Skip to main content
Log in

Electrospun poly(vinylidene fluoride-trifluoroethylene)/zinc oxide nanocomposite tissue engineering scaffolds with enhanced cell adhesion and blood vessel formation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Piezoelectric materials that generate electrical signals in response to mechanical strain can be used in tissue engineering to stimulate cell proliferation. Poly (vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)), a piezoelectric polymer, is widely used in biomaterial applications. We hypothesized that incorporation of zinc oxide (ZnO )nanoparticles into the P(VDF-TrFE) matrix could promote adhesion, migration, and proliferation of cells, as well as blood vessel formation (angiogenesis). In this study, we fabricated and comprehensively characterized a novel electrospun P(VDF-TrFE)/ZnO nanocomposite tissue engineering scaffold. We analyzed the morphological features of the polymeric matrix by scanning electron microscopy, and utilized Fourier transform infrared spectroscopy, X-ray diffraction, and differential scanning calorimetry to examine changes in the crystalline phases of the copolymer due to addition of the nanoparticles. We detected no or minimal adverse effects of the biomaterials with regard to blood compatibility in vitro, biocompatibility, and cytotoxicity, indicating that P(VDF-TrFE)/ZnO nanocomposite scaffolds are suitable for tissue engineering applications. Interestingly, human mesenchymal stem cells (hMSCs) and human umbilical vein endothelial cells cultured on the nanocomposite scaffolds exhibited higher cell viability, adhesion, and proliferation compared to cells cultured on tissue culture plates or neat P(VDF-TrFE) scaffolds. Nanocomposite scaffolds implanted into rats with or without hMSCs did not elicit immunological responses, as assessed by macroscopic analysis and histology. Importantly, nanocomposite scaffolds promoted angiogenesis, which was increased in scaffolds pre-seeded with hMSCs. Overall, our results highlight the potential of these novel P(VDF-TrFE)/ZnO nanocomposites for use in tissue engineering, due to their biocompatibility and ability to promote cell adhesion and angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuang, R.; Zhang, Z. P.; Jin, X. B.; Hu, J.; Shi, S. T.; Ni, L. X.; Ma, P. X. Nanofibrous spongy microspheres for the delivery of hypoxia-primed human dental pulp stem cells to regenerate vascularized dental pulp. Acta Biomater. 2016, 33, 225–234.

    Article  Google Scholar 

  2. Briquez, P. S.; Clegg, L. E.; Martino, M. M.; Gabhann, F. M.; Hubbell, J. A. Design principles for therapeutic angiogenic materials. Nat. Rev. Mater. 2016, 1, 15006.

    Article  Google Scholar 

  3. Dondossola, E.; Holzapfel, B. M.; Alexander, S.; Filippini, S.; Hutmacher, D. W.; Friedl, P. Examination of the foreign body response to biomaterials by nonlinear intravital microscopy. Nat. Biomed. Eng. 2016, 1, 0007.

    Article  Google Scholar 

  4. McCaig, C. D.; Song, B.; Rajnicek, A. M. Electrical dimensions in cell science. J. Cell Sci. 2009, 122, 4267–4276.

    Article  Google Scholar 

  5. McCaig, C. D.; Rajnicek, A. M.; Song, B.; Zhao, M. Controlling cell behavior electrically: Current views and future potential. Physiol. Rev. 2005, 85, 943–978.

    Article  Google Scholar 

  6. Weber, N.; Lee, Y. S.; Shanmugasundaram, S.; Jaffe, M.; Arinzeh, T. L. Characterization and in vitro cytocompatibility of piezoelectric electrospun scaffolds. Acta Biomater. 2010, 6, 3550–3556.

    Article  Google Scholar 

  7. Hu, Z. J.; Tian, M. W.; Nysten, B.; Jonas, A. M. Regular arrays of highly ordered ferroelectric polymer nanostructures for non-volatile low-voltage memories. Nat. Mater. 2009, 8, 62–67.

    Article  Google Scholar 

  8. Huang, S.; Yee, W. A.; Tjiu, W. C.; Liu, Y.; Kotaki, M.; Boey, Y. C. F.; Ma, J.; Liu, T. X.; Lu, X. H. Electrospinning of polyvinylidene difluoride with carbon nanotubes: Synergistic effects of extensional force and interfacial interaction on crystalline structures. Langmuir 2008, 24, 13621–13626.

    Article  Google Scholar 

  9. Li, M. Y.; Wondergem, H. J.; Spijkman, M. J.; Asadi, K.; Katsouras, I.; Blom, P. W. M.; De Leeuw, D. M. Revisiting the d-phase of poly(vinylidene fluoride) for solution-processed ferroelectric thin films. Nat. Mater. 2013, 12, 433–438.

