Skip to main content
Log in

Design and integration of flexible planar micro-supercapacitors

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

As promising candidates for energy-storage devices, supercapacitors (SCs) have attracted considerable attention because of their unique features, such as their high power density, outstanding rate capability, excellent cycling performance, and safety. The recent boom in portable electronic devices requires high-performance SCs that are flexible, simplified, thin, and integrated. Tremendous efforts have been directed towards the design and integration of planar micro-SCs (MSCs) based on different active electrode materials by various methods. This review highlights the recent developments in the device design of flexible planar MSCs and their integration with other electronic devices. The current challenges and future prospects for the development of flexible MSCs are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, G. P.; Zhang, L.; Zhang, J. J. A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 2012, 41, 797–828.

    Article  Google Scholar 

  2. Wang, X. L.; Shi, G. G. Flexible graphene devices related to energy conversion and storage. Energy Environ. Sci. 2015, 8, 790–823.

    Article  Google Scholar 

  3. Liu, Q.-C.; Li, L.; Xu, J.-J.; Chang, Z.-W.; Xu, D.; Yin, Y.-B.; Yang, X.-Y.; Liu, T.; Jiang, Y.-S.; Yan, J.-M. et al. Flexible and foldable Li-O2 battery based on paper-ink cathode. Adv. Mater. 2015, 27, 8095–8101.

    Article  Google Scholar 

  4. Liu, Q.-C.; Xu, J.-J.; Xu, D.; Zhang, X.-B. Flexible lithium-oxygen battery based on a recoverable cathode. Nat. Commun. 2015, 6, 7892.

    Article  Google Scholar 

  5. Hu, X. F.; Sun, J. C.; Li, Z. F.; Zhao, Q.; Chen, C. C.; Chen, J. Rechargeable room-temperature Na-CO2 batteries. Angew. Chem., Int. Ed. 2016, 55, 6482–6486.

    Article  Google Scholar 

  6. Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.

    Article  Google Scholar 

  7. Zhang, L. L.; Zhao, X. S. Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 2009, 38, 2520–2531.

    Article  Google Scholar 

  8. Liu, L. L.; Niu, Z. Q.; Chen, J. Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations. Chem. Soc. Rev. 2016, 45, 4340–4363.

    Article  Google Scholar 

  9. Niu, Z. Q.; Chen, J.; Hng, H. H.; Ma, J.; Chen, X. D. A leavening strategy to prepare reduced graphene oxide foams. Adv. Mater. 2012, 24, 4144–4150.

    Article  Google Scholar 

  10. Niu, Z. Q.; Dong, H. B.; Zhu, B. W.; Li, J. Z.; Hng, H. H.; Zhou, W. Y.; Chen, X. D.; Xie, S. S. Highly stretchable, integrated supercapacitors based on single-walled carbon nanotube films with continuous reticulate architecture. Adv. Mater. 2013, 25, 1058–1064.

    Article  Google Scholar 

  11. Yang, Y. J.; He, L.; Tang, C. J.; Hu, P.; Hong, X. F.; Yan, M. Y.; Dong, Y. X.; Tian, X. C.; Wei, Q. L.; Mai, L. Q. Improved conductivity and capacitance of interdigital carbon microelectrodes through integration with carbon nanotubes for micro-supercapacitors. Nano Res. 2016, 9, 2510–2519.

    Article  Google Scholar 

  12. Béguin, F.; Presser, V.; Balducci, A.; Frackowiak, E. Carbons and electrolytes for advanced supercapacitors. Adv. Mater. 2014, 26, 2219–2251.

    Article  Google Scholar 

  13. Han, S.; Wu, D. Q.; Li, S.; Zhang, F.; Feng, X. L. Porous graphene materials for advanced electrochemical energy storage and conversion devices. Adv. Mater. 2014, 26, 849–864.

    Article  Google Scholar 

  14. Cao, Z. Y.; Wei, B. Q. A perspective: Carbon nanotube macro-films for energy storage. Energy Environ. Sci. 2013, 6, 3183–3201.

    Article  Google Scholar 

  15. Niu, Z. Q.; Zhou, W. Y.; Chen, X. D.; Chen, J.; Xie, S. S. Highly compressible and all-solid-state supercapacitors based on nanostructured composite sponge. Adv. Mater. 2015, 27, 6002–6008.

    Article  Google Scholar 

  16. Zhai, Y. P.; Dou, Y. Q.; Zhao, D. Y.; Fulvio, P. F.; Mayes, R. T.; Dai, S. Carbon materials for chemical capacitive energy storage. Adv. Mater. 2011, 23, 4828–4850.

    Article  Google Scholar 

  17. Cao, X. H.; Yin, Z. Y.; Zhang, H. Three-dimensional graphene materials: Preparation, structures and application in supercapacitors. Energy Environ. Sci. 2014, 7, 1850–1865.

