Skip to main content

Surface Engineering of Graphene-Based Polymeric Composites for Energy Storage Devices

  • Chapter
  • First Online:
Emerging Nanodielectric Materials for Energy Storage

Abstract

Graphene is a promising nanocarbon material with exceptional features such as a large surface area and outstanding electrical and thermal properties. It has the potential to be a new creation of reinforcing material for polymer composites owing to its low mass density, large specific surface area, excellent compatibility, the inexpensive cost to create compared to carbon nanotubes, and attractive flexibility. The several approaches for synthesizing graphene and distributing it in polymer matrices are explored. This chapter focuses on a summary of the surface alternation of graphene with various synthetic techniques and the preparation and properties of graphene-based different polymer nanocomposites. This chapter provides a broad overview of the nanocomposite synthesis, properties, and finally prospective application of polymer-graphene nanocomposites in various energy storage sectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Okada A, Kawasumi M, Usuki A, Kojima Y, Kurauchi T, Kamigaito O (1990) Synthesis and properties of nylon-6/clay hybrids. Polymer-based molecular composites. In: MRS symposium proceedings, Pittsburgh, vol 171, pp 45–50

    Google Scholar 

  2. Nurazzi NM, Sabaruddin FA, Harussani MM, Kamarudin SH, Rayung M, Asyraf MRM, Khalina A (2021) Mechanical performance and applications of CNTs reinforced polymer composites-a review. Nanomater 11(9):2186

    Article  Google Scholar 

  3. Wazalwar R, Sahu M, Raichur AM (2021) Mechanical properties of aerospace epoxy composites reinforced with 2D nano-fillers: current status and road to industrialization. Nanoscale Adv 3(10):2741–2776

    Article  ADS  Google Scholar 

  4. Essabir H, Raji M, Bouhfid R, Qaiss AEK (2021) Hybrid nanocomposites based on graphene and nano-clay: preparation, characterization, and synergistic effect. In: Graphene and nanoparticles hybrid nanocomposites: from preparation to applications, pp 153–181

    Google Scholar 

  5. Bhanushali H, Amrutkar S, Mestry S, Mhaske ST (2022) Shape memory polymer nanocomposite: a review on structure–property relationship. Polym Bull 79(6):3437–3493

    Article  Google Scholar 

  6. Karki S, Gohain MB, Yadav D, Ingole PG (2021) Nanocomposite and bio-nanocomposite polymeric materials/membranes development in energy and medical sector: a review. Int J Biol Macromol 193:2121–2139

    Article  Google Scholar 

  7. Siwal SS, Zhang Q, Devi N, Thakur VK (2020) Carbon-based polymer nanocomposite for high-performance energy storage applications. Polymer 12(3):505

    Article  Google Scholar 

  8. Benny Mattam L, Bijoy A, Abraham Thadathil D, George L, Varghese A (2022) Conducting polymers: a versatile material for biomedical applications. ChemistrySelect 7(42):e202201765

    Article  Google Scholar 

  9. Kruželák J, Kvasničáková A, Hložeková K, Hudec I (2021) Progress in polymers and polymer composites used as efficient materials for EMI shielding. Nanoscale Adv 3(1):123–172

    Article  ADS  Google Scholar 

  10. Shahapurkar K, Gelaw M, Tirth V, Soudagar MEM, Shahapurkar P, Mujtaba MA, Ahmed GMS (2022) Comprehensive review on polymer composites as electromagnetic interference shielding materials. Polym Polym Compos 30:1–17

    Google Scholar 

  11. Samsudin SS, Abdul Majid MS, MohdJamir MR, Osman AF, Jaafar M, Alshahrani HA (2022) Physical, thermal transport, and compressive properties of epoxy composite filled with graphitic-and ceramic-based thermally conductive nanofillers. Polym 14(5):1014

    Article  Google Scholar 

  12. Minisha S, Vedhi C, Rajakani P (2022) Methods of graphene synthesis and graphene-based electrode material for supercapacitor applications. ECS J Solid State Sci Technol 11(11):111002

    Article  ADS  Google Scholar 

  13. Sethulekshmi AS, Jayan JS, Appukutta S, Joseph K (2021) MoS2: Advanced nanofiller for reinforcing polymer matrix. Phys E Low Dimens Syst Nanostruct 132:114716

    Article  Google Scholar 

  14. Lian C, Gu Z, Zhang Y, Ma Z, Qiu H, Gu J (2021) Structural design strategies of polymer matrix composites for electromagnetic interference shielding: a review. Nano-Micro Lett 13(1):181

    Article  ADS  Google Scholar 

  15. Li Y, Huang X, Zeng L, Li R, Tian H, Fu X, Zhong WH (2019) A review of the electrical and mechanical properties of carbon nanofiller-reinforced polymer composites. J Mater Sci 54:1036–1076

