Skip to main content

Advertisement

Log in

Ultrathin 2D Conjugated Polymer Nanosheets for Solar Fuel Generation

  • Review
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Two-dimensional (2D) polymers are fascinating as they exhibit unique physical, chemical, mechanical, and electronic properties that are completely different from those of traditional linear or branched polymers. They are very promising for applications in catalysis, separation, optoelectronics, energy storage, and nanomedicine. Recently, ultrathin 2D conjugated polymers have emerged as advanced materials for converting solar energy into chemical energy. The inherent 2D planar structure with in-plane periodicity offers many features that are highly desirable for photon-involved catalytic energy conversion processes, including high absorption coefficients, large surface areas, abundant surface active sites, and efficient charge separation. Moreover, the possibility of finely tuning the optoelectronic and structural properties through precise molecular engineering has opened up new opportunities for design and synthesis of novel 2D polymer nanosheets with unprecedented applications. Herein, we highlight recent advances in developing ultrathin 2D conjugated polymer nanosheets for solar-to-chemical energy conversion. Specifically, we discuss emerging applications of ultrathin 2D conjugated polymer nanosheets for solar-driven water splitting and CO2 reduction. Meanwhile, future challenges and prospects for design and synthesis of ultrathin 2D conjugated polymer nanosheets for solar fuel generation are also included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. 2006, 103, 15729–15735.

    Article  CAS  PubMed  Google Scholar 

  2. Barber, J. Photosynthetic energy conversion: Natural and artificial. Chem. Soc. Rev. 2009, 38, 185–196.

    Article  CAS  PubMed  Google Scholar 

  3. Lewis, N. S. Introduction: Solar energy conversion. Chem. Rev. 2015, 115, 12631–12632.

    Article  CAS  PubMed  Google Scholar 

  4. Crabtree, G. W.; Lewis, N. S. Solar energy conversion. Phys. Today 2007, 60, 37–42.

    Article  CAS  Google Scholar 

  5. Li, H.; Fan, C.; Fu, W.; Xin, H. L.; Chen, H. Solution-grown organic single-crystalline donor-acceptor heterojunctions for photovoltaics. Angew. Chem. Int. Ed. 2015, 54, 956–960.

    Article  CAS  Google Scholar 

  6. Zhang, S.; Qin, Y.; Zhu, J.; Hou, J. Over 14% efficiency in polymer solar cells enabled by a chlorinated polymer donor. Adv. Mater. 2018, 30, 1800868.

    Article  CAS  Google Scholar 

  7. Li, S.; Zhan, L.; Liu, F.; Ren, J.; Shi, M.; Li, C. Z.; Russell, T. P.; Chen, H. An unfused-core-based nonfullerene acceptor enables high-effciency organic solar cells with excellent morphological stability at high temperatures. Adv. Mater. 2018, 30, 1705208.

    Article  CAS  Google Scholar 

  8. Lewis, N. S. Research opportunities to advance solar energy utilization. Science 2016, 351, aad1920.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, M.; Guo, X.; Wang, X.; Wang, H.; Li, Y. Synthesis and photovoltaic properties of D-A copolymers based on alkyl-substituted indacenodithiophene donor unit. Chem. Mater. 2011, 23, 4264–4270.

    Article  CAS  Google Scholar 

  10. Hou, J.; Inganäs, O.; Friend, R. H.; Gao, F. Organic solar cells based on non-fullerene acceptors. Nat. Mater. 2018, 17, 119–128.

    Article  CAS  PubMed  Google Scholar 

  11. Wang, X.; Ma, Y.; Sheng, X.; Wang, Y.; Xu, H. Ultrathin polypyrrole nanosheets via space-confined synthesis for efficient photothermal therapy in the second near-infrared window. Nano Lett. 2018, 18, 2217–2225.