    Article  Google Scholar 

  10. Liu, Y. W.; Lu, J. F.; Li, H. N.; Wei, J. J.; Li, X. H. Engineering blood vessels through micropatterned co-culture of vascular endothelial and smooth muscle cells on bilayered electrospun fibrous mats with pDNA inoculation. Acta Biomater. 2015, 11, 114–125.

    Article  Google Scholar 

  11. Fine, E. G.; Valentini, R. F.; Bellamkonda, R.; Aebischer, P. Improved nerve regeneration through piezoelectric vinylidenefluoride-trifluoroethylene copolymer guidance channels. Biomaterials 1991, 12, 775–780.

    Article  Google Scholar 

  12. Lee, Y. S.; Collins, G.; Arinzeh, T. L. Neurite extension of primary neurons on electrospun piezoelectric scaffolds. Acta Biomater. 2011, 7, 3877–3886.

    Article  Google Scholar 

  13. Lee, Y. S.; Wu, S.; Arinzeh, T. L.; Bunge, M. B. Enhanced noradrenergic axon regeneration into schwann cell-filled PVDF-TrFE conduits after complete spinal cord transection. Biotechnol. Bioeng. 2017, 114, 444–456.

    Article  Google Scholar 

  14. Martins, P. M.; Ribeiro, S.; Ribeiro, C.; Sencadas, V.; Gomes, A. C.; Gama, F. M.; Lanceros-Mé ndez, S. Effect of poling state and morphology of piezoelectric poly(vinylidene fluoride) membranes for skeletal muscle tissue engineering. RSC Adv. 2013, 3, 17938–17944.

    Article  Google Scholar 

  15. Hitscherich, P.; Wu, S. L.; Gordan, R.; Xie, L. H.; Arinzeh, T.; Lee, E. J. The effect of PVDF-TrFE scaffolds on stem cell derived cardiovascular cells. Biotechnol. Bioeng. 2016, 113, 1577–1585.

    Article  Google Scholar 

  16. Zhu, P.; Weng, Z. Y.; Li, X.; Liu, X. M.; Wu, S. L.; Yeung, K. W. K.; Wang, X. B.; Cui, Z. D.; Yang, X. J.; Chu, P. K. Biomedical applications of functionalized ZnO nanomaterials: From biosensors to bioimaging. Adv. Mater. Interfaces 2016, 3, 1500494.

    Article  Google Scholar 

  17. Liao, Q. L.; Zhang, Z.; Zhang, X. H.; Mohr, M.; Zhang, Y.; Fecht, H. J. Flexible piezoelectric nanogenerators based on a fiber/ZnO nanowires/paper hybrid structure for energy harvesting. Nano Res. 2014, 7, 917–928.

    Article  Google Scholar 

  18. Kang, Z.; Yan, X. Q.; Zhao, L. Q.; Liao, Q. L.; Zhao, K.; Du, H. W.; Zhang, X. H.; Zhang, X. J.; Zhang, Y. Gold nanoparticle/ZnO nanorod hybrids for enhanced reactive oxygen species generation and photodynamic therapy. Nano Res. 2015, 8, 2004–2014.

    Article  Google Scholar 

  19. Yan, Z. Q.; Zhao, A. D.; Liu, X. P.; Ren, J. S.; Qu, X. G. A pH-switched mesoporous nanoreactor for synergetic therapy. Nano Res. 2017, 10, 1651–1661.

  20. Augustine, R.; Malik, H. N.; Singhal, D. K.; Mukherjee, A.; Malakar, D.; Kalarikkal, N.; Thomas, S. Electrospun polycaprolactone/ZnO nanocomposite membranes as biomaterials with antibacterial and cell adhesion properties. J. Polym. Res. 2014, 21, 347.

    Article  Google Scholar 

  21. Augustine, R.; Dominic, E. A.; Reju, I.; Kaimal, B.; Kalarikkal, N.; Thomas, S. Electrospun polycaprolactone membranes incorporated with ZnO nanoparticles as skin substitutes with enhanced fibroblast proliferation and wound healing. RSC Adv. 2014, 4, 24777–24785.

    Article  Google Scholar 

  22. Augustine, R.; Dominic, E. A.; Reju, I.; Kaimal, B.; Kalarikkal, N.; Thomas, S. Investigation of angiogenesis and its mechanism using zinc oxide nanoparticle-loaded electrospun tissue engineering scaffolds. RSC Adv. 2014, 4, 51528–51536.

