Skip to main content
Log in

PdSe2/MoSe2 vertical heterojunction for self-powered photodetector with high performance

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Van der Waals’ two-dimensional (2D) material heterostructure engineering offers an effective strategy for the design of multifunctional and high-performance optoelectronic devices. However, 2D heterostructure photodetectors with a photoconductive effect tend to suffer from high driving source-drain voltages and significant dark noise currents. Herein, a self-powered photodetector with high performance was fabricated based on vertically stacked graphene/MoSe2/PdSe2/graphene heterojunctions through a dry transfer method. The fabricated device displays current rectification characteristics in darkness (on/off ratio > 103) and superior photovoltaic behaviors under illumination. In addition, benefitting from the strong built-in field, the Gr/PdSe2/MoSe2/Gr heterojunction photodetector is able to respond to a broad spectrum from visible to near-infrared (NIR) with a remarkable responsivity of 651 mA·W−1, a high specific detectivity of 5.29 × 1011 Jones and a fast response speed of 41.7/62.5 µs. Moreover, an enhanced responsivity of 1.16 A·W−1 has been obtained by a reverse voltage (−1 V) and further evaluation on image recognition has also demonstrated the great application potential of the Gr/MoSe2/PdSe2/Gr heterojunction photodetector. The findings are expected to bring new opportunities for the development of highly sensitive, high-speed and energy-efficient photodetectors for comprehensive applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rogalski, A. Toward third generation HgCdTe infrared detectors. J. Alloys Compd. 2004, 371, 53–57.

    Article  CAS  Google Scholar 

  2. Krishna, S.; Forman, D.; Annamalai, S.; Dowd, P.; Varangis, P.; Tumolillo, T. Jr.; Gray, A.; Zilko, J.; Sun, K.; Liu, M. G. et al. Demonstration of a 320×256 two-color focal plane array using InAs/InGaAs quantum dots in well detectors. Appl. Phys. Lett. 2005, 86, 193501.

    Article  Google Scholar 

  3. Bie, Y. Q.; Liao, Z. M.; Zhang, H. Z.; Li, G. R.; Ye, Y.; Zhou, Y. B.; Xu, J.; Qin, Z. X.; Dai, L.; Yu, D. P. Self-powered, ultrafast, visible-blind UV detection and optical logical operation based on ZnO/GaN nanoscale p-n junctions. Adv. Mater. 2011, 23, 649–653.

    Article  CAS  Google Scholar 

  4. Qiu, Q. X.; Huang, Z. M. Photodetectors of 2D materials from ultraviolet to terahertz waves. Adv. Mater. 2021, 33, 2008126.

    Article  CAS  Google Scholar 

  5. Liu, Y. P.; Xia, Q. L.; He, J.; Liu, Z. W. Direct observation of high photoresponsivity in pure graphene photodetectors. Nanoscale Res. Lett. 2017, 12, 93.

    Article  Google Scholar 

  6. Liu, Y. P.; Gao, Y. J.; Zhang, S. Y.; He, J.; Yu, J.; Liu, Z. W. Valleytronics in transition metal dichalcogenides materials. Nano Res. 2019, 12, 2695–2711.

    Article  CAS  Google Scholar 

  7. Cao, L. K.; Zhong, J. H.; Yu, J.; Zeng, C.; Ding, J. N.; Cong, C. X.; Yue, X. F.; Liu, Z. W.; Liu, Y. P. Valley-polarized local excitons in WSe2/WS2 vertical heterostructures. Opt. Express 2020, 28, 22135–22143.

    Article  CAS  Google Scholar 

  8. Yu, J.; Kuang, X. F.; Gao, Y. J.; Wang, Y. P.; Chen, K. Q.; Ding, Z. K.; Liu, J.; Cong, C. X.; He, J.; Liu, Z. W. et al. Direct observation of the linear dichroism transition in two-dimensional palladium diselenide. Nano Lett. 2020, 20, 1172–1182.