    Article  Google Scholar 

  18. Yang, X. W.; Cheng, C.; Wang, Y. F.; Qiu, L.; Li, D. Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science 2013, 341, 534–537.

    Article  Google Scholar 

  19. Sundramoorthy, A. K.; Wang, Y. C.; Gunasekaran, S. Low-temperature solution process for preparing flexible transparent carbon nanotube film for use in flexible supercapacitors. Nano Res. 2015, 8, 3430–3445.

    Article  Google Scholar 

  20. Xu, Y. X.; Lin, Z. Y.; Huang, X. Q.; Liu, Y.; Huang, Y.; Duan, X. F. Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. ACS Nano 2013, 7, 4042–4049.

    Article  Google Scholar 

  21. Xu, Y. X.; Lin, Z. Y.; Huang, X. Q.; Wang, Y.; Huang, Y.; Duan, X. F. Functionalized graphene hydrogel-based highperformance supercapacitors. Adv. Mater. 2013, 25, 5779–5784.

    Article  Google Scholar 

  22. Xu, Y. X.; Lin, Z. Y.; Zhong, X.; Huang, X. Q.; Weiss, N. O.; Huang, Y.; Duan, X. F. Holey graphene frameworks for highly efficient capacitive energy storage. Nat. Commun. 2014, 5, 4554.

    Google Scholar 

  23. Peng, X.; Peng, L. L.; Wu, C. Z.; Xie, Y. Two dimensional nanomaterials for flexible supercapacitors. Chem. Soc. Rev. 2014, 43, 3303–3323.

    Article  Google Scholar 

  24. Lin, T. Q.; Chen, I. W.; Liu, F. X.; Yang, C. Y.; Bi, H.; Xu, F. F.; Huang, F. Q. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 2015, 350, 1508–1513.

    Article  Google Scholar 

  25. Yan, J.; Wang, Q.; Wei, T.; Fan, Z. J. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv. Energy Mater. 2014, 4, 1300816

    Article  Google Scholar 

  26. Liu, L. L.; Niu, Z. Q.; Zhang, L.; Zhou, W. Y.; Chen, X. D.; Xie, S. S. Nanostructured graphene composite papers for highly flexible and foldable supercapacitors. Adv. Mater. 2014, 26, 4855–4862.

    Article  Google Scholar 

  27. Niu, Z. Q.; Luan, P. S.; Shao, Q.; Dong, H. B.; Li, J. Z.; Chen, J.; Zhao, D.; Cai, L.; Zhou, W. Y.; Chen, X. D. et al. A “skeleton/skin” strategy for preparing ultrathin free-standing single-walled carbon nanotube/polyaniline films for high performance supercapacitor electrodes. Energy Environ. Sci. 2012, 5, 8726–8733.

    Article  Google Scholar 

  28. Hercule, K. M.; Wei, Q. L.; Khan, A. M.; Zhao, Y. L.; Tian, X. C.; Mai, L. Q. Synergistic effect of hierarchical nanostructured MoO2/Co(OH)2 with largely enhanced pseudocapacitor cyclability. Nano Lett. 2013, 13, 5685–5691.

    Article  Google Scholar 

  29. Du, H. M.; Jiao, L. F.; Wang, Q. H.; Yang, J. Q.; Guo, L. J.; Si, Y. C.; Wang, Y. J.; Yuan, H. T. Facile carbonaceous microsphere templated synthesis of Co3O4 hollow spheres and their electrochemical performance in supercapacitors. Nano Res. 2013, 6, 87–98.

    Article  Google Scholar 

  30. Li, P. X.; Shi, E. Z.; Yang, Y. B.; Shang, Y. Y.; Peng, Q. Y.; Wu, S. T.; Wei, J. Q.; Wang, K. L.; Zhu, H. W.; Yuan, Q. et al. Carbon nanotube-polypyrrole core–shell sponge and its application as highly compressible supercapacitor electrode. Nano Res. 2014, 7, 209–218.

    Article  Google Scholar 

  31. Park, S.; Shim, H. W.; Lee, C. W.; Song, H. J.; Park, I. J.; Kim, J. C.; Hong, K. S.; Kim, D. W. Tailoring uniform γ-MnO2 nanosheets on highly conductive three-dimensional current collectors for high-performance supercapacitor electrodes. Nano Res. 2015, 8, 990–1004.

    Article  Google Scholar 

  32. Wang, Z.; Jia, W.; Jiang, M. L.; Chen, C.; Li, Y. D. One-step accurate synthesis of shell controllable CoFe2O4 hollow microspheres as high-performance electrode materials in supercapacitor. Nano Res. 2016, 9, 2026–2033.

    Article  Google Scholar 

  33. Reddy, A. L. M.; Gowda, S. R.; Shaijumon, M. M.; Ajayan, P. M. Hybrid nanostructures for energy storage applications. Adv. Mater. 2012, 24, 5045–5064.