    Article  Google Scholar 

  23. Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N. H. M.; Ann, L. C.; Bakhori, S. K. M.; Hasan, H.; Mohamad, D. Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Lett. 2015, 7, 219–242.

    Article  Google Scholar 

  24. Saptarshi, S. R.; Duschl, A.; Lopata, A. L. Biological reactivity of zinc oxide nanoparticles with mammalian test systems: An overview. Nanomedicine 2015, 10, 2075–2092.

    Article  Google Scholar 

  25. Versiani, M. A.; Abi Rached-Junior, F. J.; Kishen, A.; Pécora J. D.; Silva-Sousa, Y. T.; De Sousa-Neto, M. D. Zinc oxide nanoparticles enhance physicochemical characteristics of Grossman sealer. J. Endod. 2016, 42, 1804–1810.

    Article  Google Scholar 

  26. Jiang, L. Y.; Li, Y. B.; Xiong, C. D. Preparation and biological properties of a novel composite scaffold of nano-hydroxyapatite/chitosan/carboxymethyl cellulose for bone tissue engineering. J. Biomed. Sci. 2009, 16, 65.

    Article  Google Scholar 

  27. Joshy, K. S.; Sharma, C. P.; Kalarikkal, N.; Sandeep, K.; Thomas, S.; Pothen, L. A. Evaluation of in-vitro cytotoxicity and cellular uptake efficiency of zidovudine-loaded solid lipid nanoparticles modified with Aloe Vera in glioma cells. Mater. Sci. Eng. C 2016, 66, 40–50.

    Article  Google Scholar 

  28. El Omar, R.; Xiong, Y.; Dostert, G.; Louis, H.; Gentils, M.; Menu, P.; Stoltz, J. F.; Velot, É.; Decot, V. Immunomodulation of endothelial differentiated mesenchymal stromal cells: Impact on T and NK cells. Immunol. Cell Biol. 2015, 94, 342–356.

    Article  Google Scholar 

  29. Choi, Y. Y.; Yun, T. G.; Qaiser, N.; Paik, H.; Roh, H. S.; Hong, J.; Hong, S.; Han, S. M.; No, K. Vertically aligned P(VDF-TrFE) core–shell structures on flexible pillar arrays. Sci. Rep. 2015, 5, 10728.

    Article  Google Scholar 

  30. Tashiro, K.; Takano, K.; Kobayashi, M.; Chatani, Y.; Tadokoro, H. Structural study on ferroelectric phase transition of vinylidene fluoride-trifluoroethylene random copolymers. Polymer 1981, 22, 1312–1314.

    Article  Google Scholar 

  31. Kim, K. J.; Kim, G. B.; Vanlencia, C. L.; Rabolt, J. F. Curie transition, ferroelectric crystal structure, and ferroelectricity of a VDF/TrFE(75/25) copolymer 1. The effect of the consecutive annealing in the ferroelectric state on curie transition and ferroelectric crystal structure. J. Polym. Sci. Part B Polym. Phys. 1994, 32, 2435–2444.

    Google Scholar 

  32. Tashiro, K.; Itoh, Y.; Kobayashi, M.; Tadokoro, H. Polarized Raman spectra and LO-TO splitting of poly (vinylidene fluoride) crystal form I. Macromolecules 1985, 18, 2600–2606.

    Article  Google Scholar 

  33. Mattsson, B.; Ericson, H.; Torell, L. M.; Sundholm, F. Micro-Raman investigations of PVDF-based proton-conducting membranes. J. Polym. Sci. Part A Polym. Chem. 1999, 37, 3317–3327.

    Article  Google Scholar 

  34. Yee, W. A.; Nguyen, A. C.; Lee, P. S.; Kotaki, M.; Liu, Y.; Tan, B. T.; Mhaisalkar, S.; Lu, X. H. Stress-induced structural changes in electrospun polyvinylidene difluoride nanofibers collected using a modified rotating disk. Polymer 2008, 49, 4196–4203.

    Article  Google Scholar 

  35. Mahdi, R. I.; Gan, W. C.; Abd Majid, W. H. Hot plate annealing at a low temperature of a thin ferroelectric P(VDF-TrFE) film with an improved crystalline structure for sensors and actuators. Sensors 2014, 14, 19115–19127.

    Article  Google Scholar 

  36. Xu, B.; Choi, J.; Borca, C. N.; Dowben, P. A.; Sorokin, A. V.; Palto, S. P.; Petukhova, N. N.; Yudin, S. G. Comparison of aluminum and sodium doped poly(vinylidene fluoridetrifluoroethylene) copolymers by X-ray photoemission spectroscopy. Appl. Phys. Lett. 2001, 78, 448–450.

