Skip to main content
Log in

Surface activation of colloidal indium phosphide nanocrystals

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Against general wisdom in crystallization, the nucleation of InP and III-V quantum dots (QDs) often dominates their growth. Systematic studies on InP QDs identified the key reason for this: the dense and tight alkanoate-ligand shell around each nanocrystal. Different strategies were explored to enable necessary ligand dynamics—i.e., ligands rapidly switching between being bonded to and detached from a nanocrystal upon thermal agitation—on nanocrystals to simultaneously retain colloidal stability and allow appreciable growth. Among all the surface-activation reagents tested, 2,4-diketones (such as acetylacetone) allowed the full growth of InP QDs with indium alkanoates and trimethylsilylphosphine as precursors. While small fatty acids (such as acetic acid) were partially active, common neutral ligands (such as fatty amines, organophosphines, and phosphine oxides) showed limited activation effects. The existing amine-based synthesis of InP QDs was activated by acetic acid formed in situ. Surface activation with common precursors enabled the growth of InP QDs with a distinguishable absorption peak between ~450 and 650 nm at mild temperatures (140–180 °C). Furthermore, surface activation was generally applicable for InAs and III-V based core/shell QDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brus, L. E. Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J. Chem. Phys. 1984, 80, 4403–4409.

    Article  Google Scholar 

  2. Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and closepacked nanocrystal assemblies. Annu. Rev. Mater. Sci. 2000, 30, 545–610.

    Article  Google Scholar 

  3. Peng, X. G. An essay on synthetic chemistry of colloidal nanocrystals. Nano Res. 2009, 2, 425–447.

    Article  Google Scholar 

  4. Talapin, D. V.; Lee, J. S.; Kovalenko, M. V.; Shevchenko, E. V. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 2010, 110, 389–458.

    Article  Google Scholar 

  5. Tamang, S.; Lincheneau, C.; Hermans, Y.; Jeong, S.; Reiss, P. Chemistry of InP nanocrystal syntheses. Chem. Mater. 2016, 28, 2491–2506.

    Article  Google Scholar 

  6. Dingle, R.; Wiegmann, W.; Henry, C. H. Quantum states of confined carriers in very thin AlxGa1–x As-GaAs-AlxGa1–x As heterostructures. Phys. Rev. Lett. 1974, 33, 827–830.

    Article  Google Scholar 

  7. Trentler, T. J.; Hickman, K. M.; Goel, S. C.; Viano, A. M.; Gibbons, P. C.; Buhro, W. E. Solution-liquid-solid growth of crystalline III-V semiconductors: An analogy to vaporliquid-solid growth. Science 1995, 270, 1791–1794.

    Article  Google Scholar 

  8. Bimberg, D.; Grundmann, M.; Ledentsov, N. N. Growth, spectroscopy, and laser application of self-ordered III-V quantum dots. MRS Bull. 1998, 23, 31–34.

    Article  Google Scholar 

  9. Dai, X. L.; Zhang, Z. X.; Jin, Y. Z.; Niu, Y.; Cao, H. J.; Liang, X. Y.; Chen, L. W.; Wang, J. P.; Peng, X. G. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 2014, 515, 96–99.

    Article  Google Scholar 

  10. Yang, Y. X.; Zheng, Y.; Cao, W. R.; Titov, A.; Hyvonen, J.; Manders, J. R.; Xue, J. G.; Holloway, P. H.; Qian, L. Highefficiency light-emitting devices based on quantum dots with tailored nanostructures. Nat. Photonics 2015, 9, 259–266.

    Google Scholar 

  11. Micic, O. I.; Curtis, C. J.; Jones, K. M.; Sprague, J. R.; Nozik, A. J. Synthesis and characterization of InP quantum dots. J. Phys. Chem. 1994, 98, 4966–4969.

    Article  Google Scholar 

  12. Guzelian, A. A.; Katari, J. E. B.; Kadavanich, A. V.; Banin, U.; Hamad, K.; Juban, E.; Alivisatos, A. P.; Wolters, R. H.; Arnold, C. C.; Heath, J. R. Synthesis of size-selected, surfacepassivated InP nanocrystals. J. Phys. Chem. 1996, 100, 7212–7219.

    Article  Google Scholar 

  13. Guzelian, A. A.; Banin, U.; Kadavanich, A. V.; Peng, X.; Alivisatos, A. P. Colloidal chemical synthesis and characterization of InAs nanocrystal quantum dots. Appl. Phys. Lett. 1996, 69, 1432–1434.

    Article  Google Scholar 

  14. Nozik, A. J.; Micic, O. I. Colloidal quantum dots of III-V semiconductors. MRS Bull. 1998, 23, 24–30.

    Article  Google Scholar 

  15. Cao, Y. W.; Banin, U. Synthesis and characterization of InAs/InP and InAs/CdSe core/shell nanocrystals. Angew. Chem., Int. Ed. 1999, 38, 3692–3694.

