Skip to main content
Log in

Intermetallic IrGa-IrOx core-shell electrocatalysts for oxygen evolution

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The development of high-performance Ir-based catalyst for electrocatalysis of oxygen evolution reaction (OER) in acidic media plays a critical role in realizing the commercialization of polymer electrolyte membrane-based water electrolyzer technology. Here we report a low-Ir core-shell OER electrocatalyst consisting of an intermetallic IrGa (IrGa-IMC) core and a partially oxidized Ir (IrOx) shell. In acidic electrolytes, the IrGa-IMC@IrOx core-shell catalysts exhibit a low overpotential of 272 mV at 10 mA·cm−2 with Ir loading of ∼20 µg·cm−2 and a mass activity of 841 A·gIr−1 at 1.52 V, which is 3.6 times greater than that of commercial Ir/C (232 A·gIr−1) catalyst. We understand by the density functional theory (DFT) calculations that the enhanced OER activity of the IrGa-IMC@IrOx catalysts is ascribed to the lifted degeneracy of Ir 5d electron of surface IrOx sites induced by the intermetallic IrGa core, which increases the adsorption capacity of IrOx layer for O and OH binding and eventually lowers the energy barrier of the OER rate-determining steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.

    Article  CAS  Google Scholar 

  2. Liu, G. Y.; Sheng, Y.; Ager, J. W.; Kraft, M.; Xu, R. Research advances towards large-scale solar hydrogen production from water. Energychem 2019, 1, 100014.

    Article  Google Scholar 

  3. Stamenkovic, V. R.; Strmcnik, D.; Lopes, P. P.; Markovic, N. M. Energy and fuels from electrochemical interfaces. Nat. Mater. 2016, 16, 57–69.

    Article  Google Scholar 

  4. Sardar, K.; Petrucco, E.; Hiley, C. I.; Sharman, J. D. B.; Wells, P. P.; Russell, A. E.; Kashtiban, R. J.; Sloan, J.; Walton, R. I. Watersplitting electrocatalysis in acid conditions using ruthenate-iridate pyrochlores. Angew. Chem., Int. Ed. 2014, 53, 10960–10964.

    Article  CAS  Google Scholar 

  5. Spöri, C.; Kwan, J. T. H.; Bonakdarpour, A.; Wilkinson, D. P.; Strasser, P. The stability challenges of oxygen evolving catalysts: Towards a common fundamental understanding and mitigation of catalyst degradation. Angew. Chem., Int. Ed. 2017, 56, 5994–6021.

    Article  Google Scholar 

  6. Carmo, M.; Fritz, D. L.; Merge, J.; Stolten, D. A comprehensive review on pem water electrolysis. Int. J. Hydrogen Energy 2013, 38, 4901–4934.

    Article  CAS  Google Scholar 

  7. Chen, Y. B.; Li, H. Y.; Wang, J. X.; Du, Y. H.; Xi, S. B.; Sun, Y. M.; Sherburne, M.; Ager III, J. W.; Fisher, A. C.; Xu, Z. J. Exceptionally active iridium evolved from a pseudo-cubic perovskite for oxygen evolution in acid. Nat. Commun. 2019, 10, 572.

    Article  CAS  Google Scholar 

  8. Li, Q.; Li, X. R.; Gu, J. W.; Li, Y. L.; Tian, Z. Q.; Pang, H. Porous rod-like Ni2P/Ni assemblies for enhanced urea electrooxidation. Nano Res. 2021, 14, 1405–1412.

    Article  CAS  Google Scholar 

  9. Li, D. D.; Xu, H. Q.; Jiao, L.; Jiang, H. L. Metal-organic frameworks for catalysis: State of the art, challenges, and opportunities. Energychem 2019, 1, 100005.

    Article  CAS  Google Scholar 

  10. Guo, X. T.; Zheng, S. S.; Luo, Y. Q.; Pang, H. Synthesis of confining cobalt nanoparticles within SiOx/nitrogen-doped carbon framework derived from sustainable bamboo leaves as oxygen electrocatalysts for rechargeable Zn-air batteries. Chem. Eng. J. 2020, 401, 126005.