    Article  Google Scholar 

  34. Chen, P. C.; Chen, H. T.; Qiu, J.; Zhou, C. W. Inkjet printing of single-walled carbon nanotube/RuO2 nanowire supercapacitors on cloth fabrics and flexible substrates. Nano Res. 2010, 3, 594–603.

    Article  Google Scholar 

  35. Peng, Y. T.; Chen, Z.; Wen, J.; Xiao, Q. F.; Weng, D.; He, S. Y.; Geng, H. B.; Lu, Y. F. Hierarchical manganese oxide/carbon nanocomposites for supercapacitor electrodes. Nano Res. 2011, 4, 216–225.

    Article  Google Scholar 

  36. Wang, H. L.; Liang, Y. Y.; Mirfakhrai, T.; Chen, Z.; Casalongue, H. S.; Dai, H. J. Advanced asymmetrical supercapacitors based on graphene hybrid materials. Nano Res. 2011, 4, 729–736.

    Article  Google Scholar 

  37. Wang, H. Y.; Deng, J.; Chen, Y. Q.; Xu, F.; Wei, Z. Z.; Wang, Y. Hydrothermal synthesis of manganese oxide encapsulated multiporous carbon nanofibers for supercapacitors. Nano Res. 2016, 9, 2672–2680.

    Article  Google Scholar 

  38. Xu, Y. X.; Huang, X. Q.; Lin, Z. Y.; Zhong, X.; Huang, Y.; Duan, X. F. One-step strategy to graphene/Ni(OH)2 composite hydrogels as advanced three-dimensional supercapacitor electrode materials. Nano Res. 2013, 6, 65–76.

    Article  Google Scholar 

  39. Hammock, M. L.; Chortos, A.; Tee, B. C. K.; Tok, J. B. H.; Bao, Z. 25th anniversary article: The evolution of electronic skin (E-Skin): A brief history, design considerations, and recent progress. Adv. Mater. 2013, 25, 5997–6037.

    Article  Google Scholar 

  40. Niu, Z. Q.; Liu, L. L.; Zhang, L.; Zhou, W. Y.; Chen, X. D.; Xie, S. S. Programmable nanocarbon-based architectures for flexible supercapacitors. Adv. Energy Mater. 2015, 5, 1500677.

    Article  Google Scholar 

  41. Nyholm, L.; Nyström, G.; Mihranyan, A.; Strømme, M. Toward flexible polymer and paper-based energy storage devices. Adv. Mater. 2011, 23, 3751–3769.

    Google Scholar 

  42. Shao, Y. L.; El-Kady, M. F.; Wang, L. J.; Zhang, Q. L.; Li, Y. G.; Wang, H. Z.; Mousavi, M. F.; Kaner, R. B. Graphene-based materials for flexible supercapacitors. Chem. Soc. Rev. 2015, 44, 3639–3665.

    Article  Google Scholar 

  43. Zhou, G. M.; Li, F.; Cheng, H.-M. Progress in flexible lithium batteries and future prospects. Energy Environ. Sci. 2014, 7, 1307–1338.

    Article  Google Scholar 

  44. Cai, X.; Peng, M.; Yu, X.; Fu, Y. P.; Zou, D. C. Flexible planar/fiber-architectured supercapacitors for wearable energy storage. J. Mater. Chem. C 2014, 2, 1184–1200.

    Article  Google Scholar 

  45. Yang, P. H.; Mai, W. J. Flexible solid-state electrochemical supercapacitors. Nano Energy 2014, 8, 274–290.

    Article  Google Scholar 

  46. Wu, Z.-S.; Feng, X. L.; Cheng, H.-M. Recent advances in graphene-based planar micro-supercapacitors for on-chip energy storage. Natl. Sci. Rev. 2014, 1, 277–292.

    Article  Google Scholar 

  47. Li, L.; Wu, Z.; Yuan, S.; Zhang, X.-B. Advances and challenges for flexible energy storage and conversion devices and systems. Energy Environ. Sci. 2014, 7, 2101–2122.

    Article  Google Scholar 

  48. He, Y. M.; Chen, W. J.; Gao, C. T.; Zhou, J. Y.; Li, X. D.; Xie, E. Q. An overview of carbon materials for flexible electrochemical capacitors. Nanoscale 2013, 5, 8799–8820.

    Article  Google Scholar 

  49. Xu, H. H.; Hu, X. L.; Sun, Y. M.; Yang, H. L.; Liu, X. X.; Huang, Y. H. Flexible fiber-shaped supercapacitors based on hierarchically nanostructured composite electrodes. Nano Res. 2015, 8, 1148–1158.

    Article  Google Scholar 

  50. Beidaghi, M.; Gogotsi, Y. Capacitive energy storage in micro-scale devices: Recent advances in design and fabrication of micro-supercapacitors. Energy Environ. Sci. 2014, 7, 867–884.

