Skip to main content
Log in

Modulation in the electronic structure of Ir-rich shell on AuIr solid solution as OER electrocatalyst for PEM electrolyzer

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The design of low-cost and high-performance anodic electrocatalyst is essential in proton exchange membrane water electrolysis (PEMWE) application. Herein, we design and synthesize a core–shell structure with Ir-rich shell and AuIr alloy core by using a simple liquid phase reduction method, which exposed a large number of active sites. The d-band center of Ir active sites, merely 2 nm in size, was shifted by the electronegativity difference between the Au and Ir atoms at the core–shell interface. The strong electronic effect can inhibit the dissolution and corrosion of Ir active sites under acidic and high potential conditions. As a result, Irx@Au0.25Ir0.75−x catalyst shows merely 235 mV overpotential at the current density of 10 mA cm−2, 75 mV lower than the commercial Ir black catalyst, and 2.6-fold higher mass activity than the commercial Ir black catalyst. Furthermore, when Irx@Au0.25Ir0.75−x was used as the anionic catalyst, the electrolysis voltage at 1 A cm−2 is 1.7 V in PEMWE, and this activity was maintained for more than 100 h and had exhibited excellent stability, indicating its ideal prospects as an electrocatalyst.

Graphical abstract

AuIr alloy with Ir-rich core and AuIr alloy shell exposed numerous active sites and improved the utilization efficiency of electrocatalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study.

References

  1. Ahmad W, Hou Y, Khan R, Wang L, Zhou S, Wang K, Wan Z, Zhou S, Yan W, Ling M, Liang C (2023) V-integration modulates t2g‐electrons of a single crystal Ir1-x(Ir0.8V0.2O2)x‐BHC for boosted and durable OER in acidic electrolyte. Small Methods 7:2201247

    Article  CAS  Google Scholar 

  2. Zhang X, Feng C, Dong B, Liu C, Chai Y (2023) High-voltage‐enabled stable cobalt species deposition on MnO2 for water oxidation in acid. Adv Mater 35:2207066

    Article  CAS  Google Scholar 

  3. Scott SB, Sørensen JE, Rao RR, Moon C, Kibsgaard J, Shao-Horn Y, Chorkendorff I (2022) The low overpotential regime of acidic water oxidation part II trends in metal and oxygen stability numbers. Energy Environ Sci 15:1988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shi Z, Li J, Jiang J, Wang Y, Wang X, Li Y, Yang L, Chu Y, Bai J, Yang J, Ni J, Wang Y, Zhang L, Jiang Z, Liu C, Ge J, Xing W (2022) Enhanced acidic water oxidation by dynamic migration of oxygen species at the Ir/Nb2O5–x catalyst/support interfaces. Angew Chem Int Ed 61:202212341

    Article  Google Scholar 

  5. Liu C, Pan G, Liang N, Hong S, Ma J, Liu Y (2022) Ir single atom catalyst loaded on amorphous carbon materials with high HER activity. Adv Sci 9:2105392

    Article  CAS  Google Scholar 

  6. Wu Y, Yao R, Zhao Q, Li J, Liu G (2022) La-RuO2 nanocrystals with efficient electrocatalytic activity for overall water splitting in acidic media: synergistic effect of La doping and oxygen vacancy. Chem Eng J 439:135699

    Article  CAS  Google Scholar 

  7. Jiang G, Yu H, Yao D, Li Y, Chi J, Zhang H, Shao Z (2022) Boosting the oxygen evolution stability and activity of a heterogeneous IrRu bimetallic coating on a WO3 nano-array electrode for PEM water electrolysis. J Mater Chem A 10:11893

    Article  CAS  Google Scholar 

  8. Li R, Wang H, Hu F, Chan KC, Liu X, Lu Z, Wang J, Li Z, Zeng L, Li Y, Wu X, Xiong Y (2021) IrW nanochannel support enabling ultrastable electrocatalytic oxygen evolution at 2 a cm–2 in acidic media. Nat Commun 12:3540

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang J, Yang H, Li F, Li L, Wu J, Liu S, Cheng T, Xu Y, Shao Q, Huang X (2022) Single-site Pt-doped RuO2 hollow nanospheres with interstitial C for high-performance acidic overall water splitting. Sci Adv 8:l9271

    Article  ADS  Google Scholar 

  10. Fan J, Mu Y, Ge X, Zhang L, Li W, Dong H, Wang D, Zhang W, Ma J, Zheng W, Cui X (2023) Two-dimensional self-assembly of unconventional fcc Ru3Ir nanocrystals for efficient and robust acidic water oxidation. ACS Catal 13:4120