    Article  CAS  Google Scholar 

  11. Bai, Y.; Zhang, G. X.; Zheng, S. S.; Li, Q.; Pang, H.; Xu, Q. Pyridine-modulated Ni/Co bimetallic metal-organic framework nanoplates for electrocatalytic oxygen evolution. Sci. China Mater. 2021, 64, 137–148.

    Article  CAS  Google Scholar 

  12. Lee, Y.; Suntivich, J.; May, K. J.; Perry, E. E.; Shao-Horn, Y. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 2012, 3, 399–404.

    Article  CAS  Google Scholar 

  13. Paoli, E. A.; Masini, F.; Frydendal, R.; Deiana, D.; Schlaup, C.; Malizia, M.; Hansen, T. W.; Horch, S.; Stephens, I. E. L.; Chorkendorff, I. Oxygen evolution on well-characterized mass-selected Ru and RuO2 nanoparticles. Chem. Sci. 2015, 6, 190–196.

    Article  CAS  Google Scholar 

  14. Lettenmeier, P.; Wang, L.; Golla-Schindler, U.; Gazdzicki, P.; Cañas, N. A.; Handl, M.; Hiesgen, R.; Hosseiny, S. S.; Gago, A. S.; Friedrich, K. A. Nanosized IrOx-Ir catalyst with relevant activity for anodes of proton exchange membrane electrolysis produced by a cost-effective procedure. Angew. Chem., Int. Ed. 2016, 55, 742–746.

    Article  CAS  Google Scholar 

  15. Laha, S.; Lee, Y.; Podjaski, F.; Weber, D.; Duppel, V.; Schoop, L. M.; Pielnhofer, F.; Scheurer, C.; Müller, K.; Starke, U. et al. Ruthenium oxide nanosheets for enhanced oxygen evolution catalysis in acidic medium. Adv. Energy Mater. 2019, 9, 1803795.

    Article  Google Scholar 

  16. Zagalskaya, A.; Alexandrov, V. Role of defects in the interplay between adsorbate evolving and lattice oxygen mechanisms of the oxygen evolution reaction in RuO2 and IrO2. ACS Catal. 2020, 10, 3650–3657.

    Article  CAS  Google Scholar 

  17. Kötz, R.; Stucki, S.; Scherson, D.; Kolb, D. M. In-situ identification of RuO4 as the corrosion product during oxygen evolution on ruthenium in acid media. J. Electroanal. Chem. Interfacial Electrochem. 1984, 172, 211–219.

    Article  Google Scholar 

  18. Wohlfahrt-Mehrens, M.; Heitbaum, J. Oxygen evolution on Ru and RuO2 electrodes studied using isotope labelling and on-line mass spectrometry. J. Electroanal. Chem. Interfacial Electrochem. 1987, 237, 251–260.

    Article  CAS  Google Scholar 

  19. Casalongue, H. G. S.; Ng, M. L.; Kaya, S.; Friebel, D.; Ogasawara, H.; Nilsson, A. In situ observation of surface species on iridium oxide nanoparticles during the oxygen evolution reaction. Angew. Chem., Int. Ed. 2014, 53, 7169–7172.

    Article  Google Scholar 

  20. Reier, T.; Oezaslan, M.; Strasser, P. Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: A comparative study of nanoparticles and bulk materials. ACS Catal. 2012, 2, 1765–1772.

    Article  CAS  Google Scholar 

  21. Nong, H. N.; Reier, T.; Oh, H. S.; Gliech, M.; Paciok, P.; Vu, T. H. T.; Teschner, D.; Heggen, M.; Petkov, V.; Schlögl, R. et al. A unique oxygen ligand environment facilitates water oxidation in hole-doped IrNiOx core-shell electrocatalysts. Nat. Catal. 2018, 1, 841–851.