    Article  CAS  PubMed  Google Scholar 

  12. Bin, H.; Zhang, Z. G.; Gao, L.; Chen, S.; Zhong, L.; Xue, L.; Yang, C.; Li, Y. Non-fullerene polymer solar cells based on alkylthio and fluorine substituted 2D-conjugated polymers reach 9.5% efficiency. J. Am. Chem. Soc. 2016, 138, 4657–4664.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang, M.; Wang, X. Two dimensional conjugated polymers with enhanced optical absorption and charge separation for photocatalytic hydrogen evolution. Energy Environ. Sci. 2014, 7, 1902–1906.

    Article  CAS  Google Scholar 

  14. Pan, Z.; Zheng, Y.; Guo, F.; Niu, P.; Wang, X. Decorating CoP and Pt nanoparticles on graphitic carbon nitride nanosheets to promote overall water splitting by conjugated polymers. Chem-SusChem 2017,10, 87–90.

    CAS  Google Scholar 

  15. Islam, A.; Liu, Z. Y.; Peng, R. X.; Jiang, W. G.; Lei, T.; Li, W.; Zhang, L.; Yang, R. J.; Guan, Q.; Ge, Z. Y. Furan-containing conjugated polymers for organic solar cells. Chinese J. Polym. Sci. 2017, 35, 171–183.

    Article  CAS  Google Scholar 

  16. Cao, J. M.; Qian, L.; He, D.; Xiao, Z.; Ding, L. M. D-A Copolymers based on a pentacyclic acceptor unit and a 3,3'-difluoro-2,2'-bithiophene for solar cells. Chinese J. Polym. Sci. 2017, 35, 1457–1462.

    Article  CAS  Google Scholar 

  17. Wang, Y.; Zhu, W.; Du, W.; Liu, X.; Zhang, X.; Dong, H.; Hu, W. Cocrystals strategy towards materials for near-infrared photothermal conversion and imaging. A ge w. Chem. Int. Ed. 2018, 57, 3963–3967.

    Article  CAS  Google Scholar 

  18. Xu, Y.; Jin, S.; Xu, H.; Nagai, A.; Jiang, D. Conjugated microporous polymers: Design, synthesis and application. Chem. Soc. Rev. 2013, 42, 8012–8031.

    Article  CAS  PubMed  Google Scholar 

  19. Kuhn, P.; Antonietti, M.; Thomas, A. Porous, covalent triazinebased frameworks prepared by ionoithermal synthesis. Ange w. Chem. Int. Ed. 2008, 47, 3450–3453.

    Article  CAS  Google Scholar 

  20. Jiang, J. X.; Su, F.; Niu, H.; Wood, C. D.; Campbell, N. L.; Khimyak, Y. Z.; Cooper, A. I. Conjugated microporous poly(phenylene butadiynylene)s. Chem. Commun. 2008, 4, 486–488.

    Article  Google Scholar 

  21. Kou, Y.; Xu, Y.; Guo, Z.; Jiang, D. Supercapacitive energy storage and electric power supply using an aza-fused n-conjugated microporous framework. Angew. Chem. Int. Ed. 2012, 51, 12727–12731.

    Article  CAS  Google Scholar 

  22. Sprick, R. S.; Bonillo, B.; Clowes, R.; Guiglion, Pi.; Brownbill, N. J.; Slater, B. J.; Blanc, F.; Zwijnenburg, M. A.; Adams, D. J.; Cooper, A. I. Visible-light-driven hydrogen evolution using planarized conjugated polymer photocatalysts. Ange w. Chem. Int. Ed. 2016, 55, 1792–1796.

    Article  CAS  Google Scholar 

  23. Sprick, R. S.; Jiang, J. X.; Bonillo, B.; Ren, S.; Ratvijitvech, T.; Guiglion, P.; Zwijnenburg, M. A.; Adams, D. J.; Cooper, A. I. Tunable organic photocatalysts for visible-light-driven hydrogen evolution. J. Am. Chem. Soc. 2015, 137, 3265–3270.

