Skip to main content
Log in

Electrospun polycaprolactone/ZnO nanocomposite membranes as biomaterials with antibacterial and cell adhesion properties

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In the present study we have investigated the effect of zinc oxide (ZnO) nanoparticles on the fiber diameter, fiber morphology, antibacterial activity, and enhanced cell proliferation of the electrospun polycaprolactone (PCL) non-woven membrane. The effect of the ZnO nanoparticle concentration on the fiber diameter and fiber morphology was investigated using a scanning electron microscope (SEM). Fourier transform infrared spectroscopy (FT-IR) analysis was carried out to determine the nature of the interaction between the PCL and the ZnO nanoparticles. We also investigated the mechanical stability and antibacterial activity of the fabricated material. Interestingly, the membranes with ZnO nanoparticles showed enhanced mechanical stability, antibacterial properties, fibroblast proliferation, and improved metabolic activity of the cells. Further, this is the first report regarding the ability of a biomaterial containing ZnO nanoparticles to enhance cell proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Scheme 1
Fig. 15
Scheme 2
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Patrícia BM, Gabriela AS, Rui LR (2007) Adv Drug Deliv Rev 59:207–233

    Article  Google Scholar 

  2. MacArthur BD, Oreffo RO (2005) Nature 433:7021–7019

    Google Scholar 

  3. Mathieu H (2001) J Surf Interf Anal 32:3–9

    Article  CAS  Google Scholar 

  4. Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FKJ (2002) Biomed Mater Res 60:613–621

    Article  CAS  Google Scholar 

  5. Rajesh V, Dhirendra SK (2006) Int J Nanomedicine 1:15–30

    Article  Google Scholar 

  6. Ikada YJR (2006) Soc Interf 3:589–601

    Article  CAS  Google Scholar 

  7. Oh SH, Park IK, Kim JM, Lee JH (2007) Biomaterials 28:1664–1671

    Article  CAS  Google Scholar 

  8. Sokolsky PM, Agashi K, Olaye A, Shakesheff K, Domb AJ (2007) Polymer carriers for drug delivery in tissue engineering. Adv Drug Deliv Rev 59:187–206

    Article  Google Scholar 

  9. Thandavamoorthy S, Bhat GS, Tock RW, Parameswaran S, Ramkumar SSJ (2005) Appl Poly Sci 96:557–569

    Article  Google Scholar 

  10. Kenawy ER, Bowlin GL, Mansfield K, Layman J, Simpson DG, Sanders EH, Wnek GEJ (2002) Control Release 81:57–64

    Article  CAS  Google Scholar 

  11. Patcharaporn W, Neeracha S, Prasit P, Pitt S (2006) Macromol Biosci 6:70–77

    Article  Google Scholar 

  12. Min BM, Jeong L, Nam YS, Kim JM, Park WH (2004) Int J Biol Macromol 34:281–288

    Article  CAS  Google Scholar 

  13. Yoshimoto H, Shin YM, Terai H, Vacanti JP (2003) Biomaterials 24:2077–2082

    Article  CAS  Google Scholar 

  14. Seema A, Joachim H, Wendorff, Andreas G (2008) Polymer 49:5603–5621

    Article  Google Scholar 

  15. Leea KH, Kimb HY, Khilb MS, Rab YM, Lee DR (2003) Polymer 44:1287–1294

    Article  Google Scholar 

  16. Cevat E, Dilhan M, Hongjun W (2008) Biomaterials 29:4065–4073

    Article  Google Scholar 

  17. Luigi C, Paola L, Mario M, Orsolina P, Gianfranco P (2008) Biomacromolecules 9:1527–1534

    Article  Google Scholar 

  18. Min BM, Jeong L, Nam YS, Kim JM, Kim JY, Park WH (2004) Intl J Biol Macromol 34:281–288

    Article  CAS  Google Scholar 

  19. Li WJ, Tuli R, Okafor C, Derfoul A, Danielson KG, Hall DJ, Tuan RS (2004) Biomaterials 26:599–609

    Article  Google Scholar 

  20. Li XH, Xing YG, Li WL, Jiang YH, Ding YL (2010) Food Sci Technol Int 16:225–232

    Article  CAS  Google Scholar 

  21. Elen K, Murariu M, Peeters R, Dubois PH, Mullens J, Hardy A, Van Bael MK (2012) Polym Adv Technol 23:1422–1428

    Article  CAS  Google Scholar 

  22. Aslan S, Loebick CZ, Kang S, Elimelech M, Pfefferle LD, Van Tassel PR (2010) Nanoscale 2:1789–1794

    Article  CAS  Google Scholar 

  23. Vlad S, Ciobanu C, Gradinaru RV, Gradinaru LM, Nistor A (2011) Dig J Nanomater Bios 6:921–930

    Google Scholar 

  24. Thannickal VJ, Fanburg BL (2000) AJP - Lung Physiol 279:6L1005–6L1028

    Google Scholar 

  25. Goldkorn T, Balaban N, Matsukuma K, Chea V, Gould R, Last J, Chan C, Chavez C (1998) Am J Respir Cell Mol Biol 19:786–798

