Skip to main content
Log in

Microstructuring of carbon/tin quantum dots via a novel photolithography and pyrolysis-reduction process

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A novel microfabrication process based on optimized photolithography combined with pyrolysis-reduction is proposed to fabricate interdigital porous carbon/tin quantum dots (C/Sn QDs) microelectrodes. C/Sn QDs active microelectrodes are also employed as current collectors of a micro-supercapacitor (MSC). A uniform dispersion of Sn QDs (diameter of ∼3 nm) in the carbon matrix is achieved using our facile and controllable microfabrication process. The as-fabricated C/Sn QDs MSC obtained by carbonization at 900 °C exhibits a higher areal specific capacitance (5.79 mF·cm−2) than that of the pyrolyzed carbon-based MSC (1.67 mF·cm−2) and desirable cycling stability (93.3% capacitance retention after 5,000 cyclic voltammetry cycles). This novel microfabrication process is fully compatible with micromachining technologies, showing great potential for large-scale fine micropatterning of carbon-based composites for applications in micro/nano devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cai, Z. Y.; Xu, L.; Yan, M. Y.; Han, C. H.; He, L.; Hercule, K. M.; Niu, C. J.; Yuan, Z. F.; Xu, W. W.; Qu, L. B. et al. Manganese oxide/carbon yolk–shell nanorod anodes for high capacity lithium batteries. Nano Lett. 2015, 15, 738–744.

    Article  Google Scholar 

  2. Béguin, F.; Presser, V.; Balducci, A.; Frackowiak, E. Carbons and electrolytes for advanced supercapacitors. Adv. Mater. 2014, 26, 2219–2251.

    Article  Google Scholar 

  3. Hsia, B.; Kim, M. S.; Vincent, M.; Carraro, C.; Maboudian, R. Photoresist-derived porous carbon for on-chip microsupercapacitors. Carbon 2013, 57, 395–400.

    Article  Google Scholar 

  4. Ren, S. Z.; Wang, M.; Xu, M. L.; Yang, Y.; Jia, C. Y.; Hao, C. Fabrication of high-performance supercapacitors based on hollow SnO2 microspheres. J. Solid State Electrochem. 2014, 18, 909–916.

    Article  Google Scholar 

  5. Jang, J.; Bae, J.; Choi, M.; Yoon, S.-H. Fabrication and characterization of polyaniline coated carbon nanofiber for supercapacitor. Carbon 2005, 43, 2730–2736.

    Article  Google Scholar 

  6. Huang, P.; Lethien, C.; Pinaud, S.; Brousse, K.; Laloo, R.; Turq, V.; Respaud, M.; Demortière, A.; Daffos, B.; Taberna, P. L. et al. On-chip and freestanding elastic carbon films for micro-supercapacitors. Science 2016, 351, 691–695.

    Article  Google Scholar 

  7. Niu, Z. Q.; Zhou, W. Y.; Chen, X. D.; Chen, J.; Xie, S. S. Highly compressible and all-solid-state supercapacitors based on nanostructured composite sponge. Adv. Mater. 2015, 27, 6002–6008.

    Article  Google Scholar 

  8. Liu, L. L.; Niu, Z. Q.; Chen, J. Design and integration of flexible planar micro-supercapacitors. Nano Res. 2017, 10, 1524–1544.

    Article  Google Scholar 

  9. Liu, L. L.; Niu, Z. Q.; Chen, J. Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations. Chem. Soc. Rev. 2016, 45, 4340–4363.

    Article  Google Scholar 

  10. Yin, C.; He, L.; Wang, Y. F.; Liu, Z. H.; Zhang, G. B.; Zhao, K. N.; Tang, C. J.; Yan, M. Y.; Han, Y. L.; Mai, L. Q. Pyrolyzed carbon with embedded NiO/Ni nanospheres for applications in microelectrodes. RSC Adv. 2016, 6, 43436–43441.

    Article  Google Scholar 

  11. Yang, Y. J.; He, L.; Tang, C. J.; Hu, P.; Hong, X. F.; Yan, M. Y.; Dong, Y. X.; Tian, X. C.; Wei, Q. L.; Mai, L. Q. Improved conductivity and capacitance of interdigital carbon microelectrodes through integration with carbon nanotubes for micro-supercapacitors. Nano Res. 2016, 9, 2510–2519.