    Article  CAS  PubMed  Google Scholar 

  24. Xiao, P.; Xu, Y. Recent progress in two-dimensional polymers for energy storage and conversion: Design, synthesis, and applications. J. Mater. Chem. A 2018, Doi: 10.1039/C8TA02820F.

    Google Scholar 

  25. Wang, L.; Zhang, Y.; Chen, L.; Xu, H.; Xiong, Y. 2D polymers as emerging materials for photocatalytic overall water splitting. Ad. Mater. 2018, 1801955.

    Google Scholar 

  26. Chen, Y.; Jia, G.; Hu, Y.; Fan, G.; Tsang, Y. H.; Li, Z.; Zou, Z. Two-dimensional nanomaterials for photocatalytic CO2 reduction to solar fuels. Sustainable Energy Fuels 2017, 1, 1875–1898.

    Article  CAS  Google Scholar 

  27. Singh, A. K.; Mathew, K.; Zhuang, H. L.; Hennig, R. G. Computational screening of 2D materials for photocatalysis. J. Phys. Chem. Lett. 2015, 6, 1087–1098.

    Article  CAS  PubMed  Google Scholar 

  28. Di, J.; Xiong, J.; Li, H.; Liu, Z. Ultrathin 2D photocatalysts: Electronic-structure tailoring, hybridization, and applications. Ad. Mater. 2018, 30, 1704548.

    Article  CAS  Google Scholar 

  29. Deng, D.; Novoselov, K. S.; Fu, Q.; Zheng, N.; Tian, Z.; Bao, X. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 2016, 11, 218–230.

    Article  CAS  PubMed  Google Scholar 

  30. Li, Y.; Li, Y. L.; Sa, B.; Ahuja, R. Review of two-dimensional materials for photocatalytic water splitting from a theoretical perspective. Catal. Sci. Technol. 2017, 7, 545–559.

    Article  CAS  Google Scholar 

  31. Low, J.; Cao, S.; Yu, J.; Wageh, S. Two-dimensional layered composite photocatalysts. Chem. Commun. 2014, 50, 10768–10777.

    Article  CAS  Google Scholar 

  32. Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768–779.

    Article  CAS  PubMed  Google Scholar 

  33. Yang, M. Q.; Zhang, N.; Pagliaro, M.; Xu, Y. J. Artificial photosynthesis over graphene-semiconductor composites. Are we getting better? Chem. Soc. Rev. 2014, 43, 8240–8254.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang, G.; Lana, Z. A.; Wang, X. Surface engineering of graphitic carbon nitride polymers with cocatalysts for photocatalytic overall water splitting. Chem. Sci. 2017, 8, 5261–5274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang, J.; Wang, D.; Han, H.; Li, C. Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc. Chem. Res. 2013, 46, 1900–1909.

    Article  CAS  PubMed  Google Scholar 

  36. Liu, H.; Kan, X. N.; Wu, C. Y.; Pan, Q. Y.; Li, Z. B.; Zhao, Y. J. Synthetic two-dimensional organic structures. Chinese J. Polym. Sci. 2018, 36,425–444.

    Article  CAS  Google Scholar 

  37. Colson, J. W.; Dichtel, W. R. Rationally synthesized two-dimensional polymers. Nat. Chem. 2013, 5, 453–465.

    Article  CAS  PubMed  Google Scholar 

  38. Yang, F.; Cheng, S.; Zhang, X.; Ren, X.; Li, R.; Dong, H.; Hu, W. 2D organic materials for optoelectronic applications. Adv. Mater. 2018, 30, 1702415.

    Article  CAS  Google Scholar 

  39. Kissel, P.; Erni, R.; Schweizer, W. B.; Rossell, M. D.; King, B. T.; Bauer, T.; Götzinger, S.; Schlüter, A. D.; Sakamoto, J. A two-dimensional polymer prepared by organic synthesis. Nat. Chem. 2012, 4, 287–291.