    Article  ADS  Google Scholar 

  16. Ansari MNM, Sayem MA (2023) Microwave-assisted activated carbon: a promising class of materials for a wide range of applications. In: Radiation technologies and applications in materials science, pp 331–368

    Google Scholar 

  17. Hecht DS, Hu L, Irvin G (2011) Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv Mater 23(13):1482–1513

    Article  Google Scholar 

  18. El-Kady MF, Shao Y, Kaner RB (2016) Graphene for batteries, supercapacitors and beyond. Nat Rev Mater 1(7):1–14

    Article  Google Scholar 

  19. Kumar SSA, Bashir S, Ramesh K, Ramesh S (2021) New perspectives on graphene/graphene oxide based polymer nanocomposites for corrosion applications: the relevance of the graphene/polymer barrier coatings. Prog Org Coat 154:106215

    Article  Google Scholar 

  20. Mohan VB, Lau KT, Hui D, Bhattacharyya D (2018) Graphene-based materials and their composites: a review on production, applications and product limitations. Compos B Eng 142:200–220

    Article  Google Scholar 

  21. Shmavonyan G, Cheshev D, Averkiev A, Tran TH, Sheremet E (2022) Nanospectroscopy of graphene and two-dimensional atomic materials and hybrid structures. Opt Nanospectroscopy 401

    Google Scholar 

  22. Moharana S, Mahaling RN (2017) Silver (Ag)-Graphene oxide (GO)-Poly (vinylidene fluoride-co-hexafluoropropylene)(PVDF-HFP) nanostructured composites with high dielectric constant and low dielectric loss. Chem Phys Lett 680:31–36

    Article  ADS  Google Scholar 

  23. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV (2004) Electric field effect in atomically thin carbon films. Sci 306:666–669

    Article  ADS  Google Scholar 

  24. Asghar F, Shakoor B, Fatima S, Munir S, Razzaq H, Naheed S, Butler IS (2022) Fabrication and prospective applications of graphene oxide-modified nanocomposites for wastewater remediation. RSC Adv 12(19):11750–11768

    Article  Google Scholar 

  25. Ashraf G, Aziz A, Iftikhar T, Zhong ZT, Asif M, Chen W (2022) The roadmap of graphene-based sensors: electrochemical methods for bioanalytical applications. Biosensors 12(12):1183

    Article  Google Scholar 

  26. Moharana S, Mahaling RN (2021) Enhancement investigations on dielectric and electrical properties of niobium pentoxide (Nb2O5) reinforced poly (vinylidene fluoride)(PVDF)-graphene oxide (GO) nanocomposite films. J Asian Ceram Soc 9(3):1183–1193

    Article  Google Scholar 

  27. Nitin MS, Suresh Kumar S (2022) Ballistic performance of synergistically toughened Kevlar/epoxy composite targets reinforced with multiwalled carbon nanotubes/graphene nanofillers. Polym Compos 43(2):782–797

    Article  Google Scholar 

  28. Dubey PK, Hong J, Lee K, Singh P (2023) Graphene-based materials: synthesis and applications. In: Nanomater, pp 59–84

    Google Scholar 

  29. Patra L, Pandey R (2022) Mechanical properties of 2D materials: a review on molecular dynamics based nanoindentation simulations. Mater Today Commun 31:103623

    Google Scholar 

  30. Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10(8):569–581

    Article  ADS  Google Scholar 

  31. Jung I, Dikin DA, Piner RD, Ruoff RS (2008) Tunable electrical conductivity of individual graphene oxide sheets reduced at “low” temperatures. Nano Lett 8(12):4283–4287

    Article  ADS  Google Scholar 

  32. Chauhan AK, Gupta SK, Taguchi D, Manaka T, Jha P, Veerender P, Iwamoto M (2017) Enhancement of the carrier mobility of conducting polymers by formation of their graphene composites. RSC Adv 7(20):11913–11920

    Article  ADS  Google Scholar 

  33. Matte HR, Subrahmanyam KS, Rao CNR (2009) Novel magnetic properties of graphene: presence of both ferromagnetic and antiferromagnetic features and other aspects. J Phys Chem C 113(23):9982–9985

    Article  Google Scholar 

  34. Guo Q, Dedkov Y, Voloshina E (2020) Intercalation of Mn in graphene/Cu (111) interface: insights to the electronic and magnetic properties from theory. Sci Rep 10(1):21684

    Article  ADS  Google Scholar 

  35. Geng Y, Wang SJ, Kim JK (2009) Preparation of graphite nanoplatelets and graphene sheets. J Colloid Interface Sci 336(2):592–598