    Article  CAS  Google Scholar 

  22. Kwon, T.; Hwang, H.; Sa, Y. J.; Park, J.; Baik, H.; Joo, S. H.; Lee, K. Cobalt assisted synthesis of IrCu hollow octahedral nanocages as highly active electrocatalysts toward oxygen evolution reaction. Adv. Funct. Mater. 2017, 27, 1604688.

    Article  Google Scholar 

  23. Shang, C. Y.; Cao, C.; Yu, D. Y.; Yan, Y.; Lin, Y. T.; Li, H. L.; Zheng, T. T.; Yan, X. P.; Yu, W. C.; Zhou, S. M. et al. Electron correlations engineer catalytic activity of pyrochlore iridates for acidic water oxidation. Adv. Mater. 2019, 31, 1805104.

    Article  Google Scholar 

  24. Greeley, J.; Nørskov, J. K. A general scheme for the estimation of oxygen binding energies on binary transition metal surface alloys. Surf. Sci. 2005, 592, 104–111.

    Article  CAS  Google Scholar 

  25. Xiao, W. P.; Lei, W.; Gong, M. X.; Xin, H. L.; Wang, D. L. Recent advances of structurally ordered intermetallic nanoparticles for electrocatalysis. ACS Catal. 2018, 8, 3237–3256.

    Article  CAS  Google Scholar 

  26. Rößner, L.; Armbrüster, M. Electrochemical energy conversion on intermetallic compounds: A review. ACS Catal. 2019, 9, 2018–2062.

    Article  Google Scholar 

  27. Nogués, J.; Apiñaniz, E.; Sort, J.; Amboage, M.; d’Astuto, M.; Mathon, O.; Puzniak, R.; Fita, I.; Garitaonandia, J. S.; Suriñach, S. et al. Volume expansion contribution to the magnetism of atomically disordered intermetallic alloys. Phys. Rev. B 2006, 74, 024407.

    Article  Google Scholar 

  28. Li, J. R.; Sharma, S.; Liu, X. M.; Pan, Y. T.; Spendelow, J. S.; Chi, M. F.; Jia, Y. K.; Zhang, P.; Cullen, D. A.; Xi, Z. et al. Hard-magnet L10-CoPt nanoparticles advance fuel cell catalysis. Joule 2019, 3, 124–135.

    Article  CAS  Google Scholar 

  29. Bu, L. Z.; Zhang, N.; Guo, S. J.; Zhang, X.; Li, J.; Yao, J. L.; Wu, T.; Lu, G.; Ma, J. Y.; Su, D. et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 2016, 354, 1410–1414.

    Article  CAS  Google Scholar 

  30. Chung, D. Y.; Jun, S. W.; Yoon, G.; Kwon, S. G.; Shin, D. Y.; Seo, P.; Yoo, J. M.; Shin, H.; Chung, Y. H.; Kim, H. et al. Highly durable and active PtFe nanocatalyst for electrochemical oxygen reduction reaction. J. Am. Chem. Soc. 2015, 137, 15478–15485.

    Article  CAS  Google Scholar 

  31. Zhang, N.; Shao, Q.; Xiao, X. H.; Huang, X. Q. Advanced catalysts derived from composition-segregated platinum-nickel nanostructures: New opportunities and challenges. Adv. Funct. Mater. 2019, 29, 1808161.

    Article  Google Scholar 

  32. Li, P. F.; Liu, X. H.; Chen, M. H.; Lin, P. Z.; Ren, X. G.; Lin, L.; Yang, C.; He, L. X. Large-scale ab initio simulations based on systematically improvable atomic basis. Comput. Mater. Sci. 2016, 112, 503–517.

    Article  CAS  Google Scholar 

  33. Liu, X. H.; Chen, M. H.; Li, P. F.; Shen, Y.; Ren, X. G.; Guo, G. C.; He, L. X. Introduction to first-principles simulation package ABACUS based on systematically improvable atomic orbitals. Acta Phys. Sin. 2015, 64, 187104.