    Article  CAS  PubMed  Google Scholar 

  40. Kory, M. J.; Wörle, M.; Weber, T.; Payamyar, P.; Poll, S. W.; Dshemuchadse, J.; Trapp, N.; Schlüter, A. D. Gram-scale synthesis of two-dimensional polymer crystals and their structure analysis by X-ray diffraction. Nat Chem. 2014, 6, 779–784.

    Article  CAS  PubMed  Google Scholar 

  41. Kissel, P.; Murray, D. J.; Wulftange, W. J.; Catalano, V. J.; King, B. T. A nanoporous two-dimensional polymer by singlecrystal-to-single-crystal photopolymerization. Nat. Chem. 2014, 6, 774–778.

    Article  CAS  PubMed  Google Scholar 

  42. Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? Chem. Rev. 2016, 116, 7159–7329.

    Article  CAS  PubMed  Google Scholar 

  43. Ji, J.; Wen, J.; Shen, Y.; Lv, Y.; Chen, Y.; Liu, S.; Ma, H.; Zhang, Y. Simultaneous noncovalent modification and exfoliation of 2D carbon nitride for enhanced electrochemiluminescent biosensing. J. Am. Chem. Soc. 2017,139, 11698–11701.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang, X.; Xie, X.; Wang, H.; Zhang, J.; Pan, B.; Xie, Y. Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J. Am. Chem. Soc. 2013, 135, 18–21.

    Article  CAS  PubMed  Google Scholar 

  45. Niu, P.; Zhang, L.; Liu, G.; Cheng, H. Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater. 2012, 22, 4763–4770.

    Article  CAS  Google Scholar 

  46. Yang, S.; Gong, Y.; Zhang, J.; Zhan, L.; Ma, L.; Fang, Z.; Vajtai, R.; Wang, X.; Ajayan, P. M. Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Adv. Mater. 2013, 25, 2452–2456.

    Article  CAS  PubMed  Google Scholar 

  47. Ding, Y.; Chen, Y. P.; Zhang, X.; Chen, L.; Dong, Z.; Jiang, H. L.; Xu, H.; Zhou, H. C. Controlled intercalation and chemical exfoliation of layered metal-organic frameworks using a chemically labile intercalating agent. J. Am. Chem. Soc. 2017, 139, 9136–9139.

    Article  CAS  PubMed  Google Scholar 

  48. Gao, X.; Zhu, Y.; Yi, D.; Zhou, J.; Zhang, S.; Yin, C.; Ding, F.; Zhang, S.; Yi, X.; Wang, J.; Tong, L.; Han, Y.; Liu, Z.; Zhang, J. Ultrathin graphdiyne film on graphene through solutionphase van der Waals epitaxy. Sci. Adv. 2018, 4, eaat6378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu, J.; Zan, W.; Li, K.; Yang, Y.; Bu, F.; Xu, Y. Solution synthesis of semiconducting two-dimensional polymer via trimerization of carbonitrile. J. Am. Chem. Soc. 2017, 139, 11666–11669.

    Article  CAS  PubMed  Google Scholar 

  50. Nuraje, N.; Su, K.; Yang, N. I.; Matsui, H. Liquid/liquid interfacial polymerization to grow single crystalline nanoneedles of various conducting polymers. ACS Nano 2008, 2, 502–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Murray, D. J.; Patterson, D. D.; Payamyar, P.; Bhola, R.; Song, W.; Lackinger, M.; Schlüter, A. D.; King, B. T. Large area synthesis of a nanoporous two-dimensional polymer at the air/water interface. J. Am. Chem. Soc. 2015, 137, 3450–3453.

    Article  CAS  PubMed  Google Scholar 

  52. Bruno, F. F.; Akkara, J. A.; Samuelson, L. A.; Kaplan, D. L.; Mandal, B. K.; Marx, K. A.; Kumar, J.; Tripathy, S. K. Enzymatic mediated synthesis of conjugated polymers at the langmuir trough air-water interface. Langmuir 1995, 11, 889–892.

    Article  CAS  Google Scholar 

  53. Guan, C. Z.; Wang, D.; Wan, L. J. Construction and repair of highly ordered 2D covalent networks by chemical equilibrium regulation. Chem. Commun. 2012, 48, 2943–2945.

