Skip to main content
Log in

Fabrication of high-performance supercapacitors based on hollow SnO2 microspheres

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Hollow SnO2 microspheres are prepared from resorcinol–formaldehyde gel and different tin compound precursors, including stannous sulfate (SnSO4), stannous chloride dihydrate (SnCl2·2H2O), and stannic chloride pentahydrate (SnCl4·5H2O) via chemically induced self-assembly in hydrothermal environment. Morphological and structural characterizations of as-prepared hollow SnO2 microspheres are carried out using scanning electron microscopy, X-ray diffraction, and nitrogen adsorption–desorption method. Their electrochemical properties as the supercapacitor electrode materials for application are also investigated using cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) measurement in 1 M H2SO4 electrolyte. There are redox peaks in CV curves and a large number of Faradic plateaus in GCD curves. At different scan rates, all the obtained samples have excellent electrochemical properties. The hollow SnO2 microspheres obtained from SnSO4 and SnCl2·2H2O as precursors show relatively lower specific capacitances of 395 and 347 F g−1, respectively. However, the specific capacitance of SnO2 from SnCl4·5H2O is up to 663 F g−1. The high specific surface area and hollow structure of SnO2 microspheres are due to facilitating the rapid transport of electrolyte ions and improving the electrochemical performance. It is expected that hollow SnO2 microspheres are the promising redox supercapacitor materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Simon P, Gogotsi Y (2008) Nature Mater 7:845–854