    Article  Google Scholar 

  37. Nguyen, V. S.; Rouxel, D.; Vincent, B.; Badie, L.; Dos Santos, F. D.; Lamouroux, E.; Fort, Y. Influence of cluster size and surface functionalization of ZnO nanoparticles on the morphology, thermomechanical and piezoelectric properties of P(VDF-TrFE) nanocomposite films. Appl. Surf. Sci. 2013, 279, 204–211.

    Article  Google Scholar 

  38. Bharti, V.; Xu, H. S.; Shanthi, G.; Zhang, Q. M.; Liang, K. M. Polarization and structural properties of high-energy electron irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer films. J. Appl. Phys. 2000, 87, 452–461.

    Article  Google Scholar 

  39. Oswald, J.; Boxberger, S.; Jørgensen, B.; Feldmann, S.; Ehninger, G.; Bornhä user M.; Werner, C. Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells 2004, 22, 377–384.

    Article  Google Scholar 

  40. Lutolf, M. P.; Hubbell, J. A. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 2005, 23, 47–55.

    Article  Google Scholar 

  41. Place, E. S.; Evans, N. D.; Stevens, M. M. Complexity in biomaterials for tissue engineering. Nat. Mater. 2009, 8, 457–470.

    Article  Google Scholar 

  42. Okoshi, T.; Chen, H.; Soldani, G.; Galletti, P. M.; Goddard, M. Microporous small diameter PVDF-TrFE vascular grafts fabricated by a spray phase inversion technique. ASAIO J. 1992, 38, M201–M206.

    Article  Google Scholar 

  43. Katsouras, I.; Asadi, K.; Li, M. Y.; Van Driel, T. B.; Kjæ r, K. S.; Zhao, D.; Lenz, T.; Gu, Y.; Blom, P. W. M.; Damjanovic, D. et al. The negative piezoelectric effect of the ferroelectric polymer poly(vinylidene fluoride). Nat. Mater. 2016, 15, 78–84.

    Article  Google Scholar 

  44. Zhang, X. H.; Zhang, C. G.; Lin, Y. H.; Hu, P. H.; Shen, Y.; Wang, K.; Meng, S.; Chai, Y.; Dai, X. H.; Liu, X. et al. Nanocomposite membranes enhance bone regeneration through restoring physiological electric microenvironment. ACS Nano 2016, 10, 7279–7286.

    Article  Google Scholar 

  45. Zhang, D.; Karki, A. B.; Rutman, D.; Young, D. P.; Wang, A.; Cocke, D.; Ho, T. H.; Guo, Z. H. Electrospun polyacrylonitrile nanocomposite fibers reinforced with Fe3O4 nanoparticles: Fabrication and property analysis. Polymer 2009, 50, 4189–4198.

    Article  Google Scholar 

  46. Baumgarten, P. K. Electrostatic spinning of acrylic microfibers. J. Colloid Interface Sci. 1971, 36, 71–79.

    Article  Google Scholar 

  47. Huttenlocher, A.; Horwitz, A. R. Wound healing with electric potential. N. Engl. J. Med. 2007, 356, 303–304.

    Article  Google Scholar 

  48. Hwang, G. T.; Byun, M.; Jeong, C. K.; Lee, K. J. Flexible piezoelectric thin-film energy harvesters and nanosensors for biomedical applications. Adv. Healthc. Mater. 2015, 4, 646–658.

    Article  Google Scholar 

  49. Lonjon, A.; Laffont, L.; Demont, P.; Dantras, E.; Lacabanne, C. Structural and electrical properties of gold nanowires/ P(VDF-TrFE) nanocomposites. J. Phys. D: Appl. Phys. 2010, 43, 345401.

    Article  Google Scholar 

  50. Andrew, J. S.; Clarke, D. R. Effect of electrospinning on the ferroelectric phase content of polyvinylidene difluoride fibers. Langmuir 2008, 24, 670–672.

    Article  Google Scholar 

  51. Guo, H. F.; Li, Z. S.; Dong, S. W.; Chen, W. J.; Deng, L.; Wang, Y. F.; Ying, D. J. Piezoelectric PU/PVDF electrospun scaffolds for wound healing applications. Colloids Surf. B: Biointerfaces 2012, 96, 29–36.

    Article  Google Scholar 

  52. Augustine, R.; Sarry, F.; Kalarikkal, N.; Thomas, S.; Badie, L.; Rouxel, D. Surface acoustic wave device with reduced insertion loss by electrospinning P(VDF-TrFE)/ZnO nanocomposites. Nano-Micro Lett. 2016, 8, 282–290.

