Skip to main content
Log in

Natural polypeptides treat pollution complex: Moisture-resistant multi-functional protein nanofabrics for sustainable air filtration

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Development of “green” multi-functional air filters with features such as excellent filtration efficiency, eco-friendliness, and environmental stability are critically required to address the increasing concerns of polluted air. Natural proteins, such as soy protein and gelatin, are attractive candidates as multi-functional air-filtration materials owing to the rich functional groups; however, these bio-materials are vulnerable to moisture, which limits their broad application in practice. In this work, a hydrophobic protein of zein derived from abundant corn is modified for the first time to produce high-performance nanofilters via electrospinning. The zein nanofabrics are fabricated with the aid of a non-toxic solvent and co-electrospinning agent, poly(ethylene oxide). The results reveal that the zein-based nanofabrics show high efficiency for the simultaneous removal of particulate matters of different sizes ranging from 0.1 to 10 μm (>99.5%) and certain gaseous toxic chemicals (>70%). In addition, the zein nanofabrics show excellent moisture-resistance and good adhesion to the cellulose paper towel used as the air-filter substrate. This study demonstrates that nanofabrics based on hydrophobic natural proteins such as zein are promising materials for developing multi-functional “green” air filters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, C.; Hsu, P. C.; Lee, H. W.; Ye, M.; Zheng, G. Y.; Liu, N.; Li, W. Y.; Cui, Y. Transparent air filter for high-efficiency PM2.5 capture. Nat. Commun. 2015, 6, 6205.

    Article  Google Scholar 

  2. Zhang, R. F.; Liu, C.; Hsu, P. C.; Zhang, C. F.; Liu, N.; Zhang, J. S.; Lee, H. R.; Lu, Y. Y.; Qiu, Y. C.; Chu, S. et al. Nanofiber air filters with high-temperature stability for efficient PM2.5 removal from the pollution sources. Nano Lett. 2016, 16, 3642–3649.

    Article  Google Scholar 

  3. Liu, X. B.; Souzandeh, H.; Zheng, Y. D.; Xie, Y. J.; Zhong, W. H.; Wang, C. Soy protein isolate/bacterial cellulose composite membranes for high efficiency particulate air filtration. Compos. Sci. Technol. 2017, 138, 124–133.

    Article  Google Scholar 

  4. Zhou, Z.; Dionisio, K. L.; Verissimo, T. G.; Kerr, A. S.; Coull, B.; Arku, R. E.; Koutrakis, P.; Spengler, J. D.; Hughes, A. F.; Vallarino, J. et al. Chemical composition and sources of particle pollution in affluent and poor neighborhoods of Accra, Ghana. Environ. Res. Lett. 2013, 8, 044025.

    Article  Google Scholar 

  5. Huang, J. N.; Cao, Y. H.; Shao, J.; Peng, X. F.; Guo, Z. H. Magnetic nanocarbon adsorbents with enhanced hexavalent chromium removal: Morphology dependence of fibrillar vs. particulate structures. Ind. Eng. Chem. Res. 2017, 56, 10689–10701.

    Article  Google Scholar 

  6. Wang, C. S.; Otani, Y. Removal of nanoparticles from gas streams by fibrous filters: A review. Ind. Eng. Chem. Res. 2013, 52, 5–17.

    Article  Google Scholar 

  7. Jung, J. H.; Hwang, G. B.; Park, S. Y.; Lee, J. E.; Nho, C. W.; Lee, B. U.; Bae, G. N. Antimicrobial air filtration using airborne Sophora Flavescens natural-product nanoparticles. Aerosol Sci. Technol. 2011, 45, 1510–1518.

    Article  Google Scholar 

  8. Li, P.; Wang, C. Y.; Zhang, Y. Y.; Wei, F. Air filtration in the free molecular flow regime: A review of high-efficiency particulate air filters based on carbon nanotubes. Small 2014, 10, 4543–4561.

    Article  Google Scholar 

  9. Xiao, Z. G.; Li, Y. H.; Wu, X. R.; Qi, G. Y.; Li, N. B.; Zhang, K.; Wang, D. H.; Sun, X. S. Utilization of sorghum lignin to improve adhesion strength of soy protein adhesives on wood veneer. Ind. Crop. Prod. 2013, 50, 501–509.

    Article  Google Scholar 

  10. Souzandeh, H.; Wang, Y.; Zhong, W. H. “Green” nano-filters: Fine nanofibers of natural protein for high efficiency filtration of particulate pollutants and toxic gases. RSC Adv. 2016, 6, 105948–105956.

    Article  Google Scholar 

  11. Wang, C. Y.; Wu, S. Y.; Jian, M. Q.; Xie, J. R.; Xu, L. P.; Yang, X. D.; Zheng, Q. S.; Zhang, Y. Y. Silk nanofibers as high efficient and lightweight air filter. Nano Res. 2016, 9, 2590–2597.

    Article  Google Scholar 

  12. Cheng, X. Q.; Wang, Z. X.; Jiang, X.; Li, T. X.; Lau, C. H.; Guo, Z. H.; Ma, J.; Shao, L. Towards sustainable ultrafast molecular-separation membranes: From conventional polymers to emerging materials. Prog. Mater. Sci. 2018, 92, 258–283.