    Article  CAS  Google Scholar 

  54. Xu, L.; Zhou, X.; Yu, Y.; Tian, W. Q.; Ma, J.; Lei, S. Surfaceconfined crystalline two-dimensional covalent organic frameworks via on-surface schiff-base coupling. ACS Nano 2013, 7, 8066–8073.

    Article  CAS  PubMed  Google Scholar 

  55. Sahabudeen, H.; Qi, H.; Glatz, B. A.; Tranca, D.; Dong, R.; Hou, Y.; Zhang, T.; Kuttner, C.; Lehnert, T.; Seifert, G.; Kaiser, U.; Fery, A.; Zheng, Z.; Feng, X. Wafer-sized multifunctional polyimine-based two-dimensional conjugated polymers with high mechanical stiffness. Nat. Commun. 2016, 7, 13461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Matsuoka, R.; Sakamoto, R.; Hoshiko, K.; Sasaki, S.; Masunaga, H.; Nagashio, K.; Nishihara, H. Crystalline graphdiyne nanosheets produced at a gas/liquid or liquid/liquid interface. J. Am. Chem. Soc. 2017, 139, 3145–3152.

    Article  CAS  Google Scholar 

  57. Liu, X. H.; Guan, C. Z.; Ding, S. Y.; Wang, W.; Yan, H. J.; Wang, D.; Wan, L. J. On-surface synthesis of single-layered two-dimensional covalent organic frameworks via solid-vapor interface reactions. J. Am. Chem. Soc. 2013, 135, 10470–10474.

    Article  CAS  PubMed  Google Scholar 

  58. Yang, Y.; Bu, F.; Liu, J.; Shakir, I.; Xu, Y. Mechanochemical synthesis of two-dimensional aromatic polyamides. Chem. Commun. 2017, 53, 7481–7484.

    Article  CAS  Google Scholar 

  59. Bard, A. J.; Fox, M. A. Artificial photosynthesis: Solar splitting of water to hydrogen and oxygen. Acc. Chem. Res. 1995, 28, 141–145.

    Article  CAS  Google Scholar 

  60. Wang, L.; Wan, Y.; Ding, Y.; Wu, S.; Zhang, Y.; Zhang, X.; Zhang, G.; Xiong, Y.; Wu, X.; Yang, J.; Xu, H. Conjugated microporous polymer nanosheets for overall water splitting using visible light. Ad. Mater. 2017, 29, 1702428.

    Article  CAS  Google Scholar 

  61. Chu, S.; Wang, Y.; Guo, Y.; Feng, J.; Wang, C.; Luo, W.; Fan, X.; Zou, Z. Band structure engineering of carbon nitride: In search of a polymer photocatalyst with high photooxidation property. ACS Catal. 2013, 3, 912–919.

    Article  CAS  Google Scholar 

  62. Ge, L.; Han, C.; Xiao, X.; Guo, L. In situ synthesis of cobaltphosphate (Co-Pi) modified g-C3N4 photocatalysts with enhanced photocatalytic activities. Appl. Catal. B Environ. 2013, 142,414–422.

    Article  CAS  Google Scholar 

  63. Wang, L.; Wan, Y.; Ding, Y.; Niu, Y.; Xiong, Y.; Wu, X.; Xu, H. Photocatalytic oxygen evolution from low-bandgap conjugated microporous polymer nanosheets: A combined first-principles calculation and experimental study. Nanoscale 2017, 9, 4090–4096.

    Article  CAS  PubMed  Google Scholar 

  64. Gao, C.; Wang, J.; Xu, H.; Xiong, Y. Coordination chemistry in the design of heterogeneous photocatalysts. Chem. Soc. Rev. 2017, 46, 2799–2823.

