Skip to main content
Log in

Semi-transparent polymer solar cells with all-copper nanowire electrodes

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Transparent electrodes based on copper nanowires (Cu NWs) have attracted significant attention owing to their advantages including high optical transmittance, good conductivity, and excellent mechanical flexibility. However, low-cost, high-performance, and environmental friendly solar cells with all-Cu NW electrodes have not been realized until now. Herein, top and bottom transparent electrodes based on Cu NWs with low surface roughness and homogeneous conductivity are fabricated. Then, semi-transparent polymer solar cells (PSCs) with the inverted structure of polyacrylate/Cu NWs/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) (PH1000)/Y-TiO2/poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid 3,4,5-tris(octyloxy)benzyl/PEDOT:PSS (4083)/Cu NWs/polyimide/polydimethylsiloxane are constructed; these could absorb light from both sides with a power conversion efficiency reaching 1.97% and 1.85%. Furthermore, the PSCs show an average transmittance of 42% in the visible region, which renders them suitable for some specialized applications such as power-generating windows and building-integrated photovoltaics. The indium tin oxide (ITO)- and noble metal-free PSCs could pave new pathways for fabricating cost-effective semi-transparent PSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tang, C. W. Two-layer organic photovoltaic cell. Appl. Phys. Lett. 1986, 48, 183–185.

    Article  Google Scholar 

  2. Granström, M.; Petritsch, K.; Arias, A. C.; Lux, A.; Andersson, M. R.; Friend, R. H. Laminated fabrication of polymeric photovoltaic diodes. Nature 1998, 395, 257–260.

    Article  Google Scholar 

  3. He, Z. C.; Zhong, C. M.; Su, S. J.; Xu, M.; Wu, H. B.; Cao, Y. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat. Photonics 2012, 6, 591–595.

    Article  Google Scholar 

  4. Kim, J.; Hong, Z. R.; Li, G.; Song, T. B.; Chey, J.; Lee, Y. S.; You, J. B.; Chen, C. C.; Sadana, D. K.; Yang, Y. 10.5% efficient polymer and amorphous silicon hybrid tandem photovoltaic cell. Nat.Commun. 2015, 6, 6391.

    Article  Google Scholar 

  5. Chen, J. D.; Cui, C. H.; Li, Y. Q.; Zhou, L.; Ou, Q. D.; Li, C.; Li, Y. F.; Tang, J. X. Single-junction polymer solar cells exceeding 10% power conversion efficiency. Adv. Mater. 2015, 27, 1035–1041.

    Article  Google Scholar 

  6. Kaltenbrunner, M.; White, M. S.; Glowacki, E. D.; Sekitani, T.; Someya, T.; Sariciftci, N. S.; Bauer, S. Ultrathin and lightweight organic solar cells with high flexibility. Nat. Commun. 2012, 3, 770.

    Article  Google Scholar 

  7. You, J. B.; Dou, L. T.; Yoshimura, K.; Kato, T.; Ohya, K.; Moriarty, T.; Emery, K.; Chen, C. C.; Gao, J.; Li, G. et al. A polymer tandem solar cell with 10.6% power conversion efficiency. Nat. Commun. 2013, 4, 1446.

    Article  Google Scholar 

  8. Liu, Y. H.; Zhao, J. B.; Li, Z. K.; Mu, C.; Ma, W.; Hu, H. W.; Jiang, K.; Lin, H. R.; Ade, H.; Yan, H. Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat. Commun. 2014, 5, 5293.

    Article  Google Scholar 

  9. Angmo, D.; Andersen, T. R.; Bentzen, J. J.; Helgesen, M.; Sø ndergaard, R. R.; Jø rgensen, M.; Carlé, J. E.; Bundgaard, E.; Krebs, F. C. Roll-to-roll printed silver nanowire semitransparent electrodes for fully ambient solution-processed tandem polymer solar cells. Adv. Funct. Mater. 2015, 25, 4539–4547.

    Article  Google Scholar 

  10. Wu, J.; Que, X. L.; Hu, Q.; Luo, D. Y.; Liu, T. H.; Liu, F.; Russell, T. P.; Zhu, R.; Gong, Q. H. Organic solar cells: Multi-length scaled silver nanowire grid for application in efficient organic solar cells. Adv. Funct. Mater. 2016, 26, 4806.

    Article  Google Scholar 

  11. Kim, Y.; Ryu, T. I.; Ok, K. H.; Kwak, M. G.; Park, S.; Park, N. G.; Han, C. J.; Kim, B. S.; Ko, M. J.; Son, H. J. et al. Inverted layer-by-layer fabrication of an ultraflexible and transparent Ag nanowire/conductive polymer composite electrode for use in high-performance organic solar cells. Adv. Funct. Mater. 2015, 25, 4743.