    Article  Google Scholar 

  12. He, L.; Toda, M.; Kawai, Y.; Miyashita, H.; Omori, M.; Hashida, T.; Berger, R.; Ono, T. Fabrication of CNT-carbon composite microstructures using Si micromolding and pyrolysis. Microsyst. Technol. 2014, 20, 201–208.

    Article  Google Scholar 

  13. De Volder, M. F. L.; Vansweevelt, R.; Wagner, P.; Reynaerts, D.; van Hoof, C.; Hart, A. J. Hierarchical carbon nanowire microarchitectures made by plasma-assisted pyrolysis of photoresist. ACS Nano 2011, 5, 6593–6600.

    Article  Google Scholar 

  14. Wei, L.; Nitta, N.; Yushin, G. Lithographically patterned thin activated carbon films as a new technology platform for on-chip devices. ACS Nano 2013, 7, 6498–6506.

    Article  Google Scholar 

  15. Jariwala, D.; Sangwan, V. K.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chem. Soc. Rev. 2013, 42, 2824–2860.

    Article  Google Scholar 

  16. Sevilla, M.; Mokaya, R. Energy storage applications of activated carbons: Supercapacitors and hydrogen storage. Energy Environ. Sci. 2014, 7, 1250–1280.

    Article  Google Scholar 

  17. Niu, Z. Q.; Zhang, L.; Liu, L. L.; Zhu, B. W.; Dong, H. B.; Chen, X. D. All-solid-state flexible ultrathin microsupercapacitors based on graphene. Adv. Mater. 2013, 25, 4035–4042.

    Article  Google Scholar 

  18. Beidaghi, M.; Wang, C. L. Micro-supercapacitors based on three dimensional interdigital polypyrrole/C-MEMS electrodes. Electrochim. Acta 2011, 56, 9508–9514.

    Article  Google Scholar 

  19. Wei, L.; Sevilla, M.; Fuertes, A. B.; Mokaya, R.; Yushin, G. Polypyrrole-derived activated carbons for high-performance electrical double-layer capacitors with ionic liquid electrolyte. Adv. Funct. Mater. 2012, 22, 827–834.

    Article  Google Scholar 

  20. Malladi, K.; Wang, C. L.; Madou, M. Fabrication of suspended carbon microstructures by e-beam writer and pyrolysis. Carbon 2006, 44, 2602–2607.

    Article  Google Scholar 

  21. Galobardes, F.; Wang, C.; Madou, M. Investigation on the solid electrolyte interface formed on pyrolyzed photoresist carbon anodes for C-MEMS lithium-ion batteries. Diam. Relat. Mater. 2006, 15, 1930–1934.

    Article  Google Scholar 

  22. Lu, X. X.; Yang, F.; Geng, X.; Xiao, P. Enhanced cyclability of amorphous carbon-coated SnO2-graphene composite as anode for Li-ion batteries. Electrochim. Acta 2014, 147, 596–602.

    Article  Google Scholar 

  23. Lee, J. A.; Lee, S. W.; Lee, K.-C.; Park, S. I.; Lee, S. S. Fabrication and characterization of freestanding 3D carbon microstructures using multi-exposures and resist pyrolysis. J. Micromech. Microeng. 2008, 18, 035012.

    Article  Google Scholar 

  24. Beidaghi, M.; Chen, W.; Wang, C. L. Electrochemically activated carbon micro-electrode arrays for electrochemical micro-capacitors. J. Power Sources 2011, 196, 2403–2409.

    Article  Google Scholar 

  25. Min, H.-S.; Park, B. Y.; Taherabadi, L.; Wang, C. L.; Yeh, Y.; Zaouk, R.; Madou, M. J.; Dunn, B. Fabrication and properties of a carbon/polypyrrole three-dimensional microbattery. J. Power Sources 2008, 178, 795–800.

    Article  Google Scholar 

  26. Wei, L.; Yushin, G. Nanostructured activated carbons from natural precursors for electrical double layer capacitors. Nano Energy 2012, 1, 552–565.

    Article  Google Scholar 

  27. Chen, W.; Beidaghi, M.; Penmatsa, V.; Bechtold, K.; Kumari, L.; Li, W. Z.; Wang, C. L. Integration of carbon nanotubes to C-MEMS for on-chip supercapacitors. IEEE Trans. Nanotechnol. 2010, 9, 734–740.