    Article  ADS  Google Scholar 

  36. Vacchi IA, Ménard-Moyon C, Bianco A (2017) Chemical functionalization of graphene family members. Phys Sci Rev 2(1)

    Google Scholar 

  37. Ioniţă M, Vlăsceanu GM, Watzlawek AA, Voicu SI, Burns JS, Iovu H (2017) Graphene and functionalized graphene: extraordinary prospects for nanobiocomposite materials. Compos B Eng 121:34–57

    Article  Google Scholar 

  38. Acik M, Chabal YJ (2011) Nature of graphene edges: a review. Jpn J Appl Phys 50(7R):070101

    Article  ADS  Google Scholar 

  39. NebolSin VA, Galstyan V, Silina YE (2020) Graphene oxide and its chemical nature: multi-stage interactions between the oxygen and graphene. Surf Interfaces 21:100763

    Article  Google Scholar 

  40. Shi L, Xia W (2012) Photoredox functionalization of C-H bonds adjacent to a nitrogen atom. Chem Soc Rev 41(23):7687–7697

    Article  Google Scholar 

  41. Cao Y, Osuna S, Liang Y, Haddon RC, Houk KN (2013) Diels-Alder reactions of graphene: computational predictions of products and sites of reaction. J Am Chem Soc 135(46):17643–17649

    Article  Google Scholar 

  42. Guday G (2019) Surface chemistry of low-dimensional carbon materials: synthesis and functionalization of graphene. Freie Universitaet Berlin (Germany)

    Google Scholar 

  43. He J, Qiu D, Li Y (2020) Strategies toward aryne multifunctionalization via 1, 2-benzdiyne and benzyne. Acc Chem Res 53(2):508–519

    Article  Google Scholar 

  44. Rkein B, Bigot A, Birbaum L, Manneveau M, De Paolis M, Legros J, Chataigner I (2021) Reactivity of 3-nitroindoles with electron-rich species. Chem Commun 57(1):27–44

    Article  Google Scholar 

  45. Ratwani CR, Abdelkader A(2022) Self-healing by Diels-Alder cycloaddition in advanced functional polymers: a review. Prog Mater Sci, p 101001

    Google Scholar 

  46. Ashfaq A, Clochard MC, Coqueret X, Dispenza C, Driscoll MS, Ulański P, Al-Sheikhly M (2020) Polymerization reactions and modifications of polymers by ionizing radiation. Polymer 12(12):2877

    Article  Google Scholar 

  47. Shabbir M, Raza ZA, Shah TH, Tariq MR (2022) Recent progress in graphenes: synthesis, covalent functionalization and environmental applications. J Nanostructure Chem 12(6):1033–1051

    Article  Google Scholar 

  48. Majumder M, Thakur AK (2019) Graphene and its modifications for supercapacitor applications. Surf Eng, pp 113–138

    Google Scholar 

  49. Lomeda JR, Doyle CD, Kosynkin DV, Hwang WF, Tour JM (2008) Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. J Am Chem Soc 130(48):16201–16206

    Article  Google Scholar 

  50. Chua CK, Pumera M (2013) Covalent chemistry on graphene. Chem Soc Rev 42(8):3222–3233

    Article  Google Scholar 

  51. Johns JE, Hersam MC (2013) Atomic covalent functionalization of graphene. Acc Chem Res 46(1):77–86

    Article  Google Scholar 

  52. Sharma R, Baik JH, Perera CJ, Strano MS (2010) Anomalously large reactivity of single graphene layers and edges toward electron transfer chemistries. Nano Lett 10(2):398–405

    Article  ADS  Google Scholar 

  53. Xu X, Chen J, Luo X, Lu J, Zhou H, Wu W, Li Z (2012) Poly (9, 9′-diheylfluorene carbazole) functionalized with reduced graphene oxide: convenient synthesis using nitrogen-based nucleophiles and potential applications in optical limiting. Chem Eur J 18(45):14384–14391

    Article  Google Scholar 

  54. Li PP, Chen Y, Zhu J, Feng M, Zhuang X, Lin Y, Zhan H (2011) Charm-bracelet-type Poly (N-Vinylcarbazole) functionalized with reduced graphene oxide for broadband optical limiting. Chem Eur J 17(3):780–785

    Article  Google Scholar 

  55. Wojtaszek M, Tombros N, Caretta A, Van Loosdrecht PHM, Van Wees BJ (2011) A road to hydrogenating graphene by a reactive ion etching plasma. J Appl Phys 110(6):063715

    Article  ADS  Google Scholar 

  56. Medeiros PV, Mascarenhas AJ, de Brito MF, de Castilho CM (2010) A DFT study of halogen atoms adsorbed on graphene layers. Nanotechnology 21(48):485701