    Article  CAS  PubMed  Google Scholar 

  65. Cao, S.; Low, J.; Yu, J.; Jaroniec, M. Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 2015, 27, 2150–2176.

    Article  CAS  PubMed  Google Scholar 

  66. Luo, B.; Liu, G.; Wang, L. Recent advances in 2D materials for photocatalysis. Nanoscale 2016, 8, 6904–6920.

    Article  CAS  PubMed  Google Scholar 

  67. Wang, Y.; Suzuki, H.; Xie, J.; Tomita, O.; Martin, D. J.; Higashi, M.; Kong, D.; Abe, R.; Tang, J. Mimicking natural photosynthesis: Solar to renewable H2 fuel synthesis by Zscheme water splitting systems. Chem. Rev. 2018, 118, 5201–5241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Low, J.; Jiang, C.; Cheng, B.; Wageh, S.; Ghamdi, A. A. A.; Yu, J. A review of direct Z-scheme photocatalysts. Small Methods 2017, 1, 1700080.

    Article  CAS  Google Scholar 

  69. Zeng, D.; Xu, W.; Ong, W. J.; Xu, J.; Ren, H.; Chen, Y.; Zheng, H.; Peng, D. L. Toward noble-metal-free visible-lightdriven photocatalytic hydrogen evolution: Monodisperse sub-15 nm Ni2P nanoparticles anchored on porous g-C3N4 nanosheets to engineer 0D-2D heterojunction interfaces. Appl. Catal. B Environ. 2018, 221, 47–55.

    Article  CAS  Google Scholar 

  70. Li, X.; Bi, W.; Zhang, L.; Tao, S.; Chu, W.; Zhang, Q.; Luo, Y.; Wu, C.; Xie, Y. Single-atom Pt as co-catalyst for enhanced photocatalytic H2 evolution. Adv. Mater. 2016, 28, 2427–2431.

    Article  CAS  Google Scholar 

  71. Zhao, W.; Guo, Y.; Wang, S.; He, H.; Sun, C.; Yang, S. A novel ternary plasmonic photocatalyst: Ultrathin g-C3N4 nanosheet hybrided by Ag/AgVO3 nanoribbons with enhanced visiblelight photocatalytic performance. Appl. Catal. B Environ. 2015, 165, 335–343.

    Article  CAS  Google Scholar 

  72. Zeng, D.; Ong, W. J.; Chen, Y.; Tee, S. Y.; Chua, C. S.; Peng, D. L.; Han, M. Y. Co2P nanorods as an efficient cocatalyst decorated porous g-C3N4 nanosheets for photocatalytic hydrogen production under visible light irradiation. Part. Part. Syst. Charact. 2018, 35, 1700251.

    Article  CAS  Google Scholar 

  73. Xu, Q.; Zhu, B.; Jiang, C.; Cheng, B.; Yu, J. Constructing 2D/2D Fe2O3/g-C3N4 direct Z-scheme photocatalysts with enhanced H2 generation performance. Sol. RRL 2018, 2, 1800006.

    Article  CAS  Google Scholar 

  74. Wang, L.; Zheng, X.; Chen, L.; Xiong, Y.; Xu, H. Van der Waals heterostructures comprised of ultrathin polymer nanosheets for efficient Z-scheme overall water splitting. Angew. Chem. Int. Ed. 2018, 57, 3454–3458.

    Article  CAS  Google Scholar 

  75. Che, W.; Cheng, W.; Yao, T.; Tang, F.; Liu, W.; Su, H.; Huang, Y.; Liu, Q.; Liu, J.; Hu, F.; Pan, Z.; Sun, Z.; Wei, S. Fast photoelectron transfer in (Cring)–C3N4 plane heterostructural nanosheets for overall water splitting. J. Am. Chem. Soc. 2017, 139, 3021–3026.

    Article  CAS  PubMed  Google Scholar 

  76. Li, J.; Gao, X.; Liu, B.; Feng, Q.; Li, X. B.; Huang, M. Y.; Liu, Z.; Zhang, J.; Tung, C. H.; Wu, L. Z. Graphdiyne: A metal-free material as hole transfer layer to fabricate quantum dot-sensitized photocathodes for hydrogen production. J. Am. Chem. Soc. 2016,138, 3954–3957.

