between receptors in ternary blend films, resulting in the optimal phase separations in the ternary films. As a result, high efficiencies of 18.33% as photovoltaic layer are obtained for PhC6-IC-F-based ternary devices with excellent fill factor (FF) of 78.92%. Impressively, the ternary system produces a significantly improved open circuit voltage (Voc) of 0.857 V compared with the binary device, contributing to the reduced density of trap states and suppressed non-radiative recombination result in lower energy loss. This work demonstrates an effective approach for adjusting the aggregation, molecular packing and fine phase separation morphology to increase Voc and FF, paving the way toward high-efficiency OSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guan S, Li Y, Yan K, Fu W, Zuo L, Chen H. Adv Mater, 2022, 34: e2205844

    Article  PubMed  Google Scholar 

  2. Song W, Yu K, Zhou E, Xie L, Hong L, Ge J, Zhang J, Zhang X, Peng R, Ge Z. Adv Funct Mater, 2021, 31: 2102694

    Article  CAS  Google Scholar 

  3. Yan C, Barlow S, Wang Z, Yan H, Jen AKY, Marder SR, Zhan X. Nat Rev Mater, 2018, 3: 18003

    Article  ADS  CAS  Google Scholar 

  4. Meng L, Zhang Y, Wan X, Li C, Zhang X, Wang Y, Ke X, Xiao Z, Ding L, Xia R, Yip HL, Cao Y, Chen Y. Science, 2018, 361: 1094–1098

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Hoppe H, Sariciftci NS. J Mater Res, 2011, 19: 1924–1945

    Article  ADS  Google Scholar 

  6. Song W, Ye Q, Yang S, Xie L, Meng Y, Chen Z, Gu Q, Yang D, Shi J, Ge Z. Angew Chem Int Ed, 2023, 62: e202310034

    Article  CAS  Google Scholar 

  7. Deng M, Xu X, Duan Y, Yu L, Li R, Peng Q. Adv Mater, 2023, 35: e2210760

    Article  PubMed  Google Scholar 

  8. Chen T, Li S, Li Y, Chen Z, Wu H, Lin Y, Gao Y, Wang M, Ding G, Min J, Ma Z, Zhu H, Zuo L, Chen H. Adv Mater, 2023, 35: 2300400

    Article  CAS  Google Scholar 

  9. Zhu L, Zhang M, Xu J, Li C, Yan J, Zhou G, Zhong W, Hao T, Song J, Xue X, Zhou Z, Zeng R, Zhu H, Chen CC, MacKenzie RCI, Zou Y, Nelson J, Zhang Y, Sun Y, Liu F. Nat Mater, 2022, 21: 656–663

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Cui Y, Xu Y, Yao H, Bi P, Hong L, Zhang J, Zu Y, Zhang T, Qin J, Ren J, Chen Z, He C, Hao X, Wei Z, Hou J. Adv Mater, 2021, 33: e2102420

    Article  PubMed  Google Scholar 

  11. Wang J, Zheng Z, Zu Y, Wang Y, Liu X, Zhang S, Zhang M, Hou J. Adv Mater, 2021, 33: e2102787

    Article  PubMed  Google Scholar 

  12. Zheng Z, Wang J, Bi P, Ren J, Wang Y, Yang Y, Liu X, Zhang S, Hou J. Joule, 2022, 6: 171–184

    Article  ADS  CAS  Google Scholar 

  13. He C, Shen Q, Wu B, Gao Y, Li S, Min J, Ma W, Zuo L, Chen H. Adv Energy Mater, 2023, 13: 2204154

    Article  CAS  Google Scholar 

  14. Doumon NY, Yang L, Rosei F. Nano Energy, 2022, 94: 106915

    Article  CAS  Google Scholar 

  15. Chen H, Liang H, Guo Z, Zhu Y, Zhang Z, Li Z, Cao X, Wang H, Feng W, Zou Y, Meng L, Xu X, Kan B, Li C, Yao Z, Wan X, Ma Z, Chen Y. Angew Chem Int Ed, 2022, 61: e202209580

    Article  CAS  Google Scholar 

  16. Li M, Zhou Y, Zhang M, Liu Y, Ma Z, Liu F, Qin R, Bo Z. Sol RRL, 2021, 5: 2100806

    Article  CAS  Google Scholar 

  17. Chen Z, Song W, Yu K, Ge J, Zhang J, Xie L, Peng R, Ge Z. Joule, 2021, 5: 2395–2407

    Article  CAS  Google Scholar 

  18. Cai Y, Li Y, Wang R, Wu H, Chen Z, Zhang J, Ma Z, Hao X, Zhao Y, Zhang C, Huang F, Sun Y. Adv Mater, 2021, 33: e2101733