    Article  Google Scholar 

  53. Lee, Y. S.; Arinzeh, T. L. The influence of piezoelectric scaffolds on neural differentiation of human neural stem/ progenitor cells. Tissue Eng. Part A 2012, 18, 2063–2072.

    Article  Google Scholar 

  54. Li, W. J.; Laurencin, C. T.; Caterson, E. J.; Tuan, R. S.; Ko, F. K. Electrospun nanofibrous structure: A novel scaffold for tissue engineering. J. Biomed. Mater. Res. 2002, 60, 613–621.

    Article  Google Scholar 

  55. Chhabra, H.; Deshpande, R.; Kanitkar, M.; Jaiswal, A.; Kale, V. P.; Bellare, J. R. A nano zinc oxide doped electrospun scaffold improves wound healing in a rodent model. RSC Adv. 2016, 6, 1428–1439.

  56. Augustine, R.; Mathew, A.; Sosnik, A. Metal oxide nanoparticles as versatile therapeutic agents modulating cell signaling pathways: Linking nanotechnology with molecular medicine. Appl. Mater. Today 2017, 7, 91–103.

    Article  Google Scholar 

  57. Paszek, E.; Czyz, J.; Woźnicka, O.; Jakubiak, D.; Wojnarowicz, J.; Łojkowski, W.; Stępień, E. Zinc oxide nanoparticles impair the integrity of human umbilical vein endothelial cell monolayer in vitro. J. Biomed. Nanotechnol. 2012, 8, 957–967.

    Article  Google Scholar 

  58. Hsiao, I. L.; Huang, Y. J. Effects of various physicochemical characteristics on the toxicities of ZnO and TiO2 nanoparticles toward human lung epithelial cells. Sci. Total Environ. 2011, 409, 1219–1228.

    Article  Google Scholar 

  59. Nair, S.; Sasidharan, A.; Divya Rani, V. V.; Menon, D.; Nair, S.; Manzoor, K.; Raina, S. Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells. J. Mater. Sci.: Mater. Med. 2009, 20, 235.

    Google Scholar 

  60. Mironov, V.; Kasyanov, V.; Markwald, R. R. Nanotechnology in vascular tissue engineering: From nanoscaffolding towards rapid vessel biofabrication. Trends Biotechnol. 2008, 26, 338–244.

    Article  Google Scholar 

  61. Barui, A. K.; Veeriah, V.; Mukherjee, S.; Manna, J.; Patel, A. K.; Patra, S.; Pal, K.; Murali, S.; Rana, R. K.; Chatterjee, S. et al. Zinc oxide nanoflowers make new blood vessels. Nanoscale 2012, 4, 7861–7869.

    Article  Google Scholar 

  62. Todeschi, M. R.; El Backly, R.; Capelli, C.; Daga, A.; Patrone, E.; Introna, M.; Cancedda, R.; Mastrogiacomo, M. Transplanted umbilical cord mesenchymal stem cells modify the in vivo microenvironment enhancing angiogenesis and leading to bone regeneration. Stem Cells Dev. 2015, 24, 1570–1581.

    Article  Google Scholar 

  63. Hoffman, A. J.; Carraway, E. R.; Hoffmann, M. R. Photocatalytic production of H2O2 and organic peroxides on quantum-sized semiconductor colloids. Environ. Sci. Technol. 1994, 28, 776–785.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of Nancy-Brabois Institute of Technologies, Lorraine University, Nancy, France. The authors also acknowledge the Department of Biotechnology (DBT), Government of India, New Delhi, for the financial support through MSUB IPLSARE Program (No. BT/PR4800/INF/22/152/2012). R. A. thanks the Israel Council for Higher Education for postdoctoral fellowship. P. D. thanks the China scholarship council for overseas fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Robin Augustine or Didier Rouxel.

Electronic supplementary material

12274_2017_1549_MOESM1_ESM.pdf

Electrospun poly(vinylidene fluoride-trifluoroethylene)/zinc oxide nanocomposite tissue engineering scaffolds with enhanced cell adhesion and blood vessel formation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Augustine, R., Dan, P., Sosnik, A. et al. Electrospun poly(vinylidene fluoride-trifluoroethylene)/zinc oxide nanocomposite tissue engineering scaffolds with enhanced cell adhesion and blood vessel formation. Nano Res. 10, 3358–3376 (2017). https://doi.org/10.1007/s12274-017-1549-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1549-8

Keywords

Navigation