    Article  Google Scholar 

  51. Liu, W. W.; Feng, Y. Q.; Yan, X. B.; Chen, J. T.; Xue, Q. J. Superior micro-supercapacitors based on graphene quantum dots. Adv. Funct. Mater. 2013, 23, 4111–4122.

    Article  Google Scholar 

  52. Huang, P.; Lethien, C.; Pinaud, S.; Brousse, K.; Laloo, R.; Turq, V.; Respaud, M.; Demortiere, A.; Daffos, B.; Taberna, P. L. et al. On-chip and freestanding elastic carbon films for micro-supercapacitors. Science 2016, 351, 691–695.

    Article  Google Scholar 

  53. Luan, P. S.; Zhang, N.; Zhou, W. Y.; Niu, Z. Q.; Zhang, Q.; Cai, L.; Zhang, X.; Yang, F.; Fan, Q. X.; Zhou, W. B. et al. Epidermal supercapacitor with high performance. Adv. Funct. Mater. 2016, 26, 8178–8184.

    Article  Google Scholar 

  54. Xu, H. H.; Hu, X. L.; Yang, H. L.; Sun, Y. M.; Hu, C. C.; Huang, Y. H. Flexible asymmetric micro-supercapacitors based on Bi2O3 and MnO2 nanoflowers: Larger areal mass promises higher energy density. Adv. Energy Mater. 2015, 5, 1401882.

    Article  Google Scholar 

  55. Dong, X. L.; Guo, Z. Y.; Song, Y. F.; Hou, M. Y.; Wang, J. Q.; Wang, Y. G.; Xia, Y. Y. Flexible and wire-shaped micro-supercapacitor based on Ni(OH)2-nanowire and ordered mesoporous carbon electrodes. Adv. Funct. Mater. 2014, 24, 3405–3412.

    Article  Google Scholar 

  56. Gao, F.; Wolfer, M. T.; Nebel, C. E. Highly porous diamond foam as a thin-film micro-supercapacitor material. Carbon 2014, 80, 833–840.

    Article  Google Scholar 

  57. Ji, H. X.; Mei, Y. F.; Schmidt, O. G. Swiss roll nanomembranes with controlled proton diffusion as redox microsupercapacitors. Chem. Commun. 2010, 46, 3881–3883.

    Article  Google Scholar 

  58. Aradilla, D.; Gao, F.; Lewes-Malandrakis, G.; Muller-Sebert, W.; Gaboriau, D.; Gentile, P.; Iliev, B.; Schubert, T.; Sadki, S.; Bidan, G. et al. A step forward into hierarchically nanostructured materials for high performance microsupercapacitors: Diamond-coated SiNW electrodes in protic ionic liquid electrolyte. Electrochem. Commun. 2016, 63, 34–38.

    Article  Google Scholar 

  59. Huang, P.; Pech, D.; Lin, R. Y.; McDonough, J. K.; Brunet, M.; Taberna, P.-L.; Gogotsi, Y.; Simon, P. On-chip micro-supercapacitors for operation in a wide temperature range. Electrochem. Commun. 2013, 36, 53–56.

    Article  Google Scholar 

  60. Beidaghi, M.; Wang, C. L. Micro-supercapacitors based on three dimensional interdigital polypyrrole/C-MEMS electrodes. Electrochim. Acta 2011, 56, 9508–9514.

    Article  Google Scholar 

  61. Thissandier, F.; Dupre, L.; Gentile, P.; Brousse, T.; Bidan, G.; Buttard, D.; Sadki, S. Ultra-dense and highly doped SiNWs for micro-supercapacitors electrodes. Electrochim. Acta 2014, 117, 159–163.

    Article  Google Scholar 

  62. Brachet, M.; Gaboriau, D.; Gentile, P.; Fantini, S.; Bidan, G.; Sadki, S.; Brousse, T.; Le Bideau, J. Solder-reflow resistant solid-state micro-supercapacitors based on ionogels. J. Mater. Chem. A 2016, 4, 11835–11843.

    Article  Google Scholar 

  63. Achour, A.; Porto, R. L.; Soussou, M. A.; Islam, M.; Boujtita, M.; Aissa, K. A.; Le Brizoual, L.; Djouadi, A.; Brousse, T. Titanium nitride films for micro-supercapacitors: Effect of surface chemistry and film morphology on the capacitance. J. Power Sources 2015, 300, 525–532.

    Article  Google Scholar 

  64. Huang, P. H.; Heon, M.; Pech, D.; Brunet, M.; Taberna, P. L.; Gogotsi, Y.; Lofland, S.; Hettinger, J. D.; Simon, P. Micro-supercapacitors from carbide derived carbon (CDC) films on silicon chips. J. Power Sources 2013, 225, 240–244.

