Skip to main content
Log in

Silk nanofibers as high efficient and lightweight air filter

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Silk is a widely available, edible, biocompatible, and environmentally sustainable natural material. Particulate matter (PM) pollution has drawn considerable attention because it is a serious threat to public health. Herein, we report a human-friendly silk nanofiber air filter, which exhibits superior filtration efficiency for both PM2.5 and submicron particles with obviously low pressure drop and low basis weight compared to typical commercial microfiber air filters. Additionally, other functions such as antibacterial activity could be easily integrated into the silk nanofiber air filters, enabling the fabrication of multifunctional air filters. All the above characteristics, combined with the natural abundance and biocompatibility of silk, suggest a great potential for the use of silk nanofibers as air filters, especially as comfortable and personal air purifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nel, A. Air pollution-related illness: Effects of particles. Science 2005, 308, 804–806.

    Article  Google Scholar 

  2. Pope, C. A., Dockery, D. W. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manag. Assoc. 2006, 56, 709–742.

    Article  Google Scholar 

  3. Zanobetti, A.; Schwartz, J. The effect of fine and coarse particulate air pollution on mortality: A national analysis. Environ. Health Perspect. 2009, 117, 898–903.

    Article  Google Scholar 

  4. Dominici, F.; Peng, R. D.; Bell, M. L.; Pham, L.; McDermott, A.; Zeger, S. L.; Samet, J. M. Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. JAMA 2006, 295, 1127–1134.

    Article  Google Scholar 

  5. Xia, T.; Kovochich, M.; Brant, J.; Hotze, M.; Sempf, J.; Oberley, T.; Sioutas, C.; Yeh, J. I.; Wiesner, M. R.; Nel, A. E. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett. 2006, 6, 1794–1807.

    Article  Google Scholar 

  6. Wang, C.-S.; Otani, Y. Removal of nanoparticles from gas streams by fibrous filters: A review. Ind. Eng. Chem. Res. 2013, 52, 5–17.

    Google Scholar 

  7. Li, P.; Wang, C. Y.; Zhang, Y. Y.; Wei, F. Air filtration in the free molecular flow regime: A review of high-efficiency particulate air filters based on carbon nanotubes. Small 2014, 10, 4543–4561.

    Article  Google Scholar 

  8. Viswanathan, G.; Kane, D. B.; Lipowicz, P. J. High efficiency fine particulate filtration using carbon nanotube coatings. Adv. Mater. 2004, 16, 2045–2049.

    Article  Google Scholar 

  9. Park, S. J.; Lee, D. G. Performance improvement of micronsized fibrous metal filters by direct growth of carbon nanotubes. Carbon 2006, 44, 1930–1935.

    Article  Google Scholar 

  10. Halonen, N.; Rautio, A.; Leino, A. R.; Kyllönen, T.; Tóth, G.; Lappalainen, J.; Kordás, K.; Huuhtanen, M.; Keiski, R. L.; Sápi, A. et al. Three-dimensional carbon nanotube scaffolds as particulate filters and catalyst support membranes. ACS Nano 2010, 4, 2003–2008.

    Article  Google Scholar 

  11. Park, J. H.; Yoon, K. Y.; Na, H.; Kim, Y. S.; Hwang, J.; Kim, J.; Yoon, Y. H. Fabrication of a multi-walled carbon nanotube-deposited glass fiber air filter for the enhancement of nano and submicron aerosol particle filtration and additional antibacterial efficacy. Sci. Total Environ. 2011, 409, 4132–4138.

    Article  Google Scholar 

  12. Li, P.; Zong, Y. C.; Zhang, Y. Y.; Yang, M. M.; Zhang, R. F.; Li, S. Q.; Wei, F. In situ fabrication of depth-type hierarchical CNT/quartz fiber filters for high efficiency filtration of submicron aerosols and high water repellency. Nanoscale 2013, 5, 3367–3372.

    Article  Google Scholar 

  13. Yildiz, O.; Bradford, P. D. Aligned carbon nanotube sheet high efficiency particulate air filters. Carbon 2013, 64, 295–304.

    Article  Google Scholar 

  14. Li, P.; Wang, C. Y.; Li, Z.; Zong, Y. C.; Zhang, Y. Y.; Yang, X. D.; Li, S. Q.; Wei, F. Hierarchical carbonnanotube/ quartz-fiber films with gradient nanostructures for high efficiency and long service life air filters. RSC Adv. 2014, 4, 54115–54121.

    Article  Google Scholar 

  15. Wang, C. Y.; Li, P.; Zong, Y. C.; Zhang, Y. Y.; Li, S. Q.; Wei, F. A high efficiency particulate air filter based on agglomerated carbon nanotube fluidized bed. Carbon 2014, 79, 424–431.

    Article  Google Scholar 

  16. Zhou, X. Z.; Boey, F.; Zhang, H. Controlled growth of single-walled carbon nanotubes on patterned substrates. Chem. Soc. Rev. 2011, 40, 5221–5231.