    Article  Google Scholar 

  13. Fang, Q.; Zhu, M.; Yu, S. R.; Sui, G.; Yang, X. P. Studies on soy protein isolate/polyvinyl alcohol hybrid nanofiber membranes as multi-functional eco-friendly filtration materials. Mater. Sci. Eng. B 2016, 214, 1–10.

    Article  Google Scholar 

  14. Souzandeh, H.; Johnson, K. S.; Wang, Y.; Bhamidipaty, K.; Zhong, W. H. Soy-protein-based nanofabrics for highly efficient and multifunctional air filtration. ACS Appl. Mater. Interfaces 2016, 8, 20023–20031.

    Article  Google Scholar 

  15. Liu, D. G.; Chang, P. R.; Chen, M. D.; Wu, Q. L. Chitosan colloidal suspension composed of mechanically disassembled nanofibers. J. Colloid Interface Sci. 2011, 354, 6371oll.

    Google Scholar 

  16. Zhang, L.; Yu, W.; Han, C.; Guo, J.; Zhang, Q. H.; Xie, H. Y.; Shao, Q.; Sun, Z. G.; Guo, Z. H. Large scaled synthesis of heterostructured electrospun TiO2/SnO2 nanofibers with an enhanced photocatalytic activity. J. Electrochem. Soc. 2017, 164, H651–H656.

    Article  Google Scholar 

  17. Zhang, L.; Qin, M. K.; Yu, W.; Zhang, Q. H.; Xie, H. Y.; Sun, Z. G.; Shao, Q.; Guo, X. K.; Hao, L. H.; Zheng, Y. J. et al. Heterostructured TiO2/WO3 nanocomposites for photocatalytic degradation of toluene under visible light. J. Electrochem. Soc. 2017, 164, H1086–H1090.

    Article  Google Scholar 

  18. Song, W. G.; Liu, D. G.; Prempeh, N.; Song, R. J. Fiber alignment and liquid crystal orientation of cellulose nanocrystals in the electrospun nanofibrous mats. Biomacromolecules 2017, 18, 3273–3279.

    Article  Google Scholar 

  19. Tian, H. F.; Xu, G. Z.; Yang, B.; Guo, G. P. Microstructure and mechanical properties of soy protein/agar blend films: Effect of composition and processing methods. J. Food Eng. 2011, 107, 21–26.

    Article  Google Scholar 

  20. Guo, G. P.; Zhang, C.; Du, Z. J.; Zou, W.; Tian, H. F.; Xiang, A. M.; Li, H. Q. Structure and property of biodegradable soy protein isolate/PBAT blends. Ind. Crop. Prod. 2015, 74, 731–736.

    Article  Google Scholar 

  21. Souzandeh, H.; Molki, B.; Zheng, M.; Beyenal, H.; Scudiero, L.; Wang, Y.; Zhong, W. H. Cross-linked protein nanofilter with antibacterial properties for multifunctional air filtration. ACS Appl. Mater. Interfaces 2017, 9, 22846–22855.

    Article  Google Scholar 

  22. Wongsasulak, S.; Tongsin, P.; Intasanta, N.; Yoovidhya, T. Effect of glycerol on solution properties governing morphology, glass transition temperature, and tensile properties of electrospun zein film. J. Appl. Polym. Sci. 2010, 118, 910–919.

    Google Scholar 

  23. Shukla, R.; Cheryan, M. Zein: The industrial protein from corn. Ind. Crop. Prod. 2001, 13, 171–192.

    Article  Google Scholar 

  24. Park, J. H.; Park, S. M.; Kim, Y. H.; Oh, W.; Lee, G. W.; Karim, M. R.; Park, J. H.; Yeum, J. H. Effect of montmorillonite on wettability and microstructure properties of zein/montmorillonite nanocomposite nanofiber mats. J. Compos. Mater. 2013, 47, 251–257.

    Article  Google Scholar 

  25. Lai, H. M.; Geil, P. H.; Padua, G. W. X-ray diffraction characterization of the structure of zein-oleic acid films. J. Appl. Polym. Sci. 1999, 71, 1267–1281.

    Article  Google Scholar 

  26. Wang, C.; Wu, Y. C.; Li, Y. C.; Shao, Q.; Yan, X. R.; Han, C.; Wang, Z.; Liu, Z.; Guo, Z. H. Flame-retardant rigid polyurethane foam with a phosphorus-nitrogen single intumescent flame retardant. Polym. Adv. Technol. 2018, 29, 668–676.

    Article  Google Scholar 

  27. Li, Y. H.; Zhou, B.; Zheng, G. Q.; Liu, X. H.; Li, T. X.; Yan, C.; Cheng, C. B.; Dai, K.; Liu, C. T.; Shen, C. Y. et al. Continuously prepared highly conductive and stretchable SWNT/MWNT synergistically composited electrospun thermoplastic polyurethane yarns for wearable sensing. J. Mater. Chem. C 2018, doi: 10.1039/C7TC04959E.

