Skip to main content
Log in

Hierarchical Co3O4@Ni-Co-O supercapacitor electrodes with ultrahigh specific capacitance per area

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

High specific capacitance per area is a critical requirement for a practical supercapacitor electrode, and needs a combination of high mass-loading of the electrochemically active material per area, and high utilization efficiency of this material. However, pursuing high mass-loading on conventional electrodes usually leads to an increase in “dead” material which is not accessible to the electrolyte in the supercapacitor, and thus prevents high utilization efficiencies of the material being realized. Here we show that this antagonism can be overcome by incorporating the electrochemically active material in a mesoporous hierarchical architecture. Fabrication of ternary ordered hierarchical Co3O4@Ni-Co-O nanosheet-nanorod arrays—involving the growth of densely aligned slim Ni-Co-O nanorods (diameter <20 nm) on Co3O4 microsheets which had been previously loaded on macroporous nickel foam—gives a material with excellent electrochemical performance as a supercapacitor electrode. At a current density of 5 mA/cm2, the electrodes have both high mass loading per area (12 mg/cm2) and high efficiency of 2098 F/g, giving specific capacitances per area as high as ∼25 F/cm2. When the current density was increased from 5 to 30 mA/cm2, 72% of the specific capacitance was retained and, furthermore, no significant decrease in capacitance was observed over 1000 charge/discharge cycles. The combination of these merits makes the composite material an excellent candidate for practical application as a supercapacitor electrode and, more generally, highlights the increased efficacies of materials which can result from fabricating mesoporous hierarchical structures at the nanoscale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Frackowiak, E.; Beguin, F. Carbon materials for the electro- chemical storage of energy in capacitors. Carbon 2001, 39, 937–950.

    Article  CAS  Google Scholar 

  2. Zhang, X.; Shi, W.; Zhu, J.; Kharistal, D. J.; Zhao, W.; Lalia, B. S.; Hng, H. H.; Yan, Q. High-power and high-energy-density flexible pseudocapacitor electrodes made from porous CuO nanobelts and single-walled carbon nanotubes. ACS Nano 2011, 5, 2013–2019.

    Article  CAS  Google Scholar 

  3. Lang, X.; Hirata, A.; Fujita, T.; Chen, M. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat. Nanotechnol. 2011, 6, 232–236.

    Article  CAS  Google Scholar 

  4. Zhang, H. G.; Yu, X. D.; Braun, P. Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. Nat. Nanotechnol. 2011, 6, 277–281.

    Article  CAS  Google Scholar 

  5. Zhu, Y.; Murali, S.; Stoller, M. D.; Ganesh, K.; Cai, W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M., et al. Carbon-based supercapacitors produced by activation of graphene. Science 2011, 332, 1537–1541.

    Article  CAS  Google Scholar 

  6. Liu, C.; Li, F.; Ma, L. P.; Cheng, H. M. Advanced materials for energy storage. Adv. Energy. Mater. 2010, 22, E28–E62.

    CAS  Google Scholar 

  7. Masarapu, C.; Zeng, H. F.; Hung, K. H.; Wei, B. Effect of temperature on the capacitance of carbon nanotube supercapacitors. ACS Nano 2009, 3, 2199–2206.

    Article  CAS  Google Scholar 

  8. An, K. H.; Kim, W. S.; Park, Y. S.; Moon, J. M.; Bae, D. J.; Lim, S. C.; Lee, Y. S.; Lee, Y. H. Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes. Adv. Funct. Mater. 2001, 11, 387–392.

    Article  CAS  Google Scholar 

  9. Yoo, J. J.; Balakrishnan, K.; Huang, J.; Meunier, V.; Sumpter, B. G.; Srivastava, A.; Conway, M.; Reddy, A. L. M.; Yu, J; Vajtai, R., et al. Ultrathin planar graphene supercapacitors. Nano Lett. 2011, 11, 1423–1427.

    Article  CAS  Google Scholar 

  10. Wang, H.; Liang, Y.; Mirfakhrai, T.; Chen, Z.; Casalongue, H. S.; Dai, H. Advanced asymmetrical supercapacitors based on graphene hybrid materials. Nano Res. 2011, 4, 729–736.

    Article  CAS  Google Scholar 

  11. Lang, J. W.; Kong, L. B.; Wu, W. J.; Luo, Y. C.; Kang, L. Facile approach to prepare loose-packed NiO nano-flakes materials for supercapacitors. Chem. Commun. 2008, 4213–4215.

  12. Lee, J. W.; Ahn, T.; Kim, J. H.; Ko, J. M.; Kim, J. D. Nanosheets based mesoporous NiO microspherical structures via facile and template-free method for high performance supercapacitors. Electrochim. Acta 2011, 56, 4849–4857.