    Article  Google Scholar 

  65. Liu, C.-C.; Tsai, D.-S.; Chung, W.-H.; Li, K.-W.; Lee, K.-Y.; Huang, Y.-S. Electrochemical micro-capacitors of patterned electrodes loaded with manganese oxide and carbon nanotubes. J. Power Sources 2011, 196, 5761–5768.

    Article  Google Scholar 

  66. Achour, A.; Ducros, J. B.; Porto, R. L.; Boujtita, M.; Gautron, E.; Le Brizoual, L.; Djouadi, M. A.; Brousse, T. Hierarchical nanocomposite electrodes based on titanium nitride and carbon nanotubes for micro-supercapacitors. Nano Energy 2014, 7, 104–113.

    Article  Google Scholar 

  67. Alper, J. P.; Wang, S.; Rossi, F.; Salviati, G.; Yiu, N.; Carraro, C.; Maboudian, R. Selective ultrathin carbon sheath on porous silicon nanowires: Materials for extremely high energy density planar micro-supercapacitors. Nano Lett. 2014, 14, 1843–1847.

    Article  Google Scholar 

  68. Lin, J.; Zhang, C. G.; Yan, Z.; Zhu, Y.; Peng, Z. W.; Hauge, R. H.; Natelson, D.; Tour, J. M. 3-Dimensional graphene carbon nanotube carpet-based microsupercapacitors with high electrochemical performance. Nano Lett. 2013, 13, 72–78.

    Article  Google Scholar 

  69. Wang, X.; Myers, B. D.; Yan, J.; Shekhawat, G.; Dravid, V.; Lee, P. S. Manganese oxide micro-supercapacitors with ultra-high areal capacitance. Nanoscale 2013, 5, 4119–4122.

    Article  Google Scholar 

  70. Pech, D.; Brunet, M.; Durou, H.; Huang, P. H.; Mochalin, V.; Gogotsi, Y.; Taberna, P. L.; Simon, P. Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol. 2010, 5, 651–654.

    Article  Google Scholar 

  71. Niu, Z. Q.; Zhang, L.; Liu, L. L.; Zhu, B. W.; Dong, H. B.; Chen, X. D. All-solid-state flexible ultrathin microsupercapacitors based on graphene. Adv. Mater. 2013, 25, 4035–4042.

    Article  Google Scholar 

  72. Wang, X. F.; Lu, X. H.; Liu, B.; Chen, D.; Tong, Y. X.; Shen, G. Z. Flexible energy-storage devices: Design consideration and recent progress. Adv. Mater. 2014, 26, 4763–4782.

    Article  Google Scholar 

  73. Niu, Z. Q.; Ma, W. J.; Li, J. Z.; Dong, H. B.; Ren, Y.; Zhao, D.; Zhou, W. Y.; Xie, S. S. High-strength laminated copper matrix nanocomposites developed from a singlewalled carbon nanotube film with continuous reticulate architecture. Adv. Funct. Mater. 2012, 22, 5209–5215.

    Article  Google Scholar 

  74. Yu, Y. Z.; Zhang, J.; Wu, X.; Zhu, Z. Q. Facile ionexchange synthesis of silver films as flexible current collectors for micro-supercapacitors. J. Mater. Chem. A 2015, 3, 21009–21015.

    Article  Google Scholar 

  75. Kim, H.; Yoon, J.; Lee, G.; Paik, S. H.; Choi, G.; Kim, D.; Kim, B. M.; Zi, G.; Ha, J. S. Encapsulated, high-performance, stretchable array of stacked planar micro-supercapacitors as waterproof wearable energy storage devices. ACS Appl. Mater. Interfaces 2016, 8, 16016–16025.

    Article  Google Scholar 

  76. Kim, D.; Shin, G.; Kang, Y. J.; Kim, W.; Ha, J. S. Fabrication of a stretchable solid-state micro-supercapacitor array. ACS Nano 2013, 7, 7975–7982.

    Article  Google Scholar 

  77. Kim, S. K.; Koo, H. J.; Lee, A.; Braun, P. V. Selective wetting-induced micro-electrode patterning for flexible micro-supercapacitors. Adv. Mater. 2014, 26, 5108–5112.

    Article  Google Scholar 

  78. Hsia, B.; Marschewski, J.; Wang, S.; In, J. B.; Carraro, C.; Poulikakos, D.; Grigoropoulos, C. P.; Maboudian, R. Highly flexible, all solid-state micro-supercapacitors from vertically aligned carbon nanotubes. Nanotechnology 2014, 25, 055401.

    Article  Google Scholar 

  79. Lee, G.; Kim, D.; Yun, J.; Ko, Y.; Cho, J.; Ha, J. S. Highperformance all-solid-state flexible micro-supercapacitor arrays with layer-by-layer assembled MWNT/MnOx nanocomposite electrodes. Nanoscale 2014, 6, 9655–9664.