    Article  Google Scholar 

  12. Stewart, I. E.; Rathmell, A. R.; Yan, L.; Ye, S. R.; Flowers, P. F.; You, W.; Wiley, B. J. Solution-processed copper-nickel nanowire anodes for organic solar cells. Nanoscale 2014, 6, 5980–5988.

    Article  Google Scholar 

  13. Sachse, C.; Weiß, N.; Gaponik, N.; Müller-Meskamp, L.; Eychmüller, A.; Leo, K. ITO-free, small-molecule organic solar cells on spray-coated copper-nanowire-based transparent electrodes. Adv. Energy Mater. 2014, 4, 1300737.

    Article  Google Scholar 

  14. Lee, J. Y.; Connor, S. T.; Cui, Y.; Peumans, P. Semitransparent organic photovoltaic cells with laminated top electrode. Nano Lett. 2010, 10, 1276–1279.

    Article  Google Scholar 

  15. Krantz, J.; Stubhan, T.; Richter, M.; Spallek, S.; Litzov, I.; Matt, G. J.; Spiecker, E.; Brabec, C. J. Spray-coated silver nanowires as top electrode layer in semitransparent P3HT:PCBM-based organic solar cell devices. Adv. Funct. Mater. 2013, 23, 1711–1717.

    Article  Google Scholar 

  16. Lu, H. F.; Zhang, D.; Ren, X. G.; Liu, J.; Choy, W. C. H. Selective growth and integration of silver nanoparticles on silver nanowires at room conditions for transparent nanonetwork electrode. ACS Nano 2014, 8, 10980–10987.

    Article  Google Scholar 

  17. Song, M.; You, D. S.; Lim, K.; Park, S.; Jung, S.; Kim, C. S.; Kim, D. H.; Kim, D. G.; Kim, J. K.; Park, J. et al. Highly efficient and bendable organic solar cells with solutionprocessed silver nanowire electrodes. Adv. Funct. Mater. 2013, 23, 4177–4184.

    Article  Google Scholar 

  18. Chen, J. Y.; Zhou, W. X.; Chen, J.; Fan, Y.; Zhang, Z. Q.; Huang, Z. D.; Feng, X. M.; Mi, B. X.; Ma, Y. W.; Huang, W. Solution-processed copper nanowire flexible transparent electrodes with PEDOT:PSS as binder, protector and oxidelayer scavenger for polymer solar cells. Nano Res. 2015, 8, 1017–1025.

    Article  Google Scholar 

  19. Zhang, D. Q.; Wang, R. R.; Wen, M. C.; Weng, D.; Cui, X.; Sun, J.; Li, H. X.; Lu, Y. F. Synthesis of ultralong copper nanowires for high-performance transparent electrodes. J. Am. Chem. Soc. 2012, 134, 14283–14286.

    Article  Google Scholar 

  20. Han, S.; Hong, S.; Ham, J.; Yeo, J.; Lee, J.; Kang, B.; Lee, P.; Kwon, J.; Lee, S. S.; Yang, M. Y. et al. Flexible electronics: Fast plasmonic laser nanowelding for a cu-nanowire percolation network for flexible transparent conductors and stretchable electronics. Adv. Mater. 2014, 26, 5888.

    Article  Google Scholar 

  21. Zhong, Z. Y.; Lee, H.; Kang, D.; Kwon, S.; Choi, Y. M.; Kim, I.; Kim, K. Y.; Lee, Y.; Woo, K.; Moon, J. Continuous patterning of copper nanowire-based transparent conducting electrodes for use in flexible electronic applications. ACS Nano 2016, 10, 7847–7854.

    Article  Google Scholar 

  22. Mayousse, C.; Celle, C.; Carella, A.; Simonato, J. P. Synthesis and purification of long copper nanowires. Application to high performance flexible transparent electrodes with and without PEDOT:PSS. Nano Res. 2014, 7, 315–324.

    Article  Google Scholar 

  23. Wang, X.; Wang, R. R.; Zhai, H. T.; Shen, X.; Wang, T.; Shi, L. J.; Yu, R. C.; Sun, J. Room-temperature surface modification of cu nanowires and their applications in transparent electrodes, SERS-based sensors, and organic solar cells. ACS Appl. Mater. Interfaces 2016, 8, 28831–28837.

    Article  Google Scholar 

  24. Chen, K. S.; Salinas, J. F.; Yip, H. L.; Huo, L. J.; Hou, J. H.; Jen, A. K. Y. Semi-transparent polymer solar cells with 6% PCE, 25% average visible transmittance and a color rendering index close to 100 for power generating window applications. Energy Environ. Sci. 2012, 5, 9551–9557.