    Article  CAS  Google Scholar 

  11. Wang Y, Jiao Y, Yan H, Yang G, Tian C, Wu A, Liu Y, Fu H (2022) Vanadium-incorporated CoP2 with lattice expansion for highly efficient acidic overall water splitting. Angew Chem Int Ed 61:202116233

    Article  ADS  Google Scholar 

  12. Dang Q, Lin H, Fan Z, Ma L, Shao Q, Ji Y, Zheng F, Geng S, Yang S-Z, Kong N, Zhu W, Li Y, Liao F, Huang X, Shao M (2021) Iridium metallene oxide for acidic oxygen evolution catalysis. Nat Commun 12:6007

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li A, Kong S, Guo C, Ooka H, Adachi K, Hashizume D, Jiang Q, Han H, Xiao J, Nakamura R (2022) Enhancing the stability of cobalt spinel oxide towards sustainable oxygen evolution in acid. Nat Catal 5:109

    Article  CAS  Google Scholar 

  14. Kim K-S, Park S-A, Jung HD, Jung S-M, Woo H, Ahn D, Park SS, Back S, Kim Y-T (2022) Promoting oxygen evolution reaction induced by synergetic geometric and electronic effects of IrCo thin-film electrocatalysts. ACS Catal 12:6334

    Article  CAS  Google Scholar 

  15. Guan Q, Zhu C, Lin Y, Vovk EI, Zhou X, Yang Y, Yu H, Cao L, Wang H, Zhang X, Liu X, Zhang M, Wei S, Li W-X, Lu J (2021) Bimetallic monolayer catalyst breaks the activity–selectivity trade-off on metal particle size for efficient chemoselective hydrogenations. Nat Catal 4:840

    Article  CAS  Google Scholar 

  16. Park S, Shviro M, Hartmann H, Mayer J, Carmo M, Stolten D (2022) Cation-exchange method enables uniform Iridium oxide nanospheres for oxygen evolution reaction. ACS Appl Nano Mater 5:4062

    Article  CAS  Google Scholar 

  17. Wang Y, Hao S, Liu X, Wang Q, Su Z, Lei L, Zhang X (2020) Ce-doped IrO2 electrocatalysts with enhanced performance for water oxidation in acidic media. ACS Appl Mater Interfaces 12:37006

    Article  CAS  PubMed  Google Scholar 

  18. Deng K, Zhou T, Mao Q, Wang S, Wang Z, Xu Y, Li X, Wang H, Wang L (2022) Surface engineering of defective and porous ir metallene with polyallylamine for hydrogen evolution electrocatalysis. Adv Mater 34:2110680

    Article  CAS  Google Scholar 

  19. Liu Y, Chen Y, Mu X, Wu Z, Jin X, Li J, Xu Y, Yang L, Xi X, Jang H, Lei Z, Liu Q, Jiao S, Yan P, Li X, Cao R (2023) Spinel-anchored iridium single atoms enable efficient acidic water oxidation via intermediate stabilization effect. ACS Catal 13:3757

    Article  CAS  Google Scholar 

  20. Han N, Feng S, Liang Y, Wang J, Zhang W, Guo X, Ma Q, Liu Q, Guo W, Zhou Z, Xie S, Wan K, Jiang Y, Vlad A, Guo Y, Gaigneaux EM, Zhang C, Fransaer J, Zhang X (2023) Achieving efficient electrocatalytic oxygen evolution in acidic media on yttrium ruthenate pyrochlore through cobalt incorporation. Adv Funct Mater 33:2208399

    Article  CAS  Google Scholar 

  21. Bai L, Hsu C-S, Alexander DTL, Chen HM, Hu X (2021) Double-atom catalysts as a molecular platform for heterogeneous oxygen evolution electrocatalysis. Nat Energy 6:1054–1066

    Article  ADS  CAS  Google Scholar 

  22. Kim E-J, Shin J, Bak J, Lee SJ, Kim KH, Song D, Roh J, Lee Y, Kim H, Lee K-S, Cho E (2021) Stabilizing role of Mo in TiO2-MoOx supported ir catalyst toward oxygen evolution reaction. Appl Catal B Environ 280:119433

    Article  CAS  Google Scholar 

  23. Xie Y, Yu X, Li X, Long X, Chang C, Yang Z (2021) Stable and high-performance ir electrocatalyst with boosted utilization efficiency in acidic overall water splitting. Chem Eng J 424:130337

    Article  CAS  Google Scholar 

  24. Lei Z, Cai W, Rao Y, Wang K, Jiang Y, Liu Y, Jin X, Li J, Lv Z, Jiao S, Zhang W, Yan P, Zhang S, Cao R (2022) Coordination modulation of Iridium single-atom catalyst maximizing water oxidation activity. Nat Commun 13:24