    Article  Google Scholar 

  34. Perdew, J. P.; Burke, K.; Wang, Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B 1996, 54, 16533–16539.

    Article  CAS  Google Scholar 

  35. Schlipf, M.; Gygi, F. Optimization algorithm for the generation of ONCV pseudopotentials. Comput. Phys. Commun. 2015, 196, 36–44.

    Article  CAS  Google Scholar 

  36. Man, I. C.; Su, H. Y.; Calle-Vallejo, F.; Hansen, H. A.; Martinez, J. I.; Inoglu, N. G.; Kitchin, J.; Jaramillo, T. F.; Norskov, J. K.; Rossmeisl, J. Universality in oxygen evolution electrocatalysis on oxide surfaces. Chemcatchem 2011, 3, 1159–1165.

    Article  CAS  Google Scholar 

  37. Yang, L.; Wu, Y. X.; Wu, F.; Zhao, Y.; Zhuo, Z. W.; Wang, Z. W.; Li, X. Y.; Luo, Y.; Jiang, J. Emerging linear activity trend in the oxygen evolution reaction with dual-active-sites mechanism. J. Mater. Chem. A 2020, 8, 20946–20952.

    Article  CAS  Google Scholar 

  38. Smidstrup, S.; Pedersen, A.; Stokbro, K.; Jónsson, H. Improved initial guess for minimum energy path calculations. J. Chem. Phys. 2014, 140, 214106.

    Article  Google Scholar 

  39. Larsen, A. H.; Mortensen, J. J.; Blomqvist, J.; Castelli, I. E.; Christensen, R.; Dulak, M.; Friis, J.; Groves, M. N.; Hammer, B.; Hargus, C. et al. The atomic simulation environment—A Python library for working with atoms. J. Phys. Condens. Matter 2017, 29, 273002.

    Article  Google Scholar 

  40. Yan, Y. C.; Du, J. S.; Gilroy, K. D.; Yang, D. R.; Xia, Y. N.; Zhang, H. Intermetallic nanocrystals: Syntheses and catalytic applications. Adv. Mater. 2017, 29, 1605997.

    Article  Google Scholar 

  41. Song, P. Y.; Wu, Z. Y.; Shen, X. Y.; Kang, J. Y.; Fang, Z. L.; Zhang, T. Y. Self-consistent growth of single-crystalline (201)ß-Ga2O3 nanowires using a flexible GaN seed nanocrystal. CrystEngComm 2017, 19, 625–631.

    Article  CAS  Google Scholar 

  42. Nong, H. N.; Gan, L.; Willinger, E.; Teschner, D.; Strasser, P. IrOx core-shell nanocatalysts for cost- and energy-efficient electrochemical water splitting. Chem. Sci. 2014, 5, 2955–2963.

    Article  CAS  Google Scholar 

  43. Reier, T.; Teschner, D.; Lunkenbein, T.; Bergmann, A.; Selve, S.; Kraehnert, R.; Schlögl, R.; Strasser, P. Electrocatalytic oxygen evolution on iridium oxide: Uncovering catalyst-substrate interactions and active iridium oxide species. J. Electrochem. Soc. 2014, 161, F876–F882.

    Article  CAS  Google Scholar 

  44. De Faria L. A.; Boodts, J. F. C.; Trasatti, S. Electrocatalytic properties of ternary oxide mixtures of composition Ru0.3Ti(0.7−x)CexO2: Oxygen evolution from acidic solution. J. Appl. Electrochem. 1996, 26, 1195–1199.

    Article  CAS  Google Scholar 

  45. Bockris, J. O. Kinetics of activation controlled consecutive electrochemical reactions: Anodic evolution of oxygen. J. Chem. Phys. 1956, 24, 817–827.

    Article  CAS  Google Scholar 

  46. Kim, Y. T.; Lopes, P. P.; Park, S. A.; Lee, A. Y.; Lim, J.; Lee, H.; Back, S.; Jung, Y.; Danilovic, N.; Stamenkovic, V. et al. Balancing activity, stability and conductivity of nanoporous core-shell iridium/iridium oxide oxygen evolution catalysts. Nat. Commun. 2017, 8, 1449.