    Article  Google Scholar 

  28. Wang, C. L.; Jia, G. Y.; Taherabadi, L. H.; Madou, M. J. A novel method for the fabrication of high-aspect ratio C-MEMS structures. J. Microelectromech. Syst. 2005, 14, 348–358.

    Article  Google Scholar 

  29. Schueller, O. J. A.; Brittain, S. T.; Whitesides, G. M. Fabrication of glassy carbon microstructures by soft lithography. Sensor Actuat. A-Phys. 1999, 72, 125–139.

    Article  Google Scholar 

  30. Jiang, H.; Lee, P. S.; Li, C. Z. 3D carbon based nanostructures for advanced supercapacitors. Energy Environ. Sci. 2013, 6, 41–53.

    Article  Google Scholar 

  31. McCreery, R. L. Advanced carbon electrode materials for molecular electrochemistry. Chem. Rev. 2008, 108, 2646–2687.

    Article  Google Scholar 

  32. Li, J.; Le, D. B.; Ferguson, P. P.; Dahn, J. R. Lithium polyacrylate as a binder for tin–cobalt–carbon negative electrodes in lithium-ion batteries. Electrochim. Acta 2010, 55, 2991–2995.

    Article  Google Scholar 

  33. Tang, J.; Liu, J.; Torad, N. L.; Kimura, T.; Yamauchi, Y. Tailored design of functional nanoporous carbon materials toward fuel cell applications. Nano Today 2014, 9, 305–323.

    Article  Google Scholar 

  34. Lee, J. A.; Lee, K. C.; Park, S. I.; Lee, S. S. The fabrication of carbon nanostructures using electron beam resist pyrolysis and nanomachining processes for biosensing applications. Nanotechnology 2008, 19, 215302.

    Article  Google Scholar 

  35. Sheeja, D.; Tay, B. K.; Lau, S. P.; Yu, L. J.; Miao, J. M.; Chua, H. C.; Milne, W. I. Fabrication of smooth amorphous carbon micro-cantilevers by lift-off. Sensor Actuat. B-Chem. 2004, 98, 275–281.

    Article  Google Scholar 

  36. Yan, S.; Wu, Q. S. Micropored Sn-SnO2/carbon heterostructure nanofibers and their highly sensitive and selective C2H5OH gas sensing performance. Sensor Actuat. B-Chem. 2014, 205, 329–337.

    Article  Google Scholar 

  37. Luo, B.; Wang, B.; Liang, M. H.; Ning, J.; Li, X. L.; Zhi, L. J. Reduced graphene oxide-mediated growth of uniform tin-core/carbon-sheath coaxial nanocables with enhanced lithium ion storage properties. Adv. Mater. 2012, 24, 1405–1409.

    Article  Google Scholar 

  38. Sun, L. M.; Wang, X. H.; Susantyoko, R. A.; Zhang, Q. High performance binder-free Sn coated carbon nanotube array anode. Carbon 2015, 82, 282–287.

    Article  Google Scholar 

  39. Noh, M.; Kwon, Y.; Lee, H.; Cho, J.; Kim, Y.; Kim, M. G. Amorphous carbon-coated tin anode material for lithium secondary battery. Chem. Mater. 2005, 17, 1926–1929.

    Article  Google Scholar 

  40. Chen, S. Q.; Chen, P.; Wu, M. H.; Pan, D. Y.; Wang, Y. Graphene supported Sn–Sb@carbon core-shell particles as a superior anode for lithium ion batteries. Electrochem. Commun. 2010, 12, 1302–1306.

    Article  Google Scholar 

  41. Liu, C.-J.; Huang, H.; Cao, G.-Z.; Xue, F.-H.; Paredes Camacho, R. A.; Dong, X.-L. Enhanced electrochemical stability of Sn-carbon nanotube nanocapsules as lithium-ion battery anode. Electrochim. Acta 2014, 144, 376–382.

    Article  Google Scholar 

  42. Guo, B. K.; Shu, J.; Tang, K.; Bai, Y.; Wang, Z. X.; Chen, L. Q. Nano-Sn/hard carbon composite anode material with high-initial coulombic efficiency. J. Power Sources 2008, 177, 205–210.

    Article  Google Scholar 

  43. Lee, K. T.; Jung, Y. S.; Oh, S. M. Synthesis of tinencapsulated spherical hollow carbon for anode material in lithium secondary batteries. J. Am. Chem. Soc. 2003, 125, 5652–5653.