    Article  ADS  Google Scholar 

  57. Robinson Jeremy T, James S, Chad Junkermeier E, Stefan Badescu C, Thomas L, Keith Perkins F, Maxim ZK (2010) Properties of fluorinated graphene films. Nano Lett 10(8):3001–3005

    Article  ADS  Google Scholar 

  58. Chua CK, Pumera M (2012) Friedel-crafts acylation on graphene. Chem Asian J 7(5):1009–1012

    Article  Google Scholar 

  59. Yuan C, Chen W, Yan L (2012) Amino-grafted graphene as a stable and metal-free solid basic catalyst. J Mater Chem 22(15):7456–7460

    Article  Google Scholar 

  60. Zhan J, Lei Z, Zhang Y (2022) Non-covalent interactions of graphene surface: mechanisms and applications. Chem 8(4):947–979

    Article  Google Scholar 

  61. Mao HY, Lu YH, Lin JD, Zhong S, Wee ATS, Chen W (2013) Manipulating the electronic and chemical properties of graphene via molecular functionalization. Prog Surf Sci 88(2):132–159

    Article  ADS  Google Scholar 

  62. Guo X (2013) Single-molecule electrical biosensors based on single-walled carbon nanotubes. Adv Mater 25(25):3397–3408

    Article  Google Scholar 

  63. Lin Y, Taylor S, Li H, Fernando KS, Qu L, Wang W, Sun YP (2004) Advances toward bioapplications of carbon nanotubes. J Mater Chem 14(4):527–541

    Article  Google Scholar 

  64. Ma H, Shen Z (2020) Exfoliation of graphene nanosheets in aqueous media. Ceram Int 46(14):21873–21887

    Article  Google Scholar 

  65. Brisebois PP, Siaj M (2020) Harvesting graphene oxide–years 1859 to 2019: a review of its structure, synthesis, properties and exfoliation. J Mater Chem C 8(5):1517–1547

    Article  Google Scholar 

  66. Ghosh A, Rao KV, George SJ, Rao CNR (2010) Noncovalent functionalization, exfoliation, and solubilization of graphene in water by employing a fluorescent coronene carboxylate. Chem Eur J 16(9):2700–2704

    Article  Google Scholar 

  67. Englert JM, Röhrl J, Schmidt CD, Graupner R, Hundhausen M, Hauke F, Hirsch A (2009) Soluble graphene: generation of aqueous graphene solutions aided by a perylenebisimide-based bolaamphiphile. Adv Mater 21(42):4265–4269

    Article  Google Scholar 

  68. Bai H, Xu Y, Zhao L, Li C, Shi G (2009) Non-covalent functionalization of graphene sheets by sulfonated polyaniline. Chem Commun 13:1667–1669

    Article  Google Scholar 

  69. Ibrahim A, Klopocinska A, Horvat K, Abdel Hamid Z (2021) Graphene-based nanocomposites: synthesis, mechanical properties, and characterizations. Polym 13(17):2869

    Article  Google Scholar 

  70. Lawal AT (2020) Recent progress in graphene based polymer nanocomposites. Cogent Chem. 6(1):1833476

    Article  MathSciNet  Google Scholar 

  71. Zhou T, Zheng Y, Gao H, Min S, Li S, Liu HK, Guo Z (2015) Surface engineering and design strategy for surface-amorphized TiO2@graphene hybrids for high power Li-ion battery electrodes. Adv Sci 2(9):1500027

    Article  Google Scholar 

  72. Shi S, Chen F, Ehlerding EB, Cai W (2014) Surface engineering of graphene-based nanomaterials for biomedical applications. Bioconjug Chem 25(9):1609–1619

    Article  Google Scholar 

  73. Azizi-Lalabadi M, Hashemi H, Feng J, Jafari SM (2020) Carbon nanomaterials against pathogens; the antimicrobial activity of carbon nanotubes, graphene/graphene oxide, fullerenes, and their nanocomposites. Adv Colloid Interface Sci 284:102250

    Article  Google Scholar 

  74. Bhattacharya M (2016) Polymer nanocomposites—a comparison between carbon nanotubes, graphene, and clay as nanofillers. Mater 9(4):262

    Article  MathSciNet  Google Scholar 

  75. Nandee R, Chowdhury MA, Ahmed MU, Shuvho BA, Debnath UK (2019) Performance and characterization of two-dimensional material graphene conductivity-a review. Mater Perform Charact 8(1):183–196

    Google Scholar 

  76. Clancy AJ, Bayazit MK, Hodge SA, Skipper NT, Howard CA, Shaffer MS (2018) Charged carbon nanomaterials: redox chemistries of fullerenes, carbon nanotubes, and graphenes. Chem Rev 118(16):7363–7408

