Skip to main content
Log in

Facile synthesis of fully ordered L10-FePt nanoparticles with controlled Pt-shell thicknesses for electrocatalysis

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We report a simple one-step approach for the synthesis of ~4 nm uniform and fully L10-ordered face-centered tetragonal (fct) FePt nanoparticles (NPs) embedded in ~60 nm MCM-41 (fct-FePt NPs@MCM-41). We controlled the Pt-shell thickness of the fct-FePt NPs by treating the fct-FePt NPs@MCM-41 with acetic acid (HOAc) or hydrochloric acid (HCl) under sonication, thereby etching the surface Fe atoms of the NPs. The fct-FePt NPs deposited onto the carbon support (fct-FePt NP/C) were prepared by mixing the fct-FePt NPs@MCM-41 with carbon and subsequently removing the MCM-41 using NaOH. We also developed a facile method to synthesize acid-treated fct-FePt NP/C by using a HF solution for simultaneous surface-Fe etching and MCM-41 removal. We studied the effects of both surface-Fe etching and Pt-shell thickness on the electrocatalytic properties of fct-FePt NPs for the methanol oxidation reaction (MOR). Compared with the non-treated fct-FePt NP/C catalyst, the HOAc-treated and HCl-treated catalysts exhibit up to 34% larger electrochemically active surface areas (ECASAs); in addition, the HCl-treated fct-FePt NP (with ~1.0 nm Pt shell)/C catalyst exhibits the highest specific activity. The HF-treated fct-FePt NP/C exhibits an ECASA almost 2 times larger than those of the other acid-treated fct-FePt NP/C catalysts and shows the highest mass activity (1,435 mA·mgPt –1, 2.3 times higher than that of the commercial Pt/C catalyst) and stability among the catalysts tested. Our findings demonstrate that the surface-Fe etching for the generation of the Pt shell on fct-FePt NPs and the Pt-shell thickness can be factors for optimizing the electrocatalysis of the MOR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, Y. J.; Zhao, N.; Fang, B. Z.; Li, H.; Bi, X. T.; Wang, H. J. Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: Particle size, shape, and composition manipulation and their impact to activity. Chem. Rev. 2015, 115, 3433–3467.

    Article  Google Scholar 

  2. Sathe, B. R.; Risbud, M. S.; Patil, S.; Ajayakumar, K. S.; Naik, R. C.; Mulla, I. S.; Pillai, V. K. Highly sensitive nanostructured platinum electrocatalysts for CO oxidation: Implications for CO sensing and fuel cell performance. Sens. Actuators A: Phys. 2007, 138, 376–383.

    Article  Google Scholar 

  3. Chou, C. H.; Chang, J. L.; Zen, J. M. Homogeneous platinumdeposited screen-printed edge band ultramicroelectrodes for amperometric sensing of carbon monoxide. Electroanalysis 2009, 21, 206–209.

    Article  Google Scholar 

  4. Xiao, F.; Zhao, F. Q.; Mei, D. P.; Mo, Z. R.; Zeng, B. Z. Nonenzymatic glucose sensor based on ultrasonicelectrodeposition of bimetallic PtM (M = Ru, Pd and Au) nanoparticles on carbon nanotubes–ionic liquid composite film. Biosens. Bioelectron. 2009, 24, 3481–3486.

    Article  Google Scholar 

  5. Lee, Y. H.; Lee, G.; Shim, J. H.; Hwang, S.; Kwak, J.; Lee, K.; Song, H.; Park, J. T. Monodisperse PtRu nanoalloy on carbon as a high-performance DMFC catalyst. Chem. Mater. 2006, 18, 4209–4211.

    Article  Google Scholar 

  6. Kang, Y. J.; Pyo, J. B.; Ye, X. C.; Gordon, T. R.; Murray, C. B. Synthesis, shape control, and methanol electro-oxidation properties of Pt-Zn alloy and Pt3Zn intermetallic nanocrystals. ACS Nano 2012, 6, 5642–5647.

    Article  Google Scholar 

  7. Yu, W. T.; Porosoff, M. D.; Chen, J. G. Review of Pt-based bimetallic catalysis: From model surfaces to supported catalysts. Chem. Rev. 2012, 112, 5780–5817.

    Article  Google Scholar 

  8. Shao, M. H.; Chang, Q. W.; Dodelet, J. P.; Chenitz, R. Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 2016, 116, 3594–3657.

    Article  Google Scholar 

  9. Gilroy, K. D.; Ruditskiy, A.; Peng, H.-C.; Qin, D.; Xia, Y. N. Bimetallic nanocrystals: Syntheses, properties, and applications. Chem. Rev. 2016, 116, 10414–10472.