    Article  Google Scholar 

  44. Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.

    Article  Google Scholar 

  45. Yang, Y.; Ren, S. Z.; Ma, S. B.; Hao, C.; Ji, M. The synthesis of ordered Sn-C composite microspheres and their mechanical properties. Colloid. Surf. A 2015, 471, 81–85.

    Article  Google Scholar 

  46. Zhang, G. H.; Zhu, J.; Zeng, W.; Hou, S. C.; Gong, F. L.; Li, F.; Li, C. C.; Duan, H. G. Tin quantum dots embedded in nitrogen-doped carbon nanofibers as excellent anode for lithium-ion batteries. Nano Energy 2014, 9, 61–70.

    Article  Google Scholar 

  47. Ramana, B. V.; Das, A.; Dhara, S.; Amirthapandian, S.; Tyagi, A. K. Synthesis and surface functionalization of SnO2 nanoparticles and their superhydrophobic coatings. Sci. Adv. Mater. 2013, 5, 865–872.

    Article  Google Scholar 

  48. Egashira, M.; Takatsuji, H.; Okada, S.; Yamaki, J.-I. Properties of containing Sn nanoparticles activated carbon fiber for a negative electrode in lithium batteries. J. Power sources 2002, 107, 56–60.

    Article  Google Scholar 

  49. Zhao, K. N.; Zhang, L.; Xia, R.; Dong, Y. F.; Xu, W. W.; Niu, C. J.; He, L.; Yan, M. Y.; Qu, L. B.; Mai, L. Q. SnO2 quantum dots@graphene oxide as a high-rate and long-life anode material for lithium-ion batteries. Small 2016, 12, 588–594.

    Article  Google Scholar 

  50. Zhang, L.; Zhao, K. N.; Xu, W. W.; Dong, Y. F.; Xia, R.; Liu, F. N.; He, L.; Wei, Q. L.; Yan, M. Y.; Mai, L. Q. Integrated SnO2 nanorod array with polypyrrole coverage for high-rate and long-life lithium batteries. Phys. Chem. Chem. Phys. 2015, 17, 7619–7623.

    Article  Google Scholar 

  51. Xu, W. W.; Zhao, K. N.; Niu, C. J.; Zhang, L.; Cai, Z. Y.; Han, C. H.; He, L.; Shen, T.; Yan, M. Y.; Qu, L. B. et al. Heterogeneous branched core–shell SnO2-PANI nanorod arrays with mechanical integrity and three dimentional electron transport for lithium batteries. Nano Energy 2014, 8, 196–204.

    Article  Google Scholar 

  52. Zhou, P.; Yang, X.; He, L.; Hao, Z. M.; Luo, W.; Xiong, B.; Xu, X.; Niu, C. J.; Yan, M. Y.; Mai, L. Q. The young’s modulus of high-aspect-ratio carbon/carbon nanotube composite microcantilevers by experimental and modeling validation. Appl. Phys. Lett. 2015, 106, 111908.

    Article  Google Scholar 

  53. Chen, M. M.; Xia, X. X.; Wang, Z. L.; Li, Y. L.; Li, J. J.; Gu, C. Z. Rectifying behavior of individual SnO2 nanowire by different metal electrode contacts. Microelectron. Eng. 2008, 85, 1379–1381.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Nos. 2016YFA0202603 and 2016YFA0202604), the National Basic Research Program of China (No. 2013CB934103), the Programme of Introducing Talents of Discipline to Universities (No. B17034), the National Natural Science Foundation of China (Nos. 51502227, 51579198 and 51521001), the National Natural Science Fund for Distinguished Young Scholars (No. 51425204), the China Postdoctoral Science Foundation (No. 2015T80845), the Hubei Province Natural Science Fund (No. 2016CFB582), the Fundamental Research Funds for the Central Universities (WUT: 2016III001 and 2016III005). Prof. Liang He and Prof. Liqiang Mai gratefully acknowledged financial support from China Scholarship Council (Nos. 201606955094 and 201606955096).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang He or Liqiang Mai.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, X., He, L., Ma, X. et al. Microstructuring of carbon/tin quantum dots via a novel photolithography and pyrolysis-reduction process. Nano Res. 10, 3743–3753 (2017). https://doi.org/10.1007/s12274-017-1587-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1587-2

Keywords

Navigation