    Article  Google Scholar 

  77. Cui Y, Kundalwal SI, Kumar S (2016) Gas barrier performance of graphene/polymer nanocomposites. Carbon 98:313–333

    Article  Google Scholar 

  78. Zhao HY, Yu MY, Liu J, Li X, Min P, Yu ZZ (2022) Efficient preconstruction of three-dimensional graphene networks for thermally conductive polymer composites. Nano-Micro Lett 14(1):129

    Article  ADS  Google Scholar 

  79. Zhu X, Ni Z, Dong L, Yang Z, Cheng L, Zhou X, Chen M (2019) In-situ modulation of interactions between polyaniline and graphene oxide films to develop waterborne epoxy anticorrosion coatings. Prog Org Coat 133:106–116

    Article  Google Scholar 

  80. Zhu Q, Li EN, Liu X, Song W, Li Y, Wang X, Liu C (2020) Epoxy coating with in-situ synthesis of polypyrrole functionalized graphene oxide for enhanced anticorrosive performance. Prog Org Coat 140:105488

    Article  Google Scholar 

  81. Zheng W, Lu X, Wong SC (2004) Electrical and mechanical properties of expanded graphite-reinforced high-density polyethylene. J Appl Polym Sci 91:2781–2788

    Article  Google Scholar 

  82. Hu HT, Wang JC, Wan L, Liu FM, Zheng H (2010) Preparation and properties of graphene nanosheets—polystyrene nanocomposites via in-situ emulsion polymerization. Chem Phy Lett 484:247–253

    Article  ADS  Google Scholar 

  83. Ye L, Meng XY, Ji X, Li ZM, Tang JH (2009) Synthesis and characterization of expandable graphite-poly(methyl methacrylate) composite particles and their application to flame retardation of rigid polyurethane foams. Polym Degrad Stab 94:971–979

    Article  Google Scholar 

  84. Chen G, Wu D, Weng W, Wu C (2003) Exfoliation of graphite flakes and its nanocomposites. Carbon 41:619–621

    Article  Google Scholar 

  85. Kornmann X (2001) Synthesis and characterization of thermoset-layered silicate nanocomposites. Ph.D. thesis. Sweden, Lulea Tekniska Universitet

    Google Scholar 

  86. Moujahid EM, Besse JP, Leroux F (2003) Poly(styrene sulfonate) layered double hydroxide nanocomposites Stability and subsequent structural transformation with changes in temperature. J Mater Chem 13:258–264

    Article  Google Scholar 

  87. Hsueh HB, Chen CY (2003) Preparation and properties of LDHs= polyimide nanocomposites. Polym 44:1151–1161

    Article  Google Scholar 

  88. Novoselov KS, Geim AK, Morozov SV (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  ADS  Google Scholar 

  89. Tkalya E, Ghislandi M, Alekseev A (2010) Latex-based concept for the preparation of graphene-based polymer nanocomposites. J Mater Chem 20:3035–3039

    Article  Google Scholar 

  90. Latif I, Alwan TB, Al-Dujaili AH (2012) Low frequency dielectric study of PAPA-PVA-GR nanocomposites. Nanosci Nanotechnol 2:190–200

    Article  Google Scholar 

  91. Murugan AV, Muraliganth T, Manthiram A (2009) Rapid, facile microwave-solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy strorage. Chem Mater 21:5004–5006

    Article  Google Scholar 

  92. Fan X, Peng W, Li Y (2008) Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Adv Mater 2:4490–4493

    Article  Google Scholar 

  93. Park S, An J, Jung I (2009) Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett 9:1593–1597

    Article  ADS  Google Scholar 

  94. Jiang L, Shen XP, Wu JL (2010) Preparation and characterization of graphene/poly (vinyl alcohol) nanocomposites. J Appl Polym Sci 118:275–279

    Article  Google Scholar 

  95. Bourlinos AB, Gournis D, Petridis D (2003) Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir 19:6050–6055

    Article  Google Scholar 

  96. Wang G, Shen X, Yao J (2009) Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon 47:2049–2053

    Article  Google Scholar 

  97. Staudenmaier L (1898) Verfahren zur darstellung der graphitsa¨ure. Ber Dtsch Chem Ges 31:1481–1499

    Article  Google Scholar 

  98. Michael J, McAllister J-L (2007) Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 19:4396–4404

    Article  Google Scholar 

  99. Zhang HB, Zheng WG, Yan Q (2010) Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polym 51:1191–1196

    Article  Google Scholar 

  100. Potts JR, Dreyer DR, Bielawski CW (2011) Graphene based polymer nanocomposites. Polymer 52:5–25

    Article  Google Scholar 

  101. Hu H, Wang X, Wang J (2010) Preparation and properties of graphene nanosheets–polystyrene nanocomposites via in situ emulsion polymerization. Chem Phys Lett 484:247–253