    Article  Google Scholar 

  16. Cao, Y. W.; Banin, U. Growth and properties of semiconductor core/shell nanocrystals with InAs cores. J. Am. Chem. Soc. 2000, 122, 9692–9702.

    Article  Google Scholar 

  17. Peng, X. G.; Wickham, J.; Alivisatos, A. P. Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: “Focusing” of size distributions. J. Am. Chem. Soc. 1998, 120, 5343–5344.

    Article  Google Scholar 

  18. Gary, D. C.; Terban, M. W.; Billinge, S. J. L.; Cossairt, B. M. Two-step nucleation and growth of InP quantum dots via magic-sized cluster intermediates. Chem. Mater. 2015, 27, 1432–1441.

    Article  Google Scholar 

  19. Battaglia, D.; Peng, X. G. Formation of high quality InP and InAs nanocrystals in a noncoordinating solvent. Nano Lett. 2002, 2, 1027–1030.

    Article  Google Scholar 

  20. Lucey, D. W.; MacRae, D. J.; Furis, M.; Sahoo, Y.; Cartwright, A. N.; Prasad, P. N. Monodispersed InP quantum dots prepared by colloidal chemistry in a noncoordinating solvent. Chem. Mater. 2005, 17, 3754–3762.

    Article  Google Scholar 

  21. Xu, S.; Kumar, S.; Nann, T. Rapid synthesis of high-quality InP nanocrystals. J. Am. Chem. Soc. 2006, 128, 1054–1055.

    Article  Google Scholar 

  22. Xu, S.; Ziegler, J.; Nann, T. Rapid synthesis of highly luminescent InP and InP/ZnS nanocrystals. J. Mater. Chem. 2008, 18, 2653–2656.

    Article  Google Scholar 

  23. Li, L.; Reiss, P. One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection. J. Am. Chem. Soc. 2008, 130, 11588–11589.

    Article  Google Scholar 

  24. Li, L.; Protiè re, M.; Reiss, P. Economic synthesis of high quality InP nanocrystals using calcium phosphide as the phosphorus precursor. Chem. Mater. 2008, 20, 2621–2623.

    Article  Google Scholar 

  25. Allen, P. M.; Walker, B. J.; Bawendi, M. G. Mechanistic insights into the formation of InP quantum dots. Angew. Chem., Int. Ed. 2010, 49, 760–762.

    Article  Google Scholar 

  26. Gary, D. C.; Glassy, B. A.; Cossairt, B. M. Investigation of indium phosphide quantum dot nucleation and growth utilizing triarylsilylphosphine precursors. Chem. Mater. 2014, 26, 1734–1744.

    Article  Google Scholar 

  27. Xie, L. S.; Harris, D. K.; Bawendi, M. G.; Jensen, K. F. Effect of trace water on the growth of indium phosphide quantum dots. Chem. Mater. 2015, 27, 5058–5063.

    Article  Google Scholar 

  28. Gary, D. C.; Cossairt, B. M. Role of acid in precursor conversion during InP quantum dot synthesis. Chem. Mater. 2013, 25, 2463–2469.

    Article  Google Scholar 

  29. Cui, J.; Beyler, A. P.; Marshall, L. F.; Chen, O.; Harris, D. K.; Wanger, D. D.; Brokmann, X.; Bawendi, M. G. Direct probe of spectral inhomogeneity reveals synthetic tunability of single-nanocrystal spectral linewidths. Nat. Chem. 2013, 5, 602–606.

    Article  Google Scholar 

  30. Zhou, J. H.; Pu, C. D.; Jiao, T. Y.; Hou, X. Q.; Peng, X. G. A two-step synthetic strategy toward monodisperse colloidal CdSe and CdSe/CdS core/shell nanocrystals. J. Am. Chem. Soc. 2016, 138, 6475–6483.

    Article  Google Scholar 

  31. Xie, R. G.; Peng, X. G. Synthetic scheme for high-quality InAs nanocrystals based on self-focusing and one-pot synthesis of InAs-based core–shell nanocrystals. Angew. Chem., Int. Ed. 2008, 47, 7677–7680.

    Article  Google Scholar 

  32. Harris, D. K.; Bawendi, M. G. Improved precursor chemistry for the synthesis of III-V quantum dots. J. Am. Chem. Soc. 2012, 134, 20211–20213.

    Article  Google Scholar 

  33. Franke, D.; Harris, D. K.; Xie, L. S.; Jensen, K. F.; Bawendi, M. G. The unexpected influence of precursor conversion rate in the synthesis of III-V quantum dots. Angew. Chem., Int. Ed. 2015, 54, 14299–14303.