    Article  CAS  Google Scholar 

  13. Lu, Q.; Lattanzi, M. W.; Chen, Y.; Kou, X.; Li, W.; Fan, X.; Unruh, K. M.; Chen, J. G.; Xiao, J. Q. Supercapacitor electrodes with high-energy and power densities prepared from monolithic NiO/Ni nanocomposites. Angew. Chem. Int. Ed. 2011, 50, 6847–6850.

    Article  CAS  Google Scholar 

  14. Xia, X. H.; Tu, J. P.; Wang, X. L.; Gu, C. D.; Zhao, X. B. Mesoporous Co3O4 monolayer hollow-sphere array as electrochemical pseudocapacitor material. Chem. Commun. 2011, 47, 5786–5788.

    Article  CAS  Google Scholar 

  15. Wang, G.; Liu, H.; Horvat, J.; Wang, B.; Qiao, S.; Park, J.; Ahn, H. Highly ordered mesoporous cobalt oxide nano- structures: Synthesis, characterisation, magnetic properties, and applications for electrochemical energy devices. Chem. Eur. J. 2010, 16, 11020–11027.

    Article  CAS  Google Scholar 

  16. Xiong, S.; Yuan, C.; Zhang, X.; Xi, B.; Qian, Y. Controllable synthesis of mesoporous Co3O4 nanostructures with tunable morphology for application in supercapacitors. Chem. Eur. J. 2009, 15, 5320–5326.

    Article  CAS  Google Scholar 

  17. Chen, P. C.; Shen, G.; Shi, Y.; Chen, H.; Zhou, C. Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes. ACS Nano 2010, 4, 4403–4411.

    Article  CAS  Google Scholar 

  18. Lee, S. W.; Kim, J.; Chen, S.; Hammond, P. T.; Shao-Horn, Y. Carbon nanotube/manganese oxide ultrathin film electrodes for electrochemical capacitors. ACS Nano 2010, 4, 3889–3896.

    Article  CAS  Google Scholar 

  19. Liu, R.; Duay, J.; Lee, S. B. Redox exchange induced MnO2 nanoparticle enrichment in poly(3,4-ethylenedioxythiophene) nanowires for electrochemical energy storage. ACS Nano 2010, 4, 4299–4307.

    Article  CAS  Google Scholar 

  20. Bao, L.; Zang, J.; Li, X. Flexible Zn2SnO4/MnO2 core/shell nanocable-carbon microfiber hybrid composites for high- performance supercapacitor electrodes. Nano Lett. 2011, 11, 1215–1220.

    Article  CAS  Google Scholar 

  21. Yang, G. W.; Xu, C. L.; Li, H. L. Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance. Chem. Commun. 2008, 6537–6539.

  22. Yuan, Y.; Xia, X.; Wu, J.; Yang, J.; Chen, Y.; Guo, S. Nickel foam-supported porous Ni(OH)2/NiOOH composite film as advanced pseudocapacitor material. Electrochim. Acta 2011, 56, 2627–2632.

    Article  CAS  Google Scholar 

  23. Wang, H. L.; Casalongue, H. S.; Liang, Y.; Dai, H. J. Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J. Am. Chem. Soc. 2010, 132, 7472–7477.

    Article  CAS  Google Scholar 

  24. Chang, J. K.; Wu, C. M.; Sun, I. W. Nano-architectured Co(OH)2 electrodes constructed using an easily-manipulated electrochemical protocol for high-performance energy storage applications. J. Mater. Chem. 2010, 20, 3729–3735.

    Article  CAS  Google Scholar 

  25. Wang, Y.; Zhong, Z.; Chen, Y.; Ng, C. T.; Lin, J. Controllable synthesis of Co3O4 from nanosize to microsize with large- scale exposure of active crystal planes and their excellent rate capability in supercapacitors based on the crystal plane effect. Nano Res. 2011, 4, 695–704.

    Article  CAS  Google Scholar 

  26. Zhang, X.; Shi, W.; Zhu, J.; Zhao, W.; Ma, J.; Mhaisalkar, S.; Maria, T. L.; Yang, Y.; Zhang, H.; Hng, H. H. Synthesis of porous NiO nanocrystals with controllable surface area and their application as supercapacitor electrodes. Nano Res. 2010, 3, 643–652.

    Article  CAS  Google Scholar 

  27. Wei, T. Y.; Chen, C. H.; Chien, H. C.; Lu, S. Y.; Hu, C. C. A cost-effective supercapacitor material of ultrahigh specific capacitances: spinel nickel cobaltite aerogels from an epoxide- driven sol-gel process. Adv. Mater. 2010, 22, 347–351.

    Article  CAS  Google Scholar 

  28. Gao, Y.; Chen, S.; Cao, D.; Wang, G.; Yin, J. Electrochemical capacitance of Co3O4 nanowire arrays supported on nickel foam. J. Power Sources 2010, 195, 1757–1760.