    Article  ADS  Google Scholar 

  102. Patole AS, Patole SP, Kang H (2010) A facile approach to the fabrication of graphene/polystyrene nanocomposite by in situ microemulsion polymerization. J Colloid Interface Sci 350:530–537

    Article  ADS  Google Scholar 

  103. Ni Z, Wang Y, Yu T (2008) Raman spectroscopy and imaging of graphene. Nano Res 1:273–291

    Article  Google Scholar 

  104. Gawryla MD, van den Berg O, Weder C (2009) Clay aerogel/cellulose whisker nanocomposites: a nanoscale wattle and daub. J Mater Chem 19:2118–2124

    Article  Google Scholar 

  105. Van den Berg O, Capadona JR, Weder C (2007) Preparation of homogeneous dispersions of tunicate cellulose whiskers in organic solvents. Biomacromol 8:1353–1357

    Article  Google Scholar 

  106. Chen W, Yan L, Bangal PR (2010) Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon 48:1146–1152

    Article  Google Scholar 

  107. Chen W, Yan L (2010) Preparation of graphene by a low temperature thermal reduction at atmosphere pressure. Nanoscale 2:559–563

    Article  ADS  Google Scholar 

  108. Zhou X, Liu Z (2010) A scalable, solution-phase processing route to graphene oxide and graphene ultra large sheets. Chem Commun 46:2611–2613

    Article  Google Scholar 

  109. Vickery JL, Patil AJ, Mann S (2009) Fabrication of graphene–polymer nanocomposites with higher-order three dimensional architectures. Adv Mater 21:2180–2184

    Article  Google Scholar 

  110. Cao Y, Feng J, Wu P (2010) Preparation of organically dispersible graphene nanosheet powders through a lyophilization method and their poly (lactic acid) composites. Carbon 48:3834–3839

    Article  Google Scholar 

  111. Chaturvedi A, Tiwari A, Tiwari A (2013) Spectroscopic and morphological analysis of graphene vinylester nanocomposites. Adv Mater Lett 4:656–661

    Article  Google Scholar 

  112. Che J, Shen L, Xiao Y (2010) A new approach to fabricate graphene nanosheets in organic medium: combination of reduction and dispersion. J Mater Chem 20:1722–1727

    Article  Google Scholar 

  113. Gong L, Kinloch IA, Young RJ (2010) Interfacial stress transfer in a graphene monolayer nanocomposite. Adv Mater 22:2694–2697

    Article  Google Scholar 

  114. Liu P, Huang Y, Wang L (2013) Preparation and excellent microwave absorption property of three component nanocomposites: Polyaniline-reduced graphene oxide-CO3O4 nanoparticles. Synth Met 177:89–93

    Article  Google Scholar 

  115. Marcano DC, Kosynkin DV, Berlin JM (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814

    Article  Google Scholar 

  116. Kumar SK, Castro M, Saiter A (2013) Development of poly (isobutylene-coisoprene)/reduced graphene oxide nanocomposites for barrier, dielectric and sensing applications. Mater Lett 96:109–112

    Article  Google Scholar 

  117. Zeng X, Yang J, Yuan W (2012) Preparation of a poly (methyl methacrylate)-reduced graphene oxide composite with enhanced properties by a solution blending method. Eur Polym J 48:1674–1682

    Article  Google Scholar 

  118. Subrahmanyam K, Vivekchand S, Govindaraj A (2008) A study of graphenes prepared by different methods: characterization, properties and solubilization. J Mater Chem 18:1517–1523

    Article  Google Scholar 

  119. Zaman I, Kuan HC, Dai J (2012) From carbon nanotubes and silicate layers to graphene platelets for polymer nanocomposites. Nanoscale 4: 4578–4586

    Google Scholar 

  120. Yu J, Lu K, Sourty E, Grossiord N, Koning CE, Loos J (2007) Characterization of conductive multiwall carbon nanotube/polystyrene composites prepared by latex technology. Carbon 45:2897–2903

    Article  Google Scholar 

  121. Li J, Vaisman L, Marom G, Kim JK (2007) Br treated graphite nanoplatelets for improved electrical conductivity of polymer composites. Carbon 45:744–750

    Article  Google Scholar 

  122. Wang S, Tambraparni M, Qiu J, Tipton J, Dean D (2009) Thermal expansion of graphene composites. Macromolecules 42:5251–5255

    Article  ADS  Google Scholar 

  123. Kuilla T, Srivastava SK, Bhowmick AK (2009) Rubber/LDH nanocomposites by solution blending. J Appl Polym Sci 111:635–641