    Article  PubMed  Google Scholar 

  19. Wadsworth A, Moser M, Marks A, Little MS, Gasparini N, Brabec CJ, Baran D, McCulloch I. Chem Soc Rev, 2019, 48: 1596–1625

    Article  CAS  PubMed  Google Scholar 

  20. Gasparini N, Salleo A, McCulloch I, Baran D. Nat Rev Mater, 2019, 4: 229–242

    Article  ADS  Google Scholar 

  21. Cheng P, Li G, Zhan X, Yang Y. Nat Photon, 2018, 12: 131–142

    Article  ADS  CAS  Google Scholar 

  22. Chen Y, Ye P, Jia X, Gu W, Xu X, Wu X, Wu J, Liu F, Zhu ZG, Huang H. J Mater Chem A, 2017, 5: 19697–19702

    Article  CAS  Google Scholar 

  23. Zhan L, Li S, Lau TK, Cui Y, Lu X, Shi M, Li CZ, Li H, Hou J, Chen H. Energy Environ Sci, 2020, 13: 635–645

    Article  CAS  Google Scholar 

  24. Yan T, Song W, Huang J, Peng R, Huang L, Ge Z. AdvMater, 2019, 31: e1902210

    Google Scholar 

  25. Duan X, Song W, Qiao J, Li X, Cai Y, Wu H, Zhang J, Hao X, Tang Z, Ge Z, Huang F, Sun Y. Energy Environ Sci, 2022, 15: 1563–1572

    Article  CAS  Google Scholar 

  26. Qian D, Zheng Z, Yao H, Tress W, Hopper TR, Chen S, Li S, Liu J, Chen S, Zhang J, Liu XK, Gao B, Ouyang L, Jin Y, Pozina G, Buyanova IA, Chen WM, Inganäs O, Coropceanu V, Bredas JL, Yan H, Hou J, Zhang F, Bakulin AA, Gao F. Nat Mater, 2018, 17: 703–709

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Yang D, Wang Y, Sano T, Gao F, Sasabe H, Kido J. J Mater Chem A, 2018, 6: 13918–13924

    Article  CAS  Google Scholar 

  28. Liu H, Chen Z, Peng R, Qiu Y, Shi J, Zhu J, Meng Y, Tang Z, Zhang J, Chen F, Ge Z. Chem Eng J, 2023, 474: 145807

    Article  CAS  Google Scholar 

  29. de Zerio AD, Müller C. Adv Energy Mater, 2018, 8: 1702741

    Article  Google Scholar 

  30. Naveed HB, Ma W. Joule, 2018, 2: 621–641

    Article  CAS  Google Scholar 

  31. Gasparini N, Paleti SHK, Bertrandie J, Cai G, Zhang G, Wadsworth A, Lu X, Yip HL, McCulloch I, Baran D. ACS Energy Lett, 2020, 5: 1371–1379

    Article  CAS  Google Scholar 

  32. Huang T, Zhang Z, Wang D, Zhang Y, Deng Z, Huang Y, Liao Q, Zhang J. ACS Appl Energy Mater, 2023, 6: 3126–3134

    Article  CAS  Google Scholar 

  33. Liu T, Guo Y, Yi Y, Huo L, Xue X, Sun X, Fu H, Xiong W, Meng D, Wang Z, Liu F, Russell TP, Sun Y. Adv Mater, 2016, 28: 10008–10015

    Article  CAS  PubMed  Google Scholar 

  34. Li Z, Jiang C, Chen X, Song G, Wan X, Kan B, Duan T, Knyazeva EA, Rakitin OA, Chen Y. J Mater Chem C, 2023, 11: 6920–6927

    Article  CAS  Google Scholar 

  35. Han Y, Song W, Zhang J, Xie L, Xiao J, Li Y, Cao L, Song S, Zhou E, Ge Z. J Mater Chem A, 2020, 8: 22155–22162

    Article  CAS  Google Scholar 

  36. Gao W, Qi F, Peng Z, Lin FR, Jiang K, Zhong C, Kaminsky W, Guan Z, Lee CS, Marks TJ, Ade H, Jen AKY. Adv Mater, 2022, 34: e2202089

    Article  PubMed  Google Scholar 

  37. Liu Y, Liu B, Ma CQ, Huang F, Feng G, Chen H, Hou J, Yan L, Wei Q, Luo Q, Bao Q, Ma W, Liu W, Li W, Wan X, Hu X, Han Y, Li Y, Zhou Y, Zou Y, Chen Y, Li Y, Chen Y, Tang Z, Hu Z, Zhang ZG, Bo Z. Sci China Chem, 2021, 65: 224–268