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu X, Xu M, Han Y, Meng C (2020) Adsorption, diffusion and aggregation of ir atoms on graphdiyne: a first-principles investigation. Phys Chem Chem Phys 22:25841

    Article  CAS  PubMed  Google Scholar 

  26. Liu D, Zhao Y, Wu C, Xu W, Xi S, Chen M, Yang L, Zhou Y, He Q, Li X, Ge B, Song L, Jiang J, Yan Q (2022) Triggering electronic coupling between neighboring hetero-diatomic metal sites promotes hydrogen evolution reaction kinetics. Nano Energy 98:107296

    Article  CAS  Google Scholar 

  27. Feng C, Zhang Z, Wang D, Kong Y, Wei J, Wang R, Ma P, Li H, Geng Z, Zuo M, Bao J, Zhou S, Zeng J (2022) Tuning the electronic and steric interaction at the atomic interface for enhanced oxygen evolution. J Am Chem Soc 144:9271

    Article  CAS  PubMed  Google Scholar 

  28. An L, Wei C, Lu M, Liu H, Chen Y, Scherer GG, Fisher AC, Xi P, Xu ZJ, Yan C (2021) Recent development of oxygen evolution electrocatalysts in acidic environment. Adv Mater 33:2006328

    Article  CAS  Google Scholar 

  29. Zhuang Z, Wang Y, Xu C-Q, Liu S, Chen C, Peng Q, Zhuang Z, Xiao H, Pan Y, Lu S, Yu R, Cheong W-C, Cao X, Wu K, Sun K, Wang Y, Wang D, Li J, Li Y (2019) Three-dimensional open nano-netcage electrocatalysts for efficient pH-universal overall water splitting. Nat Commun 10:4875

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mao Q, Deng K, Wang W, Wang P, Xu Y, Wang Z, Li X, Wang L, Wang H (2022) N-doping induced lattice-strained porous PdIr bimetallene for pH-universal hydrogen evolution electrocatalysis. J Mater Chem A 10:8364–8370

    Article  CAS  Google Scholar 

  31. Zaman WQ, Sun W, Tariq M, Zhou Z, Farooq U, Abbas Z, Cao L, Yang J (2019) Iridium substitution in nickel cobaltite renders high mass specific OER activity and durability in acidic media. Appl Catal B Environ 244:295–302

    Article  CAS  Google Scholar 

  32. Guo H, Fang Z, Li H, Fernandez D, Henkelman G, Humphrey SM, Yu G (2019) Rational design of rhodium–iridium alloy nanoparticles as highly active catalysts for acidic oxygen evolution. ACS Nano 13:13225

    Article  CAS  PubMed  Google Scholar 

  33. Weng Y, Wang K, Li S, Wang Y, Lei L, Zhuang L, Xu Z (2023) High-valence‐manganese driven strong anchoring of iridium species for robust acidic water oxidation. Adv Sci 10:2205920

    Article  CAS  Google Scholar 

  34. Qiao Y, Luo M, Cai L, Kao C, Lan J, Meng L, Lu Y, Peng M, Ma C, Tan Y (2023) Constructing nanoporous Ir/Ta2O5 interfaces on metallic glass for durable acidic water oxidation. Small 34:2305479

    Google Scholar 

  35. Chen P-C, Li M, Jin J, Yu S, Chen S, Chen C, Salmeron M, Yang P (2021) Heterostructured Au–Ir catalysts for enhanced oxygen evolution reaction. ACS Mater Lett 3:1440–1447

    Article  CAS  Google Scholar 

  36. Xue Q, Bai X-Y, Zhao Y, Li Y-N, Wang T-J, Sun H-Y, Li F-M, Chen P, Jin P, Yin S-B, Chen Y (2022) Au core-PtAu alloy shell nanowires for formic acid electrolysis. J Energy Chem 65:94

    Article  CAS  Google Scholar 

  37. Wang H, Chen Z, Wu D, Cao M, Sun F, Zhang H, You H, Zhuang W, Cao R (2021) Significantly enhanced overall water splitting performance by partial oxidation of ir through au modification in core–shell alloy structure. J Am Chem Soc 143:4639–4645

    Article  CAS  PubMed  Google Scholar 

  38. Zhou B, Ma Y, Ou P, Ye Z, Li X-Y, Vanka S, Ma T, Sun H, Wang P, Zhou P, Cooper JK, Xiao Y, Navid IA, Pan J, Song J, Mi Z (2023) Light-driven synthesis of C2H6 from CO2 and H2O on a bimetallic AuIr composite supported on InGaN nanowires. Nat Catal. https://doi.org/10.1038/s41929-023-01023-1