    Article  Google Scholar 

  124. Yu A, Ramesh P, Itkis ME, Elena B, Haddon RC (2007) Graphite nanoplatelet-epoxy composite thermal interface materials. J Phys Chem C 111:7565–7569

    Article  Google Scholar 

  125. Liu N, Luo F, Wu H, Liu Y, Zhang C, Chen J (2008) One step ionic-liquid assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphene. Adv Funct Mater 18:1518–1525

    Article  Google Scholar 

  126. Eda G, Chhowalla M (2009) Graphene-based composite thin films for electronics. Nano Lett 9:814–818

    Article  ADS  Google Scholar 

  127. Mu Q, Feng S (2007) Thermal conductivity of graphite/silicone rubber prepared by solution intercalation. Thermochim Acta 462:70–75

    Article  Google Scholar 

  128. Zhang HB, Zheng WG, Yan Q, Yang Y, Wang J, Lu ZH (2010) Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer 51:1191–1196

    Article  Google Scholar 

  129. Hu H, Wang X, Wanga J, Wana L, Liu F, Zheng H (2010) Preparation and properties of graphene nanosheets-polystyrene nanocomposites via in situ emulsion polymerization. Chem Phys Lett 484:247–253

    Article  ADS  Google Scholar 

  130. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565

    Article  Google Scholar 

  131. Zhao X, Zhang Q, Chen D (2010) Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites. Macromolecules 43:2357–2363

    Article  ADS  Google Scholar 

  132. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA (2006) Graphene-based composite materials. Nature 442:282–286

    Article  ADS  Google Scholar 

  133. Liu N, Luo F, Wu H, Liu Y, Zhang C, Chen J (2008) One step ionicliquidassisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphene. Adv Funct Mater 18:1518–1525

    Article  Google Scholar 

  134. Mu Q, Feng S (2007) Thermal conductivity of graphite=silicone rubber prepared by solution intercalation. Thermochim Acta 462:70–75

    Article  Google Scholar 

  135. Hu HT, Wang JC, Wan L, Liu FM, Zheng H (2010) Preparation and properties of graphene nanosheets—polystyrene nanocomposites via insitu emulsion polymerization. Chem Phys Lett 484:247–253

    Article  ADS  Google Scholar 

  136. Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Poly Sci 35(11):1350–1375

    Article  Google Scholar 

  137. Peponi L, Tercjak A, Verdejo R, Lopez-Manchado MA, Mondragon I, Kenny JM (2009) Confinement of functionalized graphene sheets by triblock copolymers. J Phys Chem 113:17973–17978

    Google Scholar 

  138. Wang DW, Li F, Zhao J, Ren W, Chen ZG, Tan J (2009) Fabrication of graphene/polyaniline composite paper via in situ anodic electro-polymerization for high-performance flexible electrode. ACS Nano 7:1745–1752

    Article  Google Scholar 

  139. Zhao L, Zhao L, Xu Y, Qiu T, Zhi L, Shi G (2009) Polyaniline electrochromic devices with transparent graphene electrodes. Electrochim Acta 55:491–497

    Article  Google Scholar 

  140. Yan J, Wei T, Fan Z, Qian W, Zhang M, Shen X (2010) Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors. J Power Sources 195:3041–3045

    Article  Google Scholar 

  141. Mazinani S, Ajji A, Dubois C (2009) Morphology, structure and properties of conductive PS=CNT nanocomposite electrospun mat. Polym 50:3329–3342

    Article  Google Scholar 

  142. Bourlinos AB, Gournis D, Petridis D, Szabo T, Szeri A, Dekany I (2003) Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Chem Mater 19:6050–6055

    Google Scholar 

  143. Liang J, Huang Y, Zhang L, Wang Y, Ma Y, Guo T (2009) Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Adv Funct Mater 19:2297–2302

    Article  Google Scholar 

  144. Lee YR, Raghu AV, Jeong HM, Kim BK (2009) Properties of waterborne polyurethane/functionalized graphene sheet nanocomposites prepared by an in situ method. Macromol Chem Phys 210(15):1247–1254

    Article  Google Scholar 

  145. Liang J, Xu Y, Huang Y, Zhang L, Wang Y, Ma Y (2009) Infraredtriggered actuators from graphene-based nanocomposites. J Phys Chem 113:9921–9927

    Google Scholar 

  146. Ansari S, Giannelis EP (2009) Functionalized graphene sheetpoly(vinylidene fluoride) conductive nanocomposites. J Polym Sci Part B Polym Phys 47:888–897