    Google Scholar 

  28. Li, Y. C.; Wu, X. L.; Song, J. F.; Li, J. F.; Shao, Q.; Cao, N.; Lu, N.; Guo, Z. H. Reparation of recycled acrylonitrile- butadiene-styrene by pyromellitic dianhydride: Reparation performance evaluation and property analysis. Polymer 2017, 124, 41–47.

    Article  Google Scholar 

  29. Ma, Y. L.; Lv, L.; Guo, Y. R.; Fu, Y. J.; Shao, Q.; Wu, T. T.; Guo, S. J.; Sun, K.; Guo, X. K.; Wujcik, E. K. et al. Porous lignin based poly (acrylic acid)/organo-montmorillonite nanocomposites: Swelling behaviors and rapid removal of Pb(II) ions. Polymer 2017, 128, 12–23.

    Article  Google Scholar 

  30. Sun, K.; Xie, P. T.; Wang, Z. Y.; Su, T. M.; Shao, Q.; Ryu, J. E.; Zhang, X. H.; Guo, J.; Shankar, A.; Li, J. F. et al. Flexible polydimethylsiloxane/multi-walled carbon nanotubes membranous metacomposites with negative permittivity. Polymer 2017, 125, 50–57.

    Article  Google Scholar 

  31. Wang, C. F.; Zhao, M.; Li, J.; Yu, J. L.; Sun, S. F.; Ge, S. S.; Guo, X. K.; Xie, F.; Jiang, B.; Wujcik, E. K. et al. Silver nanoparticles/graphene oxide decorated carbon fiber synergistic reinforcement in epoxy-based composites. Polymer 2017, 131, 263–271.

    Article  Google Scholar 

  32. Wu, Z. J.; Gao, S.; Chen, L.; Jiang, D. W.; Shao, Q.; Zhang, B.; Zhai, Z. H.; Wang, C.; Zhao, M.; Ma, Y. Y. et al. Electrically insulated epoxy nanocomposites reinforced with synergistic core-shell SiO2@MWCNTs and montmorillonite bifillers. Macromol. Chem. Phys. 2017, 218, 1700357.

    Article  Google Scholar 

  33. Zhang, K.; Li, G. H.; Feng, L. M.; Wang, N.; Guo, J.; Sun, K.; Yu, K. X.; Zeng, J. B.; Li, T. X.; Guo, Z. H. et al. Ultralow percolation threshold and enhanced electromagnetic interference shielding in poly(L-lactide)/multi-walled carbon nanotube nanocomposites with electrically conductive segregated networks. J. Mater. Chem. C 2017, 5, 9359–9369.

    Article  Google Scholar 

  34. Wang, X. D.; Liu, X. H.; Yuan, H. Y.; Liu, H.; Liu, C. T.; Li, T. X.; Yan, C.; Yan, X. R.; Shen, C. Y.; Guo, Z. H. Non-covalently functionalized graphene strengthened poly(vinyl alcohol). Mater. Des. 2018, 139, 372–379.

    Article  Google Scholar 

  35. Souzandeh, H.; Scudiero, L.; Wang, Y.; Zhong, W. H. A Disposable multi-Functional air filter: Paper towel/protein nanofibers with gradient porous structures for capturing pollutants of broad species and sizes. ACS Sustain. Chem. Eng. 2017, 5, 6209–6217.

    Article  Google Scholar 

  36. Koombhongse, S.; Liu, W. X.; Reneker, D. H. Flat polymer ribbons and other shapes by electrospinning. J. Polym. Sci. Pt. B-Polym. Phys. 2001, 39, 2598–2606.

    Article  Google Scholar 

  37. Yao, C.; Li, X. S.; Song, T. Y. Electrospinning and crosslinking of zein nanofiber mats. J. Appl. Polym. Sci. 2007, 103, 380–385.

    Article  Google Scholar 

  38. Miyoshi, T.; Toyohara, K.; Minematsu, H. Preparation of ultrafine fibrous zein membranes via electrospinning. Polym. Int. 2005, 54, 1187–1190.

    Article  Google Scholar 

  39. Fu, X. W.; Jewel, Y.; Wang, Y.; Liu, J.; Zhong, W. H. Decoupled ion transport in a protein-based solid ion conductor. J. Phys. Chem. Lett. 2016, 7, 4304–4310.

    Article  Google Scholar 

  40. Chen, C. Y. Filtration of aerosols by fibrous media. Chem. Rev. 1955, 55, 595–623.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51373004) and Beijing Top Young Innovative Talents Program (No. 2014000026833ZK13). This work was also partly supported by USDA NIFA 2015-67021-22911.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Wang or Wei-Hong Zhong.

Electronic supplementary material

12274_2018_2013_MOESM1_ESM.pdf

Natural polypeptides treat pollution complex: Moisture-resistant multi-functional protein nanofabrics for sustainable air filtration

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, H., Fu, X., Zheng, M. et al. Natural polypeptides treat pollution complex: Moisture-resistant multi-functional protein nanofabrics for sustainable air filtration. Nano Res. 11, 4265–4277 (2018). https://doi.org/10.1007/s12274-018-2013-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2013-0

Keywords

Navigation