    Article  Google Scholar 

  10. Antolini, E. Iron-containing platinum-based catalysts as cathode and anode materials for low-temperature acidic fuel cells: A review. RSC Adv. 2016, 6, 3307–3325.

    Article  Google Scholar 

  11. Yuan, W.; Scott, K.; Cheng, H. Fabrication and evaluation of Pt–Fe alloys as methanol tolerant cathode materials for direct methanol fuel cells. J. Power Sources 2006, 163, 323–329.

    Article  Google Scholar 

  12. Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G. F.; Ross, P. N.; Lucas, C. A.; Marković, N. M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 2007, 315, 493–497.

    Article  Google Scholar 

  13. Zhang, S.; Zhang, X.; Jiang, G. M.; Zhu, H. Y.; Guo, S. J.; Su, D.; Lu, G.; Sun, S. H. Tuning nanoparticle structure and surface strain for catalysis optimization. J. Am. Chem. Soc. 2014, 136, 7734–7739.

    Article  Google Scholar 

  14. Li, Q.; Wu, L. H.; Wu, G.; Su, D.; Lv, H. F.; Zhang, S.; Zhu, W. L.; Casimir, A.; Zhu, H. Y.; Mendoza-Garcia, A. et al. New approach to fully ordered fct-FePt nanoparticles for much enhanced electrocatalysis in acid. Nano Lett. 2015, 15, 2468–2473.

    Article  Google Scholar 

  15. Sun, S. H.; Murray, C. B.; Weller, D.; Folks, L.; Moser, A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 2000, 287, 1989–1992.

    Article  Google Scholar 

  16. Zeng, H.; Li, J.; Liu, J. P.; Wang, Z. L.; Sun, S. H. Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature 2002, 420, 395–398.

    Article  Google Scholar 

  17. Gu, H. W.; Ho, P. H.; Tsang, K. W. T.; Wang, L.; Xu, B. Using biofunctional magnetic nanoparticles to capture vancomycin-resistant enterococci and other gram-positive bacteria at ultralow concentration. J. Am. Chem. Soc. 2003, 125, 15702–15703.

    Article  Google Scholar 

  18. Kim, J.; Rong, C. B.; Liu, J. P.; Sun, S. H. Dispersible ferromagnetic FePt nanoparticles. Adv. Mater. 2009, 21, 906–909.

    Article  Google Scholar 

  19. Kim, J.; Lee, Y.; Sun, S. H. Structurally ordered FePt nanoparticles and their enhanced catalysis for oxygen reduction reaction. J. Am. Chem. Soc. 2010, 132, 4996–4997.

    Article  Google Scholar 

  20. Yamamoto, S.; Morimoto, Y.; Ono, T.; Takano, M. Magnetically superior and easy to handle L10-FePt nanocrystals. Appl. Phys. Lett. 2005, 87, 032503.

    Article  Google Scholar 

  21. Tamada, Y.; Yamamoto, S.; Takano, M.; Nasu, S.; Ono, T. Well-ordered L10-FePt nanoparticles synthesized by improved SiO2–nanoreactor method. Appl. Phys. Lett. 2007, 90, 162509.

    Article  Google Scholar 

  22. Elkins, K.; Li, D. R.; Poudyal, N.; Nandwana, V.; Jin, Z. Q.; Chen, K. H.; Liu, J. P. Monodisperse face-centred tetragonal FePt nanoparticles with giant coercivity. J. Phys. D: Appl. Phys. 2005, 38, 2306–2309.

    Article  Google Scholar 

  23. Li, D. R.; Poudyal, N.; Nandwana, V.; Jin, Z. Q.; Elkins, K.; Liu, J. P. Hard magnetic FePt nanoparticles by salt-matrix annealing. J. Appl. Phys. 2006, 99, 08E911.

    Google Scholar 

  24. Jeyadevan, B.; Urakawa, K.; Hobo, A.; Chinnasamy, N.; Shinoda, K.; Tohji, K.; Djayaprawira, D. D. J.; Tsunoda, M.; Takahashi, M. Direct synthesis of fct-FePt nanoparticles by chemical route. Jpn. J. Appl. Phys. 2003, 42, L350–L352.

    Article  Google Scholar 

  25. Howard, L. E. M.; Nguyen, H. L.; Giblin, S. R.; Tanner, B. K.; Terry, L.; Hughes, A. K.; Evans, J. S. O. A synthetic route to size-controlled fcc and fct FePt nanoparticles. J. Am. Chem. Soc. 2005, 127, 10140–10141.