    Article  Google Scholar 

  17. Liu, C.; Hsu, P. C.; Lee, H. W.; Ye, M.; Zheng, G. Y.; Liu, N.; Li, W. Y.; Cui, Y. Transparent air filter for high-efficiency PM2.5 capture. Nat. Commun. 2015, 6, 6205.

    Article  Google Scholar 

  18. Desai, K.; Kit, K.; Li, J. J.; Davidson, P. M.; Zivanovic, S.; Meyer, H. Nanofibrous chitosan non-wovens for filtration applications. Polymer 2009, 50, 3661–3669.

    Article  Google Scholar 

  19. Mao, X.; Si, Y.; Chen, Y. C.; Yang, L. P.; Zhao, F.; Ding, B.; Yu, J. Y. Silica nanofibrous membranes with robust flexibility and thermal stability for high-efficiency fine particulate filtration. RSC Adv. 2012, 2, 12216–12223.

    Article  Google Scholar 

  20. Li, D.; Xia, Y. N. Electrospinning of nanofibers: Reinventing the wheel? Adv. Mater. 2004, 16, 1151–1170.

    Article  Google Scholar 

  21. Thavasi, V.; Singh, G.; Ramakrishna, S. Electrospun nanofibers in energy and environmental applications. Energy Environ. Sci. 2008, 1, 205–221.

    Article  Google Scholar 

  22. Tao, H.; Brenckle, M. A.; Yang, M. M.; Zhang, J. D.; Liu, M. K.; Siebert, S. M.; Averitt, R. D.; Mannoor, M. S.; Mcalpine, M. C.; Rogers, J. A. et al. Silk-based conformal, adhesive, edible food sensors. Adv. Mater. 2012, 24, 1067–1072.

    Article  Google Scholar 

  23. Tao, H; Kaplan, D. L.; Omenetto, F. G. Silk materials—A road to sustainable high technology. Adv. Mater. 2012, 24, 2824–2837.

    Article  Google Scholar 

  24. Rockwood, D. N.; Preda, R. C.; Yücel, T.; Wang, X. Q.; Lovett, M. L.; Kaplan, D. L. Materials fabrication from Bombyx mori silk fibroin. Nat. Protoc. 2011, 6, 1612–1631.

    Article  Google Scholar 

  25. Sandra, P.; Oliveira, J. M.; Reis, R. L. Natural-based nanocomposites for bone tissue engineering and regenerative medicine: A review. Adv. Mater. 2015, 27, 1143–1169.

    Article  Google Scholar 

  26. Lang, G.; Jokisch, S.; Scheibel, T. Air filter devices including nonwoven meshes of electrospun recombinant spider silk proteins. J. Vis. Exp. 2013, DOI: 10.3791/50492.

    Google Scholar 

  27. Chen, C. Y. Filtration of aerosols by fibrous media. Chem. Rev. 1955, 55, 595–623.

    Article  Google Scholar 

  28. Gong, G. M.; Zhou, C.; Wu, J. T.; Jin, X.; Jiang, L. Nanofibrous adhesion: The twin of gecko adhesion. ACS Nano 2015, 9, 3721–3727.

    Article  Google Scholar 

  29. Xiu, Z. M.; Zhang, Q. B.; Puppala, H. L.; Colvin, V. L.; Alvarez, P. J. J. Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett. 2012, 12, 4271–4275.

    Article  Google Scholar 

  30. Quadros, M. E.; Marr, L. C. Silver nanoparticles and total aerosols emitted by nanotechnology-related consumer spray products. Environ. Sci. Technol. 2011, 45, 10713–10719.

    Article  Google Scholar 

  31. Cao, C.; Jiang, W. J.; Wang, B. Y.; Fang, J. H.; Lang, J. D.; Tian, G.; Jiang, J. K.; Zhu, T. F. Inhalable microorganisms in Beijing’s PM2. 5 and PM10 pollutants during a severe smog event. Environ. Sci. Technol. 2014, 48, 1499–1507.

    Article  Google Scholar 

  32. Morone, J. R.; Elechiguerra, J. L.; Camacho, A.; Holt, K.; Kouri, J. B.; Ramírez, J. T.; Yacaman, M. J. The bactericidal effect of silver nanoparticles. Nanotechnology 2005, 16, 2346–2353.

    Article  Google Scholar 

  33. Shi, Q.; Vitchuli, N.; Nowak, J.; Noar, J.; Caldwell, J. M.; Breidt, F.; Bourham, M.; Mccord, M.; Zhang, X. W. One-step synthesis of silver nanoparticle-filled nylon 6 nanofibers and their antibacterial properties. J. Mater. Chem. 2011, 21, 10330–10335.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingying Zhang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Wu, S., Jian, M. et al. Silk nanofibers as high efficient and lightweight air filter. Nano Res. 9, 2590–2597 (2016). https://doi.org/10.1007/s12274-016-1145-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1145-3

Keywords

Navigation