    Article  ADS  Google Scholar 

  147. Xu Y, Wang Y, Jiajie L, Huang Y, Ma Y, Wan X (2009) A hybrid material of graphene and poly(3,4-ethyldioxythiophene) with high conductivity, flexibility, and transparency. Nano Res 2:343–348

    Article  Google Scholar 

  148. Kim H, Macosko CW (2009) Processing–property relationships of polycarbonate/graphene nanocomposites. Polym 50:3797–3809

    Article  Google Scholar 

  149. Cussler EL, Hughes SE, Ward WJ III, Aris R (1988) Barrier membrane. J Membr Sci 38:161–174

    Article  Google Scholar 

  150. Halperin BI, Feng S, Sen PN (1985) Differences between lattice and continuum percolation transport exponents. Phys Rev Lett 54:2391–2394

    Article  ADS  Google Scholar 

  151. Moussa M, El-Kady MF, Zhao Z, Majewski P, Ma J (2016) Recent progress and performance evaluation for polyaniline/graphene nanocomposites as supercapacitor electrodes. Nanotechnology (27):442001

    Google Scholar 

  152. Tai Z, Yan X, Xue Q (2012) Three-dimensional graphene/polyaniline composite hydrogel as supercapacitor electrode. J Electrochem Soc 159(10):A1702

    Article  Google Scholar 

  153. Liu H, Wang Y, Gou X, Qi T, Yang J, Ding Y (2013) Three-dimensional graphene/polyaniline composite material for high-performance supercapacitor applications. Mater Sci Eng 5:293–298

    Article  Google Scholar 

  154. Kulkarni SB, Patil UM, Shackery I, Sohn JS, Lee S, Park B, Jun S (2014) High-performance supercapacitor electrode based on a polyaniline nanofibers/3D graphene framework as an efficient charge transporter. J Mater Chem A 14:4989–4998

    Article  Google Scholar 

  155. Zhang Y, Huang Y, Yang G, Bu F, Li K, Shakir I, Xu Y (2017) Dispersion–assembly approach to synthesize three-dimensional graphene/polymer composite aerogel as a powerful organic cathode for rechargeable Li and Na batteries. ACS Appl Mater Interf 18:15549–15556

    Article  Google Scholar 

  156. Li WW, Yu HQ, He Z (2014) Towards sustainable wastewater treatment by using microbial fuel cells-centered technologies. Energy Environ Sci 3:911–924

    Google Scholar 

  157. Xie X, Criddle C, Cui Y (2015) Design and fabrication of bioelectrodes for microbial bioelectrochemical systems. Energy Environ Sci 12:3418–3441

    Article  Google Scholar 

  158. Zou L, Qiao Y, Wu ZY, Wu XS, Xie JL, Yu SH, Li CM (2016) Tailoring unique mesopores of hierarchically porous structures for fast direct electrochemistry in microbial fuel cells. Adv Energy Mater 4:1501535

    Article  Google Scholar 

  159. Yang Y, Dong R, Zhu Y, Li H, Zhang H, Fan X, Chang H (2020) High-performance direct hydrogen peroxide fuel cells (DHPFCs) with silver nanowire-graphene hybrid aerogel as highly-conductive mesoporous electrodes. Chem Eng J 381:122749

    Article  Google Scholar 

  160. Du Q, An J, Li J, Zhou L, Li N, Wang X (2017) Polydopamine as a new modification material to accelerate startup and promote anode performance in microbial fuel cells. J Power Sources 343:477–482

    Article  Google Scholar 

  161. Tang C, Zhang Q (2016) Can metal–nitrogen–carbon catalysts satisfy oxygen electrochemistry? J Mater Chem A 14:4998–5001

    Article  Google Scholar 

  162. Yong YC, Dong XC, Chan-Park MB, Song H, Chen P (2012) Macroporous and monolithic anode based on polyaniline hybridized three-dimensional graphene for high-performance microbial fuel cells. ACS Nano 6(3):2394–2400

    Article  Google Scholar 

  163. Xia H, Hong C, Li B, Zhao B, Lin Z, Zheng M, Aldoshin SM (2015) Facile synthesis of hematite quantum-dot/functionalized graphene-sheet composites as advanced anode materials for asymmetric supercapacitors. Adv Funct Mater 25(4):627–635

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support provided by Centurion University of Technology and Management, Odisha, India, for carrying out the present research work.

Funding

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srikanta Moharana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tripathy, D., Gadtya, A.S., Sahu, B.B., Moharana, S. (2024). Surface Engineering of Graphene-Based Polymeric Composites for Energy Storage Devices. In: Moharana, S., Gregory, D.H., Mahaling, R.N. (eds) Emerging Nanodielectric Materials for Energy Storage. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-40938-7_10

Download citation

Publish with us

Policies and ethics