    Article  Google Scholar 

  26. Kang, S. S.; Jia, Z. Y.; Shi, S. F.; Nikles, D. E.; Harrell, J. W. Easy axis alignment of chemically partially ordered FePt nanoparticles. Appl. Phys. Lett. 2005, 86, 062503.

    Article  Google Scholar 

  27. Hu, X. C.; Agostinelli, E.; Ni, C.; Hadjipanayis, G. C.; Capobianchi, A. A low temperature and solvent-free direct chemical synthesis of L10 FePt nanoparticles with size tailoring. Green Chem. 2014, 16, 2292–2297.

    Article  Google Scholar 

  28. Wellons, M. S.; Morris, W. H., III; Gai, Z.; Shen, J.; Bentley, J.; Wittig, J. E.; Lukehart, C. M. Direct synthesis and size selection of ferromagnetic FePt nanoparticles. Chem. Mater. 2007, 19, 2483–2488.

    Article  Google Scholar 

  29. He, J. H.; Bian, B.; Zheng, Q.; Du, J.; Xia, W. X.; Zhang, J.; Yan, A. R.; Liu, J. P. Direct chemical synthesis of well dispersed L10-FePt nanoparticles with tunable size and coercivity. Green Chem. 2016, 18, 417–422.

    Article  Google Scholar 

  30. Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J. J.; Lucas, C. A.; Wang, G. F.; Ross, P. N.; Markovic, N. M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 2007, 6, 241–247.

    Article  Google Scholar 

  31. Poudyal, N.; Chaubey, G. S.; Rong, C.-B.; Liu, J. P. Shape control of FePt nanocrystals. J. Appl. Phys. 2009, 105, 07A749.

    Article  Google Scholar 

  32. Wu, J. J.; Zhu, J. H.; Zhou, M. G.; Hou, Y. L.; Gao, S. FePt concave nanocubes with enhanced methanol oxidation activity. CrystEngComm 2012, 14, 7572–7575.

    Article  Google Scholar 

  33. Wang, D.-Y.; Chou, H.-L.; Cheng, C.-C.; Wu, Y.-H.; Tsai, C.-M.; Lin, H.-Y.; Wang, Y.-L.; Hwang, B.-J.; Chen, C.-C. FePt nanodendrites with high-index facets as active electrocatalysts for oxygen reduction reaction. Nano Energy 2015, 11, 631–639.

    Article  Google Scholar 

  34. Seo, W. S.; Kim, S. M.; Kim, Y.-M.; Sun, X. M.; Dai, H. J. Synthesis of ultrasmall ferromagnetic face-centered tetragonal FePt–graphite core–shell nanocrystals. Small 2008, 4, 1968–1971.

    Article  Google Scholar 

  35. Li, Y.; Kim, Y. J.; Kim, A. Y.; Lee, K.; Jung, M. H.; Hur, N. H.; Park, K. H.; Seo, W. S. Highly stable and magnetically recyclable mesoporous silica spheres embedded with FeCo/graphitic shell nanocrystals for supported catalysts. Chem. Mater. 2011, 23, 5398–5403.

    Article  Google Scholar 

  36. Choi, I. A.; Li, Y.; Kim, D. J.; Pal, M.; Cho, J.-H.; Lee, K.; Jung, M.-H.; Lee, C.; Seo, W. S. Ultra-small, uniform, and single bcc-phased FexCo1–x /graphitic shell nanocrystals for T 1 magnetic resonance imaging contrast agents. Chem.— Asian J. 2013, 8, 290–295.

    Article  Google Scholar 

  37. Kim, D. J.; Li, Y.; Kim, Y. J.; Hur, N. H.; Seo, W. S. A Highly stable and magnetically recyclable nanocatalyst system: Mesoporous silica spheres embedded with FeCo/graphitic shell magnetic nanoparticles and Pt nanocatalysts. Chem.— Asian J. 2015, 10, 2755–2761.

    Article  Google Scholar 

  38. Kim, D. J.; Pal, M.; Seo, W. S. Confined growth of highly uniform and single bcc-phased FeCo/graphitic-shell nanocrystals in SBA-15. Micropor. Mesopor. Mater. 2013, 180, 32–39.

    Article  Google Scholar 

  39. Lin, K.-J.; Chen, L.-J.; Prasad, M. R.; Chen, C.-Y. Core–shell synthesis of a novel, spherical, mesoporous silica/platinum nanocomposite: Pt/PVP@MCM-41. Adv. Mater. 2004, 16, 1845–1849.

    Article  Google Scholar 

  40. Joo, S. H.; Park, J. Y.; Tsung, C.-K.; Yamada, Y.; Yang, P. D.; Somorjai, G. A. Thermally stable Pt/mesoporous silica core–shell nanocatalysts for high-temperature reactions. Nat. Mater. 2009, 8, 126–131.