    Article  Google Scholar 

  39. Yuan L, Yan Z, Jiang L, Wang E, Wang S, Sun G (2016) Gold-iridium bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. J Energy Chem 25:805

    Article  Google Scholar 

  40. Kusada K, Wu D, Yamamoto T, Toriyama T, Matsumura S, Xie W, Koyama M, Kawaguchi S, Kubota Y, Kitagawa H (2019) Emergence of high ORR activity through controlling local density-of-states by alloying immiscible au and ir. Chem Sci 10:652

    Article  CAS  PubMed  Google Scholar 

  41. Zhu Y, Wang J, Koketsu T, Kroschel M, Chen J-M, Hsu S-Y, Henkelman G, Hu Z, Strasser P, Ma J (2022) Iridium single atoms incorporated in Co3O4 efficiently catalyze the oxygen evolution in acidic conditions. Nat Commun 13:7754

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen S, Zhang S, Guo L, Pan L, Shi C, Zhang X, Huang Z-F, Yang G, Zou J-J (2023) Reconstructed Ir–O–Mo species with strong brønsted acidity for acidic water oxidation. Nat Commun 14:4127

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Moon S, Cho Y-B, Yu A, Kim MH, Lee C, Lee Y (2019) Single-step electrospun Ir/IrO2 nanofibrous structures decorated with Au nanoparticles for highly catalytic oxygen evolution reaction. ACS Appl Mater Interfaces 11:1979

    Article  CAS  PubMed  Google Scholar 

  44. Cai R, Jin H, Yang D, Lin K-T, Chan K, Sun J, Chen Z, Zhang X, Tan W (2020) Generalized preparation of au NP@Ni(OH)2 yolk-shell NPs and their enhanced catalytic activity. Nano Energy 71:104542

    Article  CAS  Google Scholar 

  45. Ruiz Esquius J, Morgan DJ, Algara Siller G, Gianolio D, Aramini M, Lahn L, Kasian O, Kondrat SA, Schlögl R, Hutchings GJ, Arrigo R, Freakley SJ (2023) Lithium-directed transformation of amorphous iridium (Oxy)hydroxides to produce active water oxidation catalysts. J Am Chem Soc 145:6398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ayiania M, Smith M, Hensley AJR, Scudiero L, McEwen J-S, Garcia-Perez M (2020) Deconvoluting the XPS spectra for nitrogen-doped chars: an analysis from first principles. Carbon 162:528

    Article  CAS  Google Scholar 

  47. Huo W, Zhou X, Jin Y, Xie C, Yang S, Qian J, Cai D, Ge Y, Qu Y, Nie H, Yang Z (2023) Rhenium ruppresses iridium(IV) oxide crystallization and enables efficient, stable electrochemical water oxidation. Small 19:2207847

    Article  CAS  Google Scholar 

  48. Chen H, Shi L, Sun K, Zhang K, Liu Q, Ge J, Liang X, Tian B, Huang Y, Shi Z, Wang Z, Zhang W, Liu M, Zou X (2022) Protonated Iridate nanosheets with a highly active and stable layered perovskite framework for acidic oxygen evolution. ACS Catal 12:8658

    Article  CAS  Google Scholar 

  49. Pavlovic Z, Ranjan C, Gao Q, Van Gastel M, Schlögl R (2016) Probing the structure of a water-oxidizing anodic Iridium oxide catalyst using Raman spectroscopy. ACS Catal 6:8098

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Program No. 2022YFB4002001), Dalian Science and Technology Innovation Fund (No. 2021JJ11CG003), China Postdoctoral Science Foundation(2022M723090), National Natural Science Foundation of China (No. 22379140 ), and the DICP (Dalian Institute of Chemical Physics) (Grant: DICP I202233).

Author information

Authors and Affiliations

Authors

Contributions

Huang He: data curation and writing-original draft. Taipu Chen: conceptualization and writing-review & editing. Dahui Fang: validation. Longsheng Cao: formal analysis. Guoxiang Wang: writing-review & editing and methodology. Jinkai Hao: formal analysis. Zhigang Shao: writing-review & editing, resources, and supervision.

Corresponding authors

Correspondence to Guoxiang Wang or Zhigang Shao.

Ethics declarations

Conflict of interest

There is no conflict to declare.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 998 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Chen, T., Fang, D. et al. Modulation in the electronic structure of Ir-rich shell on AuIr solid solution as OER electrocatalyst for PEM electrolyzer. J Appl Electrochem (2024). https://doi.org/10.1007/s10800-024-02104-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10800-024-02104-0

Keywords

Navigation