    Article  CAS  Google Scholar 

  9. Yu, J.; Kuang, X. F.; Zhong, J. H.; Cao, L. K.; Zeng, C.; Ding, J. N.; Cong, C. X.; Wang, S. H.; Dai, P. F.; Yue, X. F. et al. Observation of double indirect interlayer exciton in WSe2/WS2 heterostructure. Opt. Express 2020, 28, 13260–13268.

    Article  CAS  Google Scholar 

  10. Yu, J.; Zhong, J. H.; Kuang, X. F.; Zeng, C.; Cao, L. K.; Liu, Y. P.; Liu, Z. W. Dynamic control of high-range photoresponsivity in a graphene nanoribbon photodetector. Nanoscale Res. Lett. 2020, 15, 124.

    Article  CAS  Google Scholar 

  11. Zeng, C.; Zhong, J. H.; Wang, Y. P.; Yu, J.; Cao, L. K.; Zhao, Z. L.; Ding, J. N.; Cong, C. X.; Yue, X. F.; Liu, Z. W. et al. Observation of split defect-bound excitons in twisted WSe2/WSe2 homostructure. Appl. Phys. Lett. 2020, 117, 153103.

    Article  CAS  Google Scholar 

  12. Zhong, J. H.; Yu, J.; Cao, L. K.; Zeng, C.; Ding, J. N.; Cong, C. X.; Liu, Z. W.; Liu, Y. P. High-performance polarization-sensitive photodetector based on a few-layered PdSe2 nanosheet. Nano Res. 2020, 13, 1780–1786.

    Article  CAS  Google Scholar 

  13. Yu, J.; Kuang, X. F.; Li, J.; Zhong, J. Z.; Zeng, C.; Cao, L. K.; Liu, Z. W.; Zeng, Z. X. S.; Luo, Z. Y.; He, T. C. et al. Giant nonlinear optical activity in two-dimensional palladium diselenide. Nat. Commun. 2021, 12, 1083.

    Article  CAS  Google Scholar 

  14. Fang, H. H.; Hu, W. D. Photogating in low dimensional photodetectors. Adv. Sci. 2017, 4, 1700323.

    Article  Google Scholar 

  15. Lv, Q. S.; Yan, F. G.; Wei, X.; Wang, K. Y. High-performance, self-driven photodetector based on graphene sandwiched GaSe/WS2 heterojunction. Adv. Opt. Mater. 2018, 6, 1700490.

    Article  Google Scholar 

  16. Li, F.; Xu, B. Y.; Yang, W.; Qi, Z. Y.; Ma, C.; Wang, Y. J.; Zhang, X. H.; Luo, Z. R.; Liang, D. L.; Li, D. et al. High-performance optoelectronic devices based on van der Waals vertical MoS2/MoSe2 heterostructures. Nano Res. 2020, 13, 1053–1059.

    Article  CAS  Google Scholar 

  17. Lee, H. S.; Ahn, J.; Shim, W.; Im, S.; Hwang, D. K. 2D WSe2/MoS2 van der Waals heterojunction photodiode for visible-near infrared broadband detection. Appl. Phys. Lett. 2018, 113, 163102.

    Article  Google Scholar 

  18. Wang, F.; Wang, Z. X.; Xu, K.; Wang, F. M.; Wang, Q. S.; Huang, Y.; Yin, L.; He, J. Tunable GaTe-MoS2 van der Waals p-n junctions with novel optoelectronic performance. Nano Lett. 2015, 15, 7558–7566.

    Article  CAS  Google Scholar 

  19. Ye, L.; Li, H.; Chen, Z. F.; Xu, J. B. Near-infrared photodetector based on MoS2/black phosphorus heterojunction. ACS Photonics 2016, 3, 692–699.

    Article  CAS  Google Scholar 

  20. Liu, D. Y.; Hong, J. H.; Wang, X.; Li, X. B.; Feng, Q. L.; Tan, C. W.; Zhai, T. Y.; Ding, F.; Peng, H. L.; Xu, H. Diverse atomically sharp interfaces and linear dichroism of 1T′ ReS2-ReSe2 lateral p-n heterojunctions. Adv. Funct. Mater. 2018, 28, 1804696.