    Google Scholar 

  77. Gao, X.; Li, J.; Du, R.; Zhou, J.; Huang, M. Y.; Liu, R.; Li, J.; Xie, Z.; Wu, L. Z.; Liu, Z.; Zhang, J. Direct synthesis of graphdiyne nanowalls on arbitrary substrates and its application for photoelectrochemical water splitting cell. Adv. Mater. 2017, 29, 1605308.

    Article  CAS  Google Scholar 

  78. Kuriki, R.; Sekizawa, K.; Ishitani, O.; Maeda, K. Visible-lightdriven CO2 reduction with carbon nitride: Enhancing the activity of ruthenium catalysts. Ange w. Chem. Int. Ed. 2015, 127, 2436–2439.

    Article  Google Scholar 

  79. Cometto, C.; Kuriki, R.; Chen, L.; Maeda, K.; Lau, T. C.; Ishitani, O.; Robert, M. A carbon nitride/Fe quaterpyridine catalytic system for photostimulated CO2-to-CO conversion with visible light. J. Am. Chem. Soc. 2018, 140, 7437–7440.

    Article  CAS  PubMed  Google Scholar 

  80. Dong, G.; Zhang, L. Porous structure dependent photoreactivity of graphitic carbon nitride under visible light. J. Mater. Chem. 2012, 22, 1160–1166.

    Article  CAS  Google Scholar 

  81. Qin, J.; Wang, S.; Ren, H.; Hou, Y.; Wang, X. Photocatalytic reduction of CO2 by graphitic carbon nitride polymers derived from urea and barbituric acid. Appl. Catal. B Environ. 2015, 179,1-8.

    Google Scholar 

  82. Kuriki, R.; Matsunaga, H.; Nakashima, T.; Wada, K.; Yamakata, A.; Ishitani, O.; Maeda, K. Nature-inspired, highly durable CO2 reduction system consisting of a binuclear ruthenium(II) complex and an organic semiconductor using visible light. J. Am. Chem. Soc. 2016, 138, 5159–5170.

    Article  CAS  PubMed  Google Scholar 

  83. Kuriki, R.; Yamamoto, M.; Higuchi, K.; Yamamoto, Y.; Akatsuka, M.; Lu, D.; Yagi, S.; Yoshida, T.; Ishitani, O.; Maeda, K. Robust binding between carbon nitride nanosheets and a binuclear ruthenium(II) complex enabling durable, selective CO2 reduction under visible light in aqueous solution. A ge w. Chem. Int. Ed. 2017, 56, 4867–4871.

    Article  CAS  Google Scholar 

  84. Pachfule, P.; Achaijya, A.; Roeser, J.; Langenhahn, T.; Schwarze, M.; Schomäcker, R.; Thomas, A.; Schmidt, J. Diacetylene functionalized covalent organic framework (COF) for photocatalytic hydrogen generation. J. Am. Chem. Soc. 2018, 140, 1423–1427.

    Article  CAS  PubMed  Google Scholar 

  85. Wei, P. F.; Qi, M. Z.; Wang, Z. P.; Ding, S. Y.; Yu, W.; Liu, Q.; Wang, L. K.; Wang, H. Z.; An, W. K.; Wang, W. Benzoxazole-linked ultrastable covalent organic frameworks for photocatalysis. J. Am. Chem. Soc. 2018, 140, 4623–4631.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Key R&D Program of China (Nos. 2017YFA0207301 and 2015CB351903), the National Natural Science Foundation of China (Nos. 21474095 and 21875235), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hang-Xun Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, XL., Wang, L., Chen, L. et al. Ultrathin 2D Conjugated Polymer Nanosheets for Solar Fuel Generation. Chin J Polym Sci 37, 101–114 (2019). https://doi.org/10.1007/s10118-019-2171-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-019-2171-x

Keywords

Navigation