    Article  Google Scholar 

  47. Jovanovič, P.; Hodnik, N.; Ruiz-Zepeda, F.; Arčon, I.; Jozinović, B.; Zorko, M.; Bele, M.; Šala, M.; Šelih, V. S.; Hočevar, S. et al. Electrochemical dissolution of iridium and iridium oxide particles in acidic media: Transmission electron microscopy, electrochemical flow cell coupled to inductively coupled plasma mass spectrometry, and X-ray absorption spectroscopy study. J. Am. Chem. Soc. 2017, 139, 12837–12846.

    Article  Google Scholar 

  48. Ping, Y.; Nielsen, R. J.; Goddard III, W. A. The reaction mechanism with free energy barriers at constant potentials for the oxygen evolution reaction at the IrO2 (110) surface. J. Am. Chem. Soc. 2017, 139, 149–155.

    Article  CAS  Google Scholar 

  49. Lin, Y. C.; Tian, Z. Q.; Zhang, L. J.; Ma, J. Y.; Jiang, Z.; Deibert, B. J.; Ge, R. X.; Chen, L. Chromium-ruthenium oxide solid solution electrocatalyst for highly efficient oxygen evolution reaction in acidic media. Nat. Commun. 2019, 10, 162.

    Article  Google Scholar 

  50. Gao, J. J.; Xu, C. Q.; Hung, S. F.; Liu, W.; Cai, W. Z.; Zeng, Z. P.; Jia, C. M.; Chen, H. M.; Xiao, H.; Li, J. et al. Breaking long-range order in iridium oxide by alkali ion for efficient water oxidation. J. Am. Chem. Soc. 2019, 141, 3014–3023.

    Article  CAS  Google Scholar 

  51. Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nerskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

    Article  Google Scholar 

  52. Huang, X.; Wang, J.; Tao, H. B.; Tian, H.; Xu, H. An essential descriptor for the oxygen evolution reaction on reducible metal oxide surfaces. Chem. Sci. 2019, 10, 3340–3345.

    Article  CAS  Google Scholar 

  53. Yang, L.; Yu, G. T.; Ai, X.; Yan, W. S.; Duan, H. L.; Chen, W.; Li, X. T.; Wang, T.; Zhang, C. H.; Huang, X. R. et al. Efficient oxygen evolution electrocatalysis in acid by a perovskite with face-sharing IrO6 octahedral dimers. Nat. Commun. 2018, 9, 5236.

    Article  CAS  Google Scholar 

  54. Seitz, L. C.; Dickens, C. F.; Nishio, K.; Hikita, Y.; Montoya, J.; Doyle, A.; Kirk, C.; Vojvodic, A.; Hwang, H. Y.; Norskov, J. K. et al. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 2016, 353, 1011–1014.

    Article  CAS  Google Scholar 

  55. Sun, W.; Song, Y.; Gong, X. Q.; Cao, L. M.; Yang, J. An efficiently tuned d-orbital occupation of IrO2 by doping with Cu for enhancing the oxygen evolution reaction activity. Chem. Sci. 2015, 6, 4993–4999.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the funding support from the National Key Research and Development Program of China (No. 2018YFA0702001), the National Natural Science Foundation of China (Nos. 22071225 and 11774327), the Fundamental Research Funds for the Central Universities (No. WK2060190103), and the Joint Funds from Hefei National Synchrotron Radiation Laboratory (No. KY2060000175), and the support by “the Recruitment Program of Thousand Youth Talents”.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lixin He or Hai-Wei Liang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, LW., He, F., Shao, RY. et al. Intermetallic IrGa-IrOx core-shell electrocatalysts for oxygen evolution. Nano Res. 15, 1853–1860 (2022). https://doi.org/10.1007/s12274-021-3778-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3778-0

Keywords

Navigation