    Article  Google Scholar 

  80. Lee, G.; Kim, D.; Kim, D.; Oh, S.; Yun, J.; Kim, J.; Lee, S.-S.; Ha, J. S. Fabrication of a stretchable and patchable array of high performance micro-supercapacitors using a non-aqueous solvent based gel electrolyte. Energy Environ. Sci. 2015, 8, 1764–1774.

    Article  Google Scholar 

  81. Sun, L. M.; Wang, X. H.; Zhang, K.; Zou, J. P.; Zhang, Q. Metal-free SWNT/carbon/MnO2 hybrid electrode for high performance coplanar micro-supercapacitors. Nano Energy 2016, 22, 11–18.

    Article  Google Scholar 

  82. Liu, W. W.; Lu, C. X.; Li, H. L.; Tay, R. Y.; Sun, L. M.; Wang, X. H.; Chow, W. L.; Wang, X. L.; Tay, B. K.; Chen, Z. W. et al. Paper-based all-solid-state flexible microsupercapacitors with ultra-high rate and rapid frequency response capabilities. J. Mater. Chem. A 2016, 4, 3754–3764.

    Article  Google Scholar 

  83. Chen, J.; Jia, C. Y.; Wan, Z. Q. The preparation and electrochemical properties of MnO2/poly(3,4-ethylenedioxythiophene)/multiwalled carbon nanotubes hybrid nanocomposite and its application in a novel flexible micro-supercapacitor. Electrochim. Acta 2014, 121, 49–56.

    Article  Google Scholar 

  84. Wang, J.-G.; Kang, F. Y.; Wei, B. Q. Engineering of MnO2- based nanocomposites for high-performance supercapacitors. Prog. Mater. Sci. 2015, 74, 51–124.

    Article  Google Scholar 

  85. Liu, L. L.; Niu, Z. Q.; Zhang, L.; Chen, X. D. Structural diversity of bulky graphene materials. Small 2014, 10, 2200–2214.

    Article  Google Scholar 

  86. Niu, Z. Q.; Liu, L. L.; Zhang, L.; Chen, X. D. Porous graphene materials for water remediation. Small 2014, 10, 3434–3441.

    Article  Google Scholar 

  87. Lee, S. C.; Patil, U. M.; Kim, S. J.; Ahn, S.; Kang, S. W.; Jun, S. C. All-solid-state flexible asymmetric micro supercapacitors based on cobalt hydroxide and reduced graphene oxide electrodes. RSC Adv. 2016, 6, 43844–43854.

    Article  Google Scholar 

  88. Sun, G. Z.; An, J.; Chua, C. K.; Pang, H. C.; Zhang, J.; Chen, P. Layer-by-layer printing of laminated graphene-based interdigitated microelectrodes for flexible planar microsupercapacitors. Electrochem. Commun. 2015, 51, 33–36.

    Article  Google Scholar 

  89. Cao, J.; Chen, C.; Zhao, Q.; Zhang, N.; Lu, Q. Q.; Wang, X. Y.; Niu, Z. Q.; Chen, J. A flexible nanostructured paper of a reduced graphene oxide–sulfur composite for highperformance lithium–sulfur batteries with unconventional configurations. Adv. Mater. 2016, 28, 9629–9636.

    Article  Google Scholar 

  90. Maiti, U. N.; Lim, J.; Lee, K. E.; Lee, W. J.; Kim, S. O. Three-dimensional shape engineered, interfacial gelation of reduced graphene oxide for high rate, large capacity supercapacitors. Adv. Mater. 2014, 26, 615–619.

    Article  Google Scholar 

  91. Wu, Z.-K.; Lin, Z. Y.; Li, L. Y.; Song, B.; Moon, K.-S.; Bai, S.-L.; Wong, C.-P. Flexible micro-supercapacitor based on in-situ assembled graphene on metal template at room temperature. Nano Energy 2014, 10, 222–228.

    Article  Google Scholar 

  92. Qi, D. P.; Liu, Z. Y.; Liu, Y.; Leow, W. R.; Zhu, B. W.; Yang, H.; Yu, J. C.; Wang, W.; Wang, H.; Yin, S. Y. et al. Suspended wavy graphene microribbons for highly stretchable microsupercapacitors. Adv. Mater. 2015, 27, 5559–5566.

    Article  Google Scholar 

  93. Nam, I.; Kim, G. P.; Park, S.; Han, J. W.; Yi, J. All-solid-state, origami-type foldable supercapacitor chips with integrated series circuit analogues. Energy Environ. Sci. 2014, 7, 1095–1102.

    Article  Google Scholar 

  94. Weng, Z.; Su, Y.; Wang, D. W.; Li, F.; Du, J. H.; Cheng, H. M. Graphene-cellulose paper flexible supercapacitors. Adv. Energy Mater. 2011, 1, 917–922.