    Article  CAS  Google Scholar 

  26. Bryan N, Ahswin H, Smart N, Bayon Y, Wohlert S, Hunt JA (2012) Eur Cell Mater 24:249–265

    CAS  Google Scholar 

  27. Huo Y, Qiu WY, Pan Q, Yao YF, Xing K, Lou MF (2009) Exp Eye Res 89:876–886

    Article  CAS  Google Scholar 

  28. Gamou S, Shimizu N (1995) FEBS Lett 357:161–164

    Article  CAS  Google Scholar 

  29. Toduka Y, Toyooka T, Ibuki Y (2012) Environ Sci Technol 46:7629–7636

    Article  CAS  Google Scholar 

  30. Guo D, Bi H, Liu B, Wu Q, Wang D, Cui Y (2012) Toxicol In Vitro 27:731–738

    Article  Google Scholar 

  31. Dutta RK, Nenavathu BP, Gangishetty MK, Reddy AV (2012) Colloids Surf B 94:143–150

    Article  CAS  Google Scholar 

  32. Ashutosh K, Alok KP, Shashi SS, Rishi S, Alok D (2011) Free Radical Bio Med 51:1872–1881

    Article  Google Scholar 

  33. Mariappan P, Krishnamoorthy K, Kadarkaraithangam J, Govindasamy M (2011) Nanomed-Nanotechnol 7:184–192

    Article  Google Scholar 

  34. Barui AK, Veeriah V, Mukherjee S, Manna J, Patel AK, Patra S, Pal K, Murali S, Rohit KR, Chatterjee S, Patra CR (2012) Nanoscale 4:7861–7869

    Article  CAS  Google Scholar 

  35. Branda˜o-Neto J, Stefan V, Mendoc BB, Bloise W, Castro AV (1995) Nutr Res 15:335–358

    Article  Google Scholar 

  36. Salgueiro MJ, Zubillaga MB, Lysionek AE, Caro RA, Weill R, Boccio JR (2012) Nutrition 18:510–519

    Article  Google Scholar 

  37. Fujiwara Y, Kaji T (1997) Res Commun Mol Pathol Pharmacol 97:95–106

    CAS  Google Scholar 

  38. Newell KJ, Witty JP, Rodgers WH, Matrisian LM (1994) Mol Carcinogen 10:199–120

    Article  CAS  Google Scholar 

  39. Mack CF, Knox JD, Powell WC, Nagle RB, Bowden GT (1993) Int J Radiat Oncol 27:217

    Article  Google Scholar 

  40. Sudheesh Kumar PT, Vinoth KL, Mincy R, Raja B, Tamura H, Nair SV, Jayakumar R (2013) Pharm Res 523-537

  41. Silke M, Jean SS, Bruce CD, John FR (2002) Macromolecules 35:8456–8466

    Article  Google Scholar 

  42. Fashandi H, Karimi M (2012) Polymer 53:5832–5849

    Article  CAS  Google Scholar 

  43. Park MS, Kim JK (2004) Langmuir 20(13):5347–5352

    Article  CAS  Google Scholar 

  44. Srinivasarao M, Collings D, Philips A, Patel S (2001) Science 292(5514):79–83

    Article  CAS  Google Scholar 

  45. Francois B, Pitois O, Francois J (1995) Adv Mater 7(12):1041–1044

    Article  CAS  Google Scholar 

  46. Limaye AV, Narhe RD, Dhote AM, Ogale SB (1996) Phys Rev Lett 76(20):3762–3765

    Article  CAS  Google Scholar 

  47. Peng J, Han Y, Yang Y, Li B (2004) Polymer 45(2):447–452

    Article  CAS  Google Scholar 

  48. Guiping M, Dongzhi Y, Jun N (2009) Polym Adv Technol 20:147–150

    Article  Google Scholar 

  49. Zong XH, Kim K, Fang DF, Ran SF, Hsiao BJ, Chu BJ (2002) Polymer 43:4403–4412

    Article  CAS  Google Scholar 

  50. Baumgarten PKJ (1971) Colloid Interf Sci 36:71–79

    Article  CAS  Google Scholar 

  51. Fong H, Chun I, Reneker DH (1999) Polymer 40:4585–4592

    Article  CAS  Google Scholar 

  52. Doshi J, Reneker DHJ (1995) Electrostatics 35(2–3):151–160

    Article  CAS  Google Scholar 

  53. Li ZH, Su GY, Wang XY, Gao D (2005) S Solid State Ion 176:1903–1908

    Article  CAS  Google Scholar 

  54. Lim CT, Tan EPS, Ng SY (2008) Appl Phys Lett 92:141908–141910

    Article  Google Scholar 

  55. Moniruzzaman M, Chattopadhyay J, Billups WE, Winey KI (2007) Nano Lett 7:1178–1185

    Article  CAS  Google Scholar 

  56. Reddy KM, Kevin F, Jason B, Denise GW, Cory H, Alex PJ (2007) Appl Phys Lett 90(21):1–3

    Article  Google Scholar 

  57. Selahattin A, Kadri G, Ramazan C (1998) Tr J Med Sc 28:595–597

    Google Scholar 

  58. Sawai J, Kawada E, Kanou F, Igarashi H, Hashimoto A, Kokugan T, Shimizu MJ (1996) Chem Eng Jpn 29:627–633

    Article  CAS  Google Scholar 

  59. Sawai J, Igarashi H, Hashimoto A, Kokugan T, Shimizu MJ (1996) Chem Eng Jpn 29:251–256

    Article  CAS  Google Scholar 

  60. Yamamoto O (2001) Int J Inorg Mater 3:643–646

    Article  CAS  Google Scholar 

  61. Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ (2002) Langmuir 18:6679–6686

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Department of Science and Technology (DST), Government of India, New Delhi, for the financial support through the Nanomission and PURSE programs. Funding from UGC SAP and DST-FIST are also gratefully acknowledged.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nandakumar Kalarikkal or Sabu Thomas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Augustine, R., Malik, H.N., Singhal, D.K. et al. Electrospun polycaprolactone/ZnO nanocomposite membranes as biomaterials with antibacterial and cell adhesion properties. J Polym Res 21, 347 (2014). https://doi.org/10.1007/s10965-013-0347-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0347-6

Keywords

Navigation