    Article  CAS  Google Scholar 

  2. Winter M, Brodd RJ (2004) Chem Rev 104:4245–4269

    Article  CAS  Google Scholar 

  3. Burke A (2000) J Power Sources 91:37–50

    Article  CAS  Google Scholar 

  4. Sarangapani S, Tilak B, Chen CP (1996) J Electrochem Soc 143:3791–3799

    Article  CAS  Google Scholar 

  5. Zheng JP, Jow TR (1995) J Electrochem Soc 142:L6–L8

    Article  CAS  Google Scholar 

  6. Chang JK, Tsai WT (2003) J Electrochem Soc 150:A1333–A1338

    Article  CAS  Google Scholar 

  7. Hu CC, Tsou TW (2003) J Power Sources 115:179–186

    Article  CAS  Google Scholar 

  8. Kim H, Popov BN (2003) J Electrochem Soc 150:D56–D62

    Article  CAS  Google Scholar 

  9. Reddy RN, Reddy RG (2003) J Power Sources 124:330–337

    Article  CAS  Google Scholar 

  10. Prasad KR, Koga K, Miura N (2004) Chem Mater 16:1845–1847

    Article  CAS  Google Scholar 

  11. Wu NL (2002) Mater Chem Phys 75:6–11

    Article  CAS  Google Scholar 

  12. Kuo SL, Wu NL (2003) Electrochem Solid State Lett 6:A85–A87

    Article  CAS  Google Scholar 

  13. Bélanger D, Ren X, Davey J, Uribe F, Gottesfeld S (2000) J Electrochem Soc 147:2923–2929

    Article  Google Scholar 

  14. Zheng JP, Cygan PJ, Jow TR (1995) J Electrochem Soc 142:2699–2730

    Article  CAS  Google Scholar 

  15. Chen JS, Lou XW (D) (2013) Small 9:1877–1893

    Article  CAS  Google Scholar 

  16. Zhu J, Lu Z, Aruna S, Aurbach D, Gedanken A (2000) Chem Mater 12:2557–2566

    Article  CAS  Google Scholar 

  17. Srivastava D, Chappel S, Palchik O, Zaban A, Gedanken A (2002) Langmuir 18:4160–4164

    Article  CAS  Google Scholar 

  18. Mann J, Yao N, Bocarsly AB (2006) Langmuir 22:10432–10436

    Article  CAS  Google Scholar 

  19. Selvan RK, Perelshtein I, Perkas N, Gedanken A (2008) J Phys Chem C 112:1825–1830

    Article  CAS  Google Scholar 

  20. Prasad KR, Miura N (2004) Electrochem Commun 6:849–852

    Article  CAS  Google Scholar 

  21. Hwang SW, Hyun SH (2007) J Power Sources 172:451–459

    Article  CAS  Google Scholar 

  22. Pusawale SN, Deshmukh PR, Lokhande CD (2011) Appl Surf Sci 257:9498–9502

    Article  CAS  Google Scholar 

  23. Shakir I, Shahid M, Nadeem M, Kang DJ (2012) Electrochim Acta 72:134–137

    Article  CAS  Google Scholar 

  24. Wu M, Zhang L, Wang D, Xiao C, Zhang S (2008) J Power Sources 175:669–674

    Article  CAS  Google Scholar 

  25. Zhong Z, Yin Y, Gates B, Xia Y (2000) Adv Mater 12:206–209

    Article  CAS  Google Scholar 

  26. Han S, Jang B, Kim T, Oh SM, Hyeon T (2005) Adv Funct Mater 15:1845–1850

    Article  CAS  Google Scholar 

  27. Martinez CJ, Hockey B, Montgomery CB, Semancik S (2005) Langmuir 21:7937–7944

    Article  CAS  Google Scholar 

  28. Deng D, Lee JY (2008) Chem Mater 20:1841–1846

    Article  CAS  Google Scholar 

  29. Cai HM, Ren SZ, Wang M, Jia CY (2013) Acta Phys -Chim Sin 29:881–888

    CAS  Google Scholar 

  30. Ren S, Wang M, Jia C, Hao C, Wang X (2013) Energy Technol 1:332–337

    Article  CAS  Google Scholar 

  31. Shanmugam S, Gedanken A (2006) Electrochem Commun 8:1099–1105

    Article  CAS  Google Scholar 

  32. Ng KC, Zhang S, Peng C, Chen GZ (2009) J Electrochem Soc 156:A846–A853

    Article  CAS  Google Scholar 

  33. Cheng B, Russell JM, Shi W, Zhang L, Samulski ET (2004) J Am Chem Soc 126:5972–5973

    Article  CAS  Google Scholar 

  34. Prasad KR, Miura N (2004) Appl Phys Lett 85:4199–4201

    Article  CAS  Google Scholar 

  35. Zhang J, Zhao XS (2012) ChemSusChem 5:818–841

    Article  CAS  Google Scholar 

  36. MacArthur DM (1970) J Electrochem Soc 117:422–426

    Article  CAS  Google Scholar 

  37. Jensen MH, Osvath P, Sargeson AM, Ulstrup J (1994) J Electroanal Chem 377:131–141

    Article  CAS  Google Scholar 

  38. Funt BL, Hoang PM (1984) J Electrochem Soc 131:2295–2298

    Article  CAS  Google Scholar 

  39. Tsai CC, Wang GJ (2013) J Electrochem Soc 160:B1–B5

    Article  CAS  Google Scholar 

  40. Mu J, Chen B, Guo Z, Zhang M, Zhang Z, Shao C, Liu Y (2011) J Colloid Interface Sci 356:706–712

    Article  CAS  Google Scholar 

  41. Jayalakshmi M, Rao MM, Choudary B (2004) Electrochem Commun 6:1119–1122

    Article  CAS  Google Scholar 

  42. Reddy ALM, Ramaprabhu S (2007) J Phys Chem C 111:7727–7734

    Article  CAS  Google Scholar 

  43. Senthilkumar ST, Selvan RK, Lee YS, Melo JS (2013) J Mater Chem A 1:1086–1095

    Article  CAS  Google Scholar 

  44. Wei TY, Chen CH, Chang KH, Lu SY, Hu CC (2009) Chem Mater 21:3228–3233

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Support of this work by the National Natural Science Foundation of China (grant nos. 21036006, 21137001) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzhen Ren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, S., Wang, M., Xu, M. et al. Fabrication of high-performance supercapacitors based on hollow SnO2 microspheres. J Solid State Electrochem 18, 909–916 (2014). https://doi.org/10.1007/s10008-013-2332-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2332-8

Keywords

Navigation