    Article  Google Scholar 

  95. Wu, Z. S.; Parvez, K.; Feng, X. L.; Müllen, K. Graphenebased in-plane micro-supercapacitors with high power and energy densities. Nat. Commun. 2013, 4, 2487.

    Google Scholar 

  96. Yoo, J. J.; Balakrishnan, K.; Huang, J. S.; Meunier, V.; Sumpter, B. G.; Srivastava, A.; Conway, M.; Reddy, A. L. M.; Yu, J.; Vajtai, R. et al. Ultrathin planar graphene supercapacitors. Nano Lett. 2011, 11, 1423–1427.

    Article  Google Scholar 

  97. Gao, W.; Singh, N.; Song, L.; Liu, Z.; Reddy, A. L. M.; Ci, L. J.; Vajtai, R.; Zhang, Q.; Wei, B. Q.; Ajayan, P. M. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nat. Nanotechnol. 2011, 6, 496–500.

    Article  Google Scholar 

  98. El-Kady, M. F.; Kaner, R. B. Scalable fabrication of highpower graphene micro-supercapacitors for flexible and on-chip energy storage. Nat. Commun. 2013, 4, 1475.

    Article  Google Scholar 

  99. Wu, Z. S.; Parvez, K.; Li, S.; Yang, S.; Liu, Z. Y.; Liu, S. H.; Feng, X. L.; Müllen, K. Alternating stacked grapheneconducting polymer compact films with ultrahigh areal and volumetric capacitances for high-energy micro-supercapacitors. Adv. Mater. 2015, 27, 4054–4061.

    Article  Google Scholar 

  100. Wu, Z.-S.; Parvez, K.; Winter, A.; Vieker, H.; Liu, X. J.; Han, S.; Turchanin, A.; Feng, X. L.; Müllen, K. Layer-bylayer assembled heteroatom-doped graphene films with ultrahigh volumetric capacitance and rate capability for micro-supercapacitors. Adv. Mater. 2014, 26, 4552–4558.

    Article  Google Scholar 

  101. Wen, F. S.; Hao, C. X.; Xiang, J. Y.; Wang, L. M.; Hou, H.; Su, Z. B.; Hu, W. T.; Liu, Z. Y. Enhanced laser scribed flexible graphene-based micro-supercapacitor performance with reduction of carbon nanotubes diameter. Carbon 2014, 75, 236–243.

    Article  Google Scholar 

  102. Li, R. Z.; Peng, R.; Kihm, K. D.; Bai, S.; Bridges, D.; Tumuluri, U.; Wu, Z.; Zhang, T.; Compagnini, G.; Feng, Z. et al. High-rate in-plane micro-supercapacitors scribed onto photo paper using in situ femtolaser-reduced graphene oxide/Au nanoparticle microelectrodes. Energy Environ. Sci. 2016, 9, 1458–1467.

    Article  Google Scholar 

  103. Song, B.; Li, L. Y.; Lin, Z. Y.; Wu, Z. K.; Moon, K. S.; Wong, C. P. Water-dispersible graphene/polyaniline composites for flexible micro-supercapacitors with high energy densities. Nano Energy 2015, 16, 470–478.

    Article  Google Scholar 

  104. Xue, M. Q.; Li, F. W.; Zhu, J.; Song, H.; Zhang, M. N.; Cao, T. B. Structure-based enhanced capacitance: In situ growth of highly ordered polyaniline nanorods on reduced graphene oxide patterns. Adv. Funct. Mater. 2012, 22, 1284–1290.

    Article  Google Scholar 

  105. Tian, X. C.; Xiao, B.; Xu, X.; Xu, L.; Liu, Z. H.; Wang, Z. Y.; Yan, M. Y.; Wei, Q. L.; Mai, L. Q. Vertically stacked holey graphene/polyaniline heterostructures with enhanced energy storage for on-chip micro-supercapacitors. Nano Res. 2016, 9, 1012–1021.

    Article  Google Scholar 

  106. Beidaghi, M.; Wang, C. L. Micro-supercapacitors based on interdigital electrodes of reduced graphene oxide and carbon nanotube composites with ultrahigh power handling performance. Adv. Funct. Mater. 2012, 22, 4501–4510.

    Article  Google Scholar 

  107. Moon, Y. S.; Kim, D.; Lee, G.; Hong, S. Y.; Kim, K. K.; Park, S. M.; Ha, J. S. Fabrication of flexible microsupercapacitor array with patterned graphene foam/MWNTCOOH/MnOx electrodes and its application. Carbon 2015, 81, 29–37.

    Article  Google Scholar 

  108. Kim, M. S.; Hsia, B.; Carraro, C.; Maboudian, R. Flexible micro-supercapacitors with high energy density from simple transfer of photoresist-derived porous carbon electrodes. Carbon 2014, 74, 163–169.