    Article  Google Scholar 

  25. Zhai, H. T.; Wang, R. R.; Wang, W. Q.; Wang, X.; Cheng, Y.; Shi, L. J.; Liu, Y. Q.; Sun, J. Novel fabrication of copper nanowire/cuprous oxidebased semiconductor-liquid junction solar cells. Nano Res. 2015, 8, 3205–3215.

    Article  Google Scholar 

  26. Cheng, Y.; Wang, R. R.; Sun, J.; Gao, L. A stretchable and highly sensitive graphene-based fiber for sensing tensile strain, bending, and torsion. Adv. Mater. 2015, 27, 7365–7371.

    Article  Google Scholar 

  27. Wang, R. R.; Zhai, H. T.; Wang, T.; Wang, X.; Cheng, Y.; Shi, L. J.; Sun, J. Plasma-induced nanowelding of a copper nanowire network and its application in transparent electrodes and stretchable conductors. Nano Res. 2016, 9, 2138–2148.

    Article  Google Scholar 

  28. Wang, S. L.; Cheng, Y.; Wang, R. R.; Sun, J.; Gao, L. Highly thermal conductive copper nanowire composites with ultralow loading: Toward applications as thermal interface materials. ACS Appl. Mater. Interfaces 2014, 6, 6481–6486.

    Article  Google Scholar 

  29. Spechler, J. A.; Koh, T. W.; Herb, J. T.; Rand, B. P.; Arnold, C. B. A transparent, smooth, thermally robust, conductive polyimide for flexible electronics. Adv. Funct. Mater. 2015, 25, 7428–7434.

    Article  Google Scholar 

  30. Zhou, H. P.; Chen, Q.; Li, G.; Luo, S.; Song, T. B.; Duan, H. S.; Hong, Z. R.; You, J. B.; Liu, Y. S.; Yang, Y. Interface engineering of highly efficient perovskite solar cells. Science 2014, 345, 542–546.

    Article  Google Scholar 

  31. Mao, L.; Chen, Q.; Li, Y. W.; Li, Y.; Cai, J. H.; Su, W. M.; Bai, S.; Jin, Y. Z.; Ma, C. Q.; Cui, Z. et al. Flexible silver grid/PEDOT:PSS hybrid electrodes for large area inverted polymer solar cells. Nano Energy 2014, 10, 259–267.

    Article  Google Scholar 

  32. Wang, Y.; Tong, S. W.; Xu, X. F.; Öezyilmaz, B.; Loh, K. P. Interface engineering of layer-by-layer stacked graphene anodes for high-performance organic solar cells. Adv. Mater. 2011, 23, 1514–1518.

    Article  Google Scholar 

  33. Park, H.; Brown, P. R.; Buloyić, V.; Kong, J. Graphene as transparent conducting electrodes in organic photovoltaics: studies in graphene morphology, hole transporting layers, and counter electrodes. Nano Lett. 2012, 12, 133–140.

    Article  Google Scholar 

  34. Wang, J.; Polleux, J.; Lim, J.; Dunn, B. Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J. Phys. Chem. C 2007, 111, 14925–14931.

    Article  Google Scholar 

  35. Liu, Z. K.; You, P.; Liu, S. H.; Yan, F. Neutral-color semitransparent organic solar cells with all-graphene electrodes. ACS Nano 2015, 9, 12026–12034.

    Article  Google Scholar 

  36. Liu, Z. K.; Li, J. H.; Sun, Z. H.; Tai, G. A.; Lau, S. P.; Yan, F. The application of highly doped single-layer graphene as the top electrodes of semitransparent organic solar cells. ACS Nano 2012, 6, 810–818.

    Article  Google Scholar 

  37. Park, H.; Chang, S.; Smith, M.; Gradeč ak, S.; Kong, J. Interface engineering of graphene for universal applications as both anode and cathode in organic photovoltaics. Sci. Rep. 2013, 3, 1581.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (No. 61301036), Shanghai Science and Technology Rising Star Project (No. 17QA1404700), Youth Innovation Promotion Association CAS (No. 2014226), Shanghai Key Basic Research Project (No. 16JC1402300), and the Major State Research Development Program of China (No. 2016YFA0203000).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ranran Wang or Jing Sun.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, H., Li, Y., Chen, L. et al. Semi-transparent polymer solar cells with all-copper nanowire electrodes. Nano Res. 11, 1956–1966 (2018). https://doi.org/10.1007/s12274-017-1812-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1812-z

Keywords

Navigation