    Article  Google Scholar 

  41. Sangchoom, W.; Mokaya, R. High temperature synthesis of exceptionally stable pure silica MCM-41 and stabilisation of calcined mesoporous silicas via refluxing in water. J. Mater. Chem. 2012, 22, 18872–18878.

    Article  Google Scholar 

  42. Cullity, B. D. Elements of X-ray Diffraction, 2nd ed; Addison-Wesley: New York, 1978.

    Google Scholar 

  43. Sun, S.; Fullerton, E. E.; Weller, D.; Murray, C. B. Compositionally controlled FePt nanoparticle materials. IEEE Trans. Magn. 2001, 37, 1239–1243.

    Article  Google Scholar 

  44. Miyazaki, T.; Kitakami, O.; Okamoto, S.; Shimada, Y.; Akase, Z.; Murakami, Y.; Shindo, D.; Takahashi, Y. K.; Hono, K. Size effect on the ordering of L10 FePt nanoparticles. Phys. Rev. B 2005, 72, 144419.

    Article  Google Scholar 

  45. Hirotsu, Y.; Sato, K. Growth and atomic ordering of hard magnetic L10-FePt, FePd and CoPt alloy nanoparticles studied by transmission electron microscopy: Alloy system and particle size dependence. J. Ceram. Proc. Res. 2005, 6, 236–244.

    Google Scholar 

  46. Taylor, S.; Fabbri, E.; Levecque, P.; Schmidt, T. J.; Conrad, O. The effect of platinum loading and surface morphology on oxygen reduction activity. Electrocatalysis 2016, 7, 287–296.

    Article  Google Scholar 

  47. Strasser, P.; Koh, S.; Anniyev, T.; Greeley, J.; More, K.; Yu, C. F.; Liu, Z. C.; Kaya, S.; Nordlund, D.; Ogasawara, H. et al. Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat. Chem. 2010, 2, 454–460.

    Article  Google Scholar 

  48. Sun, X. L.; Li, D. G.; Guo, S. J.; Zhu, W. L.; Sun, S. H. Controlling core/shell Au/FePt nanoparticle electrocatalysis via changing the core size and shell thickness. Nanoscale 2016, 8, 2626–2631.

    Article  Google Scholar 

  49. Xia, B. Y.; Wu, H. B.; Wang, X.; Lou, X. W. Highly concave platinum nanoframes with high-index facets and enhanced electrocatalytic properties. Angew. Chem., Int. Ed. 2013, 52, 12337–12340.

    Article  Google Scholar 

  50. Lebedeva, N. P.; Koper, M. T. M.; Feliu, J. M.; van Sante, R. A. Role of crystalline defects in electrocatalysis: Mechanism and kinetics of CO adlayer oxidation on stepped platinum electrodes. J. Phys. Chem. B 2002, 106, 12938–12947.

    Article  Google Scholar 

  51. Lee, S. W.; Chen, S.; Sheng, W. C.; Yabuuchi, N.; Kim, Y.-T.; Mitani, T.; Vescovo, E.; Shao-Horn, Y. Roles of surface steps on Pt nanoparticles in electro-oxidation of carbon monoxide and methanol. J. Am. Chem. Soc. 2009, 131, 15669–15677.

    Article  Google Scholar 

  52. Maillard, F.; Schreier, S.; Hanzlik, M.; Savinova, E. R.; Weinkauf, S.; Stimming, U. Influence of particle agglomeration on the catalytic activity of carbon-supported Pt nanoparticles in CO monolayer oxidation. Phys. Chem. Chem. Phys. 2005, 7, 385–393.

    Article  Google Scholar 

  53. Stamenkovic, V. R.; Mun, B. S.; Mayrhofer, K. J. J.; Ross, P. N.; Markovic, N. M. Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces. J. Am. Chem. Soc. 2006, 128, 8813–8819.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Republic of Korea (NRF) funded by the Ministry of Education, Science and Technology (Nos. NRF-2014R1A1A2056619 and NRF-2015R1D1A3A01019467). Y. M. K. was supported by the Institute for Basic Science (No. IBS-R011-D1) in Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Young-Min Kim, Sang-Il Choi or Won Seok Seo.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, Y., Kim, H.J., Yang, D. et al. Facile synthesis of fully ordered L10-FePt nanoparticles with controlled Pt-shell thicknesses for electrocatalysis. Nano Res. 10, 2866–2880 (2017). https://doi.org/10.1007/s12274-017-1495-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1495-5

Keywords

Navigation