Skip to main content

Advertisement

Log in

Hierarchical 3D Co3O4@MnO2 core/shell nanoconch arrays on Ni foam for enhanced electrochemical performance

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, we developed a novel three-dimensional (3D) core/shell Co3O4@MnO2 nanoconch arrays by a facile, stepwise hydrothermal approach. Core–shell Co3O4@MnO2 nanoconches were directly grown on a Ni current collector as an integrated electrode/collector. The electrochemical storage properties of as-prepared Co3O4@MnO2 hierarchical structure are investigated by testing them as anodes for both supercapacitors and Li-ion batteries. This unique 3D Co3O4/MnO2 hierarchical structure with enhanced active surface area provides a better interfacial/chemical distribution at the nanoscale, fast ion and electron transfer, and good strain accommodation. Thus, it has shown excellent electrochemical performances when it is used for supercapacitor, such as high specific capacitances 1,183.7 F g−1 at a current density of 1 A g−1 and long-term cycling stability (~92.5 % of capacitance retention up 3,000 cycles at 1 A g−1), which are better than that of the individual component of Co3O4 nanoconch arrays and MnO2 nanosheet arrays. The Co3O4@MnO2 core/shell nanoconch arrays are also tested as anode material for lithium-ion batteries, which also presents a high reversible capacity of 925 mAh g−1 at a rate of 120 mA g−1, good cycling stability, and rate capability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Luo YS, Luo JS, Jiang J, Zhou WW, Yang HP, Qi XY, Zhang H, Fan HJ, Denis YWY, Li CM, Yu T (2013) J Mater Chem A 1:273–281

    Article  CAS  Google Scholar 

  2. Xie LJ, Li KX, Sun GH, Hu ZG, Lv CX, Wang JL, Zhang CM (2013) J Solid State Electrochem 17:55–61

    Article  CAS  Google Scholar 

  3. Huang Y, Liang JJ, Chen YS (2012) Small 8:1805–1834

    Article  CAS  Google Scholar 

  4. Tarascon JM, Armand M (2001) Nature 414:359–367

    Article  CAS  Google Scholar 

  5. Simon P, Gogotsi Y (2008) Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  6. Lou XW, Archer LA, Yang ZC (2008) Adv Mater 20:3987–4019

    Article  CAS  Google Scholar 

  7. Luo YS, Kong DZ, Luo JS, Wang YL, Zhang DY, Qiu KW, Cheng CW, Li CM, Yu T (2014) RSC Adv. doi:10.1039/C3RA47189F

    Google Scholar 

  8. Xia XH, Tu J, Zhang Y, Wang X, Gu C, Zhao X, Fan HJ (2012) ACS Nano 6:5531–5538

    Article  CAS  Google Scholar 

  9. Bruce PG, Scrosat B, Tarascon JM (2008) Angew Chem Int Ed 47:2930–2946

    Article  CAS  Google Scholar 

  10. Manthiram A, Kim J (1998) Chem Mater 10:2895–2909

    Article  CAS  Google Scholar 

  11. Kim MG, Cho J (2009) Adv Funct Mater 19:1497–1514

    Article  CAS  Google Scholar 

  12. Li NC, Martin CR, Scrosati B (2001) J Power Sources 97:240–243

    Article  Google Scholar 

  13. Zhou C, Zhang YW, Li YY, Liu JP (2013) Nano Lett 13:2078–2085

    Article  CAS  Google Scholar 

  14. Luo YS, Luo JS, Jiang J, Zhou WW, Yang HP, Qi XY, Zhang H, Fan HJ, Yu DYW, Li CM, Yu T (2012) Energy Environ Sci 5:6559–6566