    Article  Google Scholar 

  21. Sun, J. F.; Shi, H. L.; Siegrist, T.; Singh, D. J. Electronic, transport, and optical properties of bulk and mono-layer PdSe2. Appl. Phys. Lett. 2015, 107, 153902.

    Article  Google Scholar 

  22. Oyedele, A. D.; Yang, S. Z.; Liang, L. B.; Puretzky, A. A.; Wang, K.; Zhang, J. J.; Yu, P.; Pudasaini, P. R.; Ghosh, A. W.; Liu, Z. et al. PdSe2: Pentagonal two-dimensional layers with high air stability for electronics. J. Am. Chem. Soc. 2017, 139, 14090–14097.

    Article  CAS  Google Scholar 

  23. Long, M. S.; Wang, Y.; Wang, P.; Zhou, X. H.; Xia, H.; Luo, C.; Huang, S. Y.; Zhang, G. W.; Yan, H. G.; Fan, Z. Y. et al. Palladium diselenide long-wavelength infrared photodetector with high sensitivity and stability. ACS Nano 2019, 13, 2511–2519.

    CAS  Google Scholar 

  24. Li, A.; Chen, Q. X.; Wang, P. P.; Gan, Y.; Qi, T. L.; Wang, P.; Tang, F. D.; Wu, J. Z.; Chen, R.; Zhang, L. Y. et al. Ultrahigh-sensitive broadband photodetectors based on dielectric shielded MoTe2/Graphene/SnS2 p-g-n junctions. Adv. Mater. 2019, 31, 1805656.

    Article  Google Scholar 

  25. Liu, Y. P.; Zhang, S. Y.; He, J.; Wang, Z. M. M.; Liu, Z. W. Recent progress in the fabrication, properties, and devices of heterostructures based on 2D materials. Nano-Micro Lett. 2019, 11, 13.

    Article  CAS  Google Scholar 

  26. Lin, M. L.; Zhou, Y.; Wu, J. B.; Cong, X.; Liu, X. L.; Zhang, J.; Li, H.; Yao, W.; Tan, P. H. Cross-dimensional electron-phonon coupling in van der Waals heterostructures. Nat. Commun. 2019, 10, 2429.

    Article  Google Scholar 

  27. Wu, J. B.; Lin, M. L.; Cong, X.; Liu, H. N.; Tan, P. H. Raman spectroscopy of graphene-based materials and its applications in related devices. Chem. Soc. Rev. 2018, 47, 1822–1873.

    Article  CAS  Google Scholar 

  28. Tonndorf, P.; Schmidt, R.; Böttger, P.; Zhang, X.; Börner, J.; Liebig, A.; Albrecht, M.; Kloc, C.; Gordan, O.; Zahn, D. R. T. et al. Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2. Opt. Express 2013, 21, 4908–4916.

    Article  CAS  Google Scholar 

  29. Tan, P. H.; Han, W. P.; Zhao, W. J.; Wu, Z. H.; Chang, K.; Wang, H.; Wang, Y. F.; Bonini, N.; Marzari, N.; Pugno, N. et al. The shear mode of multilayer graphene. Nat. Mater. 2012, 11, 294–300.

    Article  CAS  Google Scholar 

  30. Zhang, X.; Qiao, X. F.; Shi, W.; Wu, J. B.; Jiang, D. S.; Tan, P. H. Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem. Soc. Rev. 2015, 44, 2757–2785.

    Article  CAS  Google Scholar 

  31. Larentis, S.; Fallahazad, B.; Tutuc, E. Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers. Appl. Phys. Lett. 2012, 101, 223104.

    Article  Google Scholar 

  32. Wang, X. L.; Gong, Y. J.; Shi, G.; Chow, W. L.; Keyshar, K.; Ye, G. L.; Vajtai, R.; Lou, J.; Liu, Z.; Ringe, E. et al. Chemical vapor deposition growth of crystalline monolayer MoSe2. ACS Nano 2014, 8, 5125–5131.

    Article  CAS  Google Scholar 

  33. Pospischil, A.; Furchi, M. M.; Mueller, T. Solar-energy conversion and light emission in an atomic monolayer p-n diode. Nat. Nanotechnol. 2014, 9, 257–261.