    Article  Google Scholar 

  38. Liu Y, Liu B, Ma CQ, Huang F, Feng G, Chen H, Hou J, Yan L, Wei Q, Luo Q, Bao Q, Ma W, Liu W, Li W, Wan X, Hu X, Han Y, Li Y, Zhou Y, Zou Y, Chen Y, Liu Y, Meng L, Li Y, Chen Y, Tang Z, Hu Z, Zhang ZG, Bo Z. Sci China Chem, 2022, 65: 1457–1497

    Article  CAS  Google Scholar 

  39. Nilsson S, Bernasik A, Budkowski A, Moons E. Macromolecules, 2007, 40: 8291–8301

    Article  ADS  CAS  Google Scholar 

  40. Lu T, Chen F. J Comput Chem, 2012, 33: 580–592

    Article  PubMed  Google Scholar 

  41. Du X, Lu X, Zhao J, Zhang Y, Li X, Lin H, Zheng C, Tao S. Adv Funct Mater, 2019, 29: 1902078

    Article  Google Scholar 

  42. Lu L, Chen W, Xu T, Yu L. Nat Commun, 2015, 6: 7327

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Koster LJA, Smits ECP, Mihailetchi VD, Blom PWM. Phys Rev B, 2005, 72: 085205

    Article  ADS  Google Scholar 

  44. Kyaw AKK, Wang DH, Gupta V, Zhang J, Chand S, Bazan GC, Heeger AJ. Adv Mater, 2013, 25: 2397–2402

    Article  CAS  PubMed  Google Scholar 

  45. Lu L, Xu T, Chen W, Landry ES, Yu L. Nat Photon, 2014, 8: 716–722

    Article  ADS  CAS  Google Scholar 

  46. Yu K, Song W, Ge J, Zheng K, Xie L, Chen Z, Qiu Y, Hong L, Liu C, Ge Z. Sci China Chem, 2022, 65: 1615–1622

    Article  CAS  Google Scholar 

  47. Meng F, Qin Y, Zheng Y, Zhao Z, Sun Y, Yang Y, Gao K, Zhao D. Angew Chem Int Ed, 2023, 62: e202217173

    Article  CAS  Google Scholar 

  48. Wang D, Qin R, Zhou G, Li X, Xia R, Li Y, Zhan L, Zhu H, Lu X, Yip HL, Chen H, Li CZ. Adv Mater, 2020, 32: e2001621

    Article  PubMed  Google Scholar 

  49. Zhao F, Wang C, Zhan X. Adv Energy Mater, 2018, 8: 1703147

    Article  Google Scholar 

  50. Lamberti F, Schmitz F, Chen W, He Z, Gatti T. Sol RRL, 2021, 5: 2100514

    Article  CAS  Google Scholar 

  51. Zhang J, Peng R, Yu K, Ge J, Guo Y, Li D, Qiu Y, Ge Z. Sol RRL, 2022, 6: 2200508

    Article  CAS  Google Scholar 

  52. Xia T, Cai Y, Fu H, Sun Y. Sci China Chem, 2019, 62: 662–668

    Article  CAS  Google Scholar 

  53. Xie Y, Cai Y, Zhu L, Xia R, Ye L, Feng X, Yip H-, Liu F, Lu G, Tan S, Sun Y. Adv Funct Mater, 2020, 30: 2002181

    Article  CAS  Google Scholar 

  54. Heumueller T, Mateker WR, Sachs-Quintana IT, Vandewal K, Bartelt JA, Burke TM, Ameri T, Brabec CJ, McGehee MD. Energy Environ Sci, 2014, 7: 2974–2980

    Article  CAS  Google Scholar 

  55. Smilgies DM. J Appl Crystlogr, 2009, 42: 1030–1034

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Fund for Distinguished Young Scholars (21925506), the National Key R&D Program of China (2017YFE0106000), the National Natural Science Foundation of China (U21A20331, 51773212, 81903743), Ningbo S&T Innovation 2025 Major Special Programme (2018B10055), CAS Key Project of Frontier Science Research (QYZDB-SSW-SYS030), and Ningbo Natural Science Foundation (2021J192).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianfeng Zhang, Wei Song or Ziyi Ge.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Supporting Information for

11426_2023_1828_MOESM1_ESM.pdf

Highly Efficient Ternary Organic Solar Cells with Excellent Open-Circuit Voltage and Fill Factor via Precisely Tuning Molecular Stacking and Morphology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, D., Chen, Z., Zhang, J. et al. Highly efficient ternary organic solar cells with excellent open-circuit voltage and fill factor via precisely tuning molecular stacking and morphology. Sci. China Chem. 67, 963–972 (2024). https://doi.org/10.1007/s11426-023-1828-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1828-8

Navigation