    Article  CAS  Google Scholar 

  15. Xue XY, Yuan S, Xing LL, Chen ZH, He B, Chen YJ (2011) Chem Commun 47:4718–4720

    Article  CAS  Google Scholar 

  16. Xia XH, Tu JP, Wang XL, Gu CD, Zhao XB (2011) Chem Commun 47:5786–5788

    Article  CAS  Google Scholar 

  17. Yu G, Hu L, Vosgueritchian M, Wang H, Xie X, McDonough JR, Cui X, Cui Y, Bao Z (2011) Nano Lett 11:2905–2911

    Article  CAS  Google Scholar 

  18. Wei W, Cui X, Chen W, Ivey DG (2011) Chem Soc Rev 40:1697–1721

    Article  CAS  Google Scholar 

  19. Luo YS, Jiang J, Zhou WW, Yang HP, Luo JS, Qi XY, Zhang H, Yu DYW, Li CM, Yu T (2012) J Mater Chem 22:8634–8640

    Article  CAS  Google Scholar 

  20. Li Z, Mi Y, Liu X, Liu S, Yang S, Wang JJ (2011) J Mater Chem 21:14706–14711

    Article  CAS  Google Scholar 

  21. Wei L, Li C, Chu H, Li Y (2011) Dalton Trans 40:2332–2337

    Article  CAS  Google Scholar 

  22. Deng MJ, Chang JK, Wang CC, Chen KW, Lin CM, Tang MT, Chen JM, Lu KT (2011) Energy Environ Sci 4:3942–3946

    Article  CAS  Google Scholar 

  23. Hou Y, Cheng Y, Hobson T, Liu J (2010) Nano Lett 10:2727–2733

    Article  CAS  Google Scholar 

  24. Meng C, Liu C, Chen L, Hu C, Fan S (2010) Nano Lett 10:4025–4031

    Article  CAS  Google Scholar 

  25. Lee SW, Kim J, Chen S, Hammond PT, Shao-Horn Y (2010) ACS Nano 4:3889–3896

    Article  CAS  Google Scholar 

  26. Liu J, Essner J, Li J (2010) Chem Mater 22:5022–5030

    Article  CAS  Google Scholar 

  27. He YM, Chen WJ, Li XD, Zhang ZX, Fu JC, Zhao CH, Xie EQ (2013) ACS Nano 7:174–182

    Article  CAS  Google Scholar 

  28. Yu AP, Park HW, Davies A, Higgins DC, Chen ZW, Xiao XC (2011) J Phys Chem Lett 2:1855–1860

    Article  CAS  Google Scholar 

  29. Liu JP, Jiang J, Cheng CW, Li HX, Zhang JX, Gong H, Fan HJ (2011) Adv Mater 23:2076–2081

    Article  CAS  Google Scholar 

  30. Kong DZ, Luo JS, Wang YL, Ren WN, Yu T, Luo YS, Yang YP, Cheng CW (2014) Adv Funct Mater. doi:10.1002/adfm.201304206

    Google Scholar 

  31. Wang GX, Yang L, Chen Y, Wang JZ, Bewlay S, Liu HK (2006) Electrochim Acta 51:4634–4638

    Article  CAS  Google Scholar 

  32. Zhou WW, Cheng CW, Liu JP, Tay YY, Jiang J, Jia XT, Zhang JX, Gong H, Hng HH, Yu T, Fan HJ (2011) Adv Funct Mater 21:2439–2445

    Article  CAS  Google Scholar 

  33. Mai L, Xu L, Han C, Xu X, Luo Y, Zhao S, Zhao Y (2010) Nano Lett 10:4750–4755

    Article  CAS  Google Scholar 

  34. Chen J, Xia XH, Tu JP, Xiong QQ, Yu YX, Wang XL, Gu CD (2012) J Mater Chem 22:15056–15061

    Article  CAS  Google Scholar 

  35. Jin X, Zhou W, Zhang S, Chen GZ (2007) Small 3:1513–1517

    Article  CAS  Google Scholar 

  36. Wang X, Yu LJ, Wu XL, Yuan FL, Guo YG, Ma Y, Yao JN (2009) J Phys Chem C 113:15553–15558

    Article  CAS  Google Scholar 

  37. Luo YS, Kong DZ, Luo JS, Chen S, Zhang DY, Qiu KW, Qi XY, Zhang H, Li CM, Yu T (2013) RSC Adv 3:14413–14422

    Article  CAS  Google Scholar 

  38. Jiang J, Li LC (2007) Mater Lett 61:4894–4896

    Article  CAS  Google Scholar 

  39. Xia XH, Tu JP, Mai YJ, Wang XL, Gu CD, Zhao XB (2011) J Mater Chem 21:9319–9325

    Article  CAS  Google Scholar 

  40. Jiang H, Li CZ, Sun T, Ma J (2012) Chem Commun 48:2606–2608

    Article  CAS  Google Scholar 

  41. Honsono E, Fujihara S, Honma I, Ichihara M, Zhou H (2006) J Power Sources 158:779–783

    Article  Google Scholar 

  42. Zhang C, Chen J, Zeng Y, Rui X, Zhu J, Zhang W, Xu C, Lim TM, Hng HH, Yan Q (2012) Nanoscale 4:3718–3724

    Article  CAS  Google Scholar 

  43. Reddy ALM, Shaijumon MM, Gowda SR, Ajayan PM (2009) Nano Lett 9:1002–1006

    Article  CAS  Google Scholar 

  44. Li WY, Xu LN, Chen J (2005) Adv Funct Mater 15:851–857

    Article  CAS  Google Scholar 

  45. Zhu X, Zhu Y, Murali S, Stoller MD, Ruoff RS (2011) ACS Nano 5:3333–3338

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. U1204501, U1304108, and 11272274), the Science and Technology Key Projects of Education Department Henan Province (No. 13A430758), and the Young Backbone Teacher of Xinyang Normal University (Nos. 2013GGJS-18). The authors are indebted to Dr D. L. Xu and Y. X. Liu, for their technical assistances and kind help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongsong Luo.

Additional information

Kangwen Qiu, Hailong Yan, Deyang Zhang, and Yang Lu contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1760 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, K., Yan, H., Zhang, D. et al. Hierarchical 3D Co3O4@MnO2 core/shell nanoconch arrays on Ni foam for enhanced electrochemical performance. J Solid State Electrochem 19, 391–401 (2015). https://doi.org/10.1007/s10008-014-2611-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-014-2611-z

Keywords

Navigation