    Article  Google Scholar 

  109. Hsia, B.; Kim, M. S.; Vincent, M.; Carraro, C.; Maboudian, R. Photoresist-derived porous carbon for on-chip microsupercapacitors. Carbon 2013, 57, 395–400.

    Article  Google Scholar 

  110. Wang, S.; Hsia, B.; Carraro, C.; Maboudian, R. Highperformance all solid-state micro-supercapacitor based on patterned photoresist-derived porous carbon electrodes and an ionogel electrolyte. J. Mater. Chem. A 2014, 2, 7997–8002.

    Article  Google Scholar 

  111. Bin In, J.; Hsia, B.; Yoo, J. H.; Hyun, S.; Carraro, C.; Maboudian, R.; Grigoropoulos, C. P. Facile fabrication of flexible all solid-state micro-supercapacitor by direct laser writing of porous carbon in polyimide. Carbon 2015, 83, 144–151.

    Article  Google Scholar 

  112. Cai, J. G.; Lv, C.; Watanabe, A. Cost-effective fabrication of high-performance flexible all-solid-state carbon microsupercapacitors by blue-violet laser direct writing and further surface treatment. J. Mater. Chem. A 2016, 4, 1671–1679.

    Article  Google Scholar 

  113. Kurra, N.; Hota, M. K.; Alshareef, H. N. Conducting polymer micro-supercapacitors for flexible energy storage and Ac line-filtering. Nano Energy 2015, 13, 500–508.

    Article  Google Scholar 

  114. Wang, K.; Zou, W. J.; Quan, B. G.; Yu, A. F.; Wu, H. P.; Jiang, P.; Wei, Z. X. An all-solid-state flexible microsupercapacitor on a chip. Adv. Energy Mater. 2011, 1, 1068–1072.

    Article  Google Scholar 

  115. Hu, H. B.; Zhang, K.; Li, S. X.; Jia, S. L.; Ye, C. H. Flexible, in-plane, and all-solid-state micro-supercapacitors based on printed interdigital Au/polyaniline network hybrid electrodes on a chip. J. Mater. Chem. A 2014, 2, 20916–20922.

    Article  Google Scholar 

  116. Feng, J.; Sun, X.; Wu, C. Z.; Peng, L. L.; Lin, C. W.; Hu, S. L.; Yang, J. L.; Xie, Y. Metallic few-layered VS2 ultrathin nanosheets: High two-dimensional conductivity for in-plane supercapacitors. J. Am. Chem. Soc. 2011, 133, 17832–17838.

    Article  Google Scholar 

  117. Tian, X. C.; Shi, M. Z.; Xu, X.; Yan, M. Y.; Xu, L.; Minhas-Khan, A.; Han, C. H.; He, L.; Mai, L. Q. Arbitrary shape engineerable spiral micropseudocapacitors with ultrahigh energy and power densities. Adv. Mater. 2015, 27, 7476–7482.

    Article  Google Scholar 

  118. Gu, S. S.; Lou, Z.; Li, L. D.; Chen, Z. J.; Ma, X. D.; Shen, G. Z. Fabrication of flexible reduced graphene oxide/Fe2O3 hollow nanospheres based on-chip microsupercapacitors for integrated photodetecting applications. Nano Res. 2016, 9, 424–434.

    Article  Google Scholar 

  119. Yun, J.; Lim, Y.; Jang, G. N.; Kim, D.; Lee, S. J.; Park, H.; Hong, S. Y.; Lee, G.; Zi, G.; Ha, J. S. Stretchable patterned graphene gas sensor driven by integrated micro-supercapacitor array. Nano Energy 2016, 19, 401–414.

    Article  Google Scholar 

  120. Kim, D.; Yun, J.; Lee, G.; Ha, J. S. Fabrication of high performance flexible micro-supercapacitor arrays with hybrid electrodes of MWNT/V2O5 nanowires integrated with a SnO2 nanowire UV sensor. Nanoscale 2014, 6, 12034–12041.

    Article  Google Scholar 

  121. Luo, J. J.; Fan, F. R.; Jiang, T.; Wang, Z. W.; Tang, W.; Zhang, C. P.; Liu, M. M.; Cao, G. Z.; Wang, Z. L. Integration of micro-supercapacitors with triboelectric nanogenerators for a flexible self-charging power unit. Nano Res. 2015, 8, 3934–3943.

    Article  Google Scholar 

  122. Gogotsi, Y.; Simon, P. True performance metrics in electrochemical energy storage. Science 2011, 334, 917–918.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21573116, 51602218 and 21231005), MOE (Nos. B12015 and IRT13R30), Tianjin Basic and High-Tech Development (No. 15JCYBJC17300). Z. Q. N. thanks the recruitment program of global experts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiang Niu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Niu, Z. & Chen, J. Design and integration of flexible planar micro-supercapacitors. Nano Res. 10, 1524–1544 (2017). https://doi.org/10.1007/s12274-017-1448-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1448-z

Keywords

Navigation