    Article  CAS  Google Scholar 

  29. Wang, H.; Zhang, L.; Tan, X.; Holt, C. M. B.; Zahiri, B.; Olsen, B. C.; Mitlin, D. Supercapacitive properties of hydrothermally synthesized Co3O4 nanostructures. J. Phys. Chem. C 2011, 115, 17599–17605.

    Article  CAS  Google Scholar 

  30. Wang, J.; Song, Y.; Li, Z.; Liu, Q.; Zhou, J.; Jing, X.; Zhang, M.; Jiang, Z. In situ Ni/Al layered double hydroxide and its electrochemical capacitance performance. Energy Fuels 2010, 24, 6463–6467.

    Article  CAS  Google Scholar 

  31. Meng, F.; Ding, Y. Sub micrometer thick all solid state supercapacitors with high power and energy densities. Adv. Mater. 2011, 23, 4098–4102.

    Article  CAS  Google Scholar 

  32. Hu, C. C.; Chang, K. H.; Lin, M. C.; Wu, Y. T. Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett. 2006, 6, 2690–2695.

    Article  CAS  Google Scholar 

  33. Yan, J.; Khoo, E.; Sumboja, A.; Lee, P. S. Facile coating of manganese oxide on tin oxide nanowires with high- performance capacitive behavior. ACS Nano 2010, 4, 4247–4255.

    Article  CAS  Google Scholar 

  34. Liu, J.; Jiang, J.; Cheng, C.; Li, H.; Zhang, J.; Gong, H.; Fan, H. J. Co3O4 nanowire@MnO2 ultrathin nanosheet core/shell arrays: a new class of high-performance pseudocapacitive materials. Adv. Mater. 2011, 23, 2076–2081.

    Article  CAS  Google Scholar 

  35. Zhou, W.; Cheng, C.; Liu, J.; Tay, Y. Y.; Jiang, J.; Jia, X.; Zhang, J.; Gong, H.; Hng, H. H.; Yu, T.; Fan, H. J. Epitaxial growth of branched α-Fe2O3/SnO2 nano-heterostructures with improved lithium-ion battery performance. Adv. Funct. Mater. 2011, 21, 2439–2445.

    Article  CAS  Google Scholar 

  36. Lu, Z. Y.; Chang, Z.; Liu, J. F.; Sun, X. M. Stable ultrahigh specific capacitance of NiO nanorod arrays. Nano Res. 2011, 4, 658–665.

    Article  CAS  Google Scholar 

  37. Lu, Z. Y.; Chang, Z.; Zhu, W.; Sun, X. M. Beta-phased Ni(OH)2 nanowall film with reversible capacitance higher than theoretical Faradic capacitance. Chem. Commun. 2011, 47, 9651–9653.

    Article  CAS  Google Scholar 

  38. Qing, X.; Liu, S.; Huang, K.; Lv, K.; Yang, Y.; Lu, Z.; Fang, D.; Liang, X. Facile synthesis of Co3O4 nanoflowers grown on Ni foam with superior electrochemical performance. Electrochim. Acta 2011, 56, 4985–4991.

    Article  CAS  Google Scholar 

  39. Wu, Z. S.; Ren, W.; Wen, L.; Gao, L.; Zhao, J.; Chen, Z.; Zhou, G.; Li, F.; Cheng, H. M. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 2010, 4, 3187–3194.

    Article  CAS  Google Scholar 

  40. Li, Y.; Hasin, P.; Wu, Y. NixCo3−x O4 nanowire arrays for electrocatalytic oxygen evolution. Adv. Mater. 2010, 22, 1926–1929.

    Article  CAS  Google Scholar 

  41. Wang, H.; Gao, Q.; Jiang, L. Facile approach to prepare nickel cobaltite nanowire materials for supercapacitors. Small 2011, 7, 2454–2459.

    CAS  Google Scholar 

  42. Cheng, H.; Lu, Z. G.; Deng, J. Q.; Chung, C.; Zhang, K.; Li, Y. Y. A facile method to improve the high rate capability of Co3O4 nanowire array electrodes. Nano Res. 2010, 3, 895–901.

    Article  CAS  Google Scholar 

  43. Yang, Y.; Kim, D.; Yang, M.; Schmuki, P. Vertically aligned mixed V2O5-TiO2 nanotube arrays for supercapacitor applications. Chem. Commun. 2011, 47, 7746–7748.

    Article  CAS  Google Scholar 

  44. Li, Y.; Tan, B.; Wu, Y. Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett. 2008, 8, 265–270.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Sun.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, Z., Yang, Q., Zhu, W. et al. Hierarchical Co3O4@Ni-Co-O supercapacitor electrodes with ultrahigh specific capacitance per area. Nano Res. 5, 369–378 (2012). https://doi.org/10.1007/s12274-012-0217-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-012-0217-2

Keywords

Navigation