    Article  CAS  Google Scholar 

  34. Luo, P.; Wang, F. K.; Qu, J. Y.; Liu, K. L.; Hu, X. Z.; Liu, K. W.; Zhai, T. Y. Self-driven WSe2/Bi2O2Se van der Waals heterostructure photodetectors with high light On/Off ratio and fast response. Adv. Funct. Mater. 2021, 31, 2008351.

    Article  CAS  Google Scholar 

  35. Long, M. S.; Wang, P.; Fang, H. H.; Hu, W. D. Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater. 2019, 29, 1803807.

    Article  Google Scholar 

  36. Yu, M. M.; Hu, Y. X.; Gao, F.; Dai, M. J.; Wang, L. F.; Hu, P. A.; Feng, W. High-performance devices based on InSe-In1−xGaxSe van der Waals heterojunctions. ACS Appl. Mater. Interfaces 2020, 12, 24978–24983.

    Article  CAS  Google Scholar 

  37. Dai, M.; Chen, H.; Wang, F.; Long, M.; Shang, H.; Hu, Y.; Li, W.; Ge, C.; Zhang, J.; Zhai, T. et al. Ultrafast and sensitive self-powered photodetector featuring self-limited depletion region and fully depleted channel with van der Waals contacts. ACS Nano 2020, 14, 9098–9106.

    Article  CAS  Google Scholar 

  38. Wang, Y. G.; Huang, X. W.; Wu, D.; Zhuo, R. R.; Wu, E. P.; Jia, C.; Shi, Z. F.; Xu, T. T.; Tian, Y. T.; Li, X. J. A room-temperature near-infrared photodetector based on a MoS2/CdTe p-n heterojunction with a broadband response up to 1700 nm. J. Mater. Chem. C 2018, 6, 4861–4865.

    Article  CAS  Google Scholar 

  39. Ning, J.; Zhou, Y.; Zhang, J. C.; Lu, W.; Dong, J. G.; Yan, C. C.; Wang, D.; Shen, X.; Feng, X.; Zhou, H. et al. Self-driven photodetector based on a GaSe/MoSe2 selenide van der Waals heterojunction with the hybrid contact. Appl. Phys. Lett. 2020, 117, 163104.

    Article  CAS  Google Scholar 

  40. Wang, F.; Yin, L.; Wang, Z. X.; Xu, K.; Wang, F. M.; Shifa, T. A.; Huang, Y.; Jiang, C.; He, J. Configuration-dependent electrically tunable van der Waals heterostructures based on MoTe2/MoS2. Adv. Funct. Mater. 2016, 26, 5499–5506.

    Article  CAS  Google Scholar 

  41. Zhao, S. W.; Wu, J. C.; Jin, K.; Ding, H. Y.; Li, T. S.; Wu, C. Z.; Pan, N.; Wang, X. P. Highly polarized and fast photoresponse of black phosphorus-InSe vertical p-n heterojunctions. Adv. Funct. Mater. 2018, 28, 1802011.

    Article  Google Scholar 

Download references

Acknowledgment

We gratefully acknowledge the support from the National Natural Science Foundation of China (No. 61775241), the Hunan Science Fund for Distinguished Young Scholar (No. 2020JJ2059), Hunan Province Key Research and Development Project (No. 2019GK2233), Youth Innovation Team (No. 2019012) of CSU, Hunan Province Graduate Research and Innovation Project (No. CX20190177), and the Science and Technology Innovation Basic Research Project of Shenzhen (No. JCYJ20180307151237242). Also, Y. P. L. acknowledges the supported by the Project of State Key Laboratory of High-Performance Complex Manufacturing, Central South University (No. ZZYJKT2020-12). Z. W. L. thanks the funding support from the Australian Research Council (ARC Discovery Projects, Nos. DP210103539, DP180102976, and DP130104231).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanping Liu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, J., Wu, B., Madoune, Y. et al. PdSe2/MoSe2 vertical heterojunction for self-powered photodetector with high performance. Nano Res. 15, 2489–2496 (2022). https://doi.org/10.1007/s12274-021-3745-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3745-9

Keywords

Navigation