    Article  Google Scholar 

  34. Mullin, J. W. Crystallization; Butterworth: Oxford, UK, 1997.

    Google Scholar 

  35. Joung, S.; Yoon, S.; Han, C. S.; Kim, Y.; Jeong, S. Facile synthesis of uniform large-sized InP nanocrystal quantum dots using tris(tert-butyldimethylsilyl)phosphine. Nanoscale Res. Lett. 2012, 7, 93.

    Article  Google Scholar 

  36. Song, W. S.; Lee, H. S.; Lee, J. C.; Jang, D. S.; Choi, Y.; Choi, M.; Yang, H. Amine-derived synthetic approach to color-tunable InP/ZnS quantum dots with high fluorescent qualities. J. Nanopart. Res. 2013, 15, 1750.

    Article  Google Scholar 

  37. Tessier, M. D.; Dupont, D.; De Nolf, K.; De Roo, J.; Hens, Z. Economic and size-tunable synthesis of InP/ZnE (E = S, Se) colloidal quantum dots. Chem. Mater. 2015, 27, 4893–4898.

    Article  Google Scholar 

  38. Kim, K.; Yoo, D.; Choi, H.; Tamang, S.; Ko, J. H.; Kim, S.; Kim, Y. H.; Jeong, S. Halide-amine co-passivated indium phosphide colloidal quantum dots in tetrahedral shape. Angew. Chem., Int. Ed. 2016, 55, 3714–3718.

    Article  Google Scholar 

  39. Xie, R. G.; Li, Z.; Peng, X. G. Nucleation kinetics vs. chemical kinetics in the initial formation of semiconductor nanocrystals. J. Am. Chem. Soc. 2009, 131, 15457–15466.

    Google Scholar 

  40. Tessier, M. D.; De Nolf, K.; Dupont, D.; Sinnaeve, D.; De Roo, J.; Hens, Z. Aminophosphines: A double role in the synthesis of colloidal indium phosphide quantum dots. J. Am. Chem. Soc. 2016, 138, 5923–5929.

    Article  Google Scholar 

  41. Buffard, A.; Dreyfuss, S.; Nadal, B.; Heuclin, H.; Xu, X. Z.; Patriarche, G.; Mézailles, N.; Dubertret, B. Mechanistic insight and optimization of InP nanocrystals synthesized with aminophosphines. Chem. Mater. 2016, 28, 5925–5934.

    Article  Google Scholar 

  42. Xie, R. G.; Battaglia, D.; Peng, X. G. Colloidal InP nanocrystals as efficient emitters covering blue to near-infrared. J. Am. Chem. Soc. 2007, 129, 15432–15433.

    Article  Google Scholar 

  43. Lamer, V. K.; Dinegar, R. H. Theory, production and mechanism of formation of monodispersed hydrosols. J. Am. Chem. Soc. 1950, 72, 4847–4854.

    Article  Google Scholar 

  44. Pradhan, N.; Reifsnyder, D.; Xie, R. G.; Aldana, J.; Peng, X. G. Surface ligand dynamics in growth of nanocrystals. J. Am. Chem. Soc. 2007, 129, 9500–9509.

    Article  Google Scholar 

  45. Bala, T.; Prasad, B. L. V.; Sastry, M.; Kahaly, M. U.; Waghmare, U. V. Interaction of different metal ions with carboxylic acid group: A quantitative study. J. Phys. Chem. A 2007, 111, 6183–6190.

    Article  Google Scholar 

  46. Narayanaswamy, A.; Xu, H. F.; Pradhan, N.; Kim, M.; Peng, X. G. Formation of nearly monodisperse In2O3 nanodots and oriented-attached nanoflowers: Hydrolysis and alcoholysis vs. pyrolysis. J. Am. Chem. Soc. 2006, 128, 10310–10319.

    Article  Google Scholar 

  47. Cros-Gagneux, A.; Delpech, F.; Nayral, C.; Cornejo, A.; Coppel, Y.; Chaudret, B. Surface chemistry of InP quantum dots: A comprehensive study. J. Am. Chem. Soc. 2010, 132, 18147–18157.

    Article  Google Scholar 

  48. Virieux, H.; Le Troedec, M.; Cros-Gagneux, A.; Ojo, W.-S.; Delpech, F.; Nayral, C.; Martinez, H.; Chaudret, B. InP/ZnS nanocrystals: Coupling NMR and XPS for fine surface and interface description. J. Am. Chem. Soc. 2012, 134, 19701–19708.

    Article  Google Scholar 

  49. Yang, Y.; Li, J. Z.; Lin, L.; Peng, X. G. An efficient and surface-benign purification scheme for colloidal nanocrystals based on quantitative assessment. Nano Res. 2015, 8, 3353–3364.

    Article  Google Scholar 

  50. Gary, D. C.; Flowers, S. E.; Kaminsky, W.; Petrone, A.; Li, X. S.; Cossairt, B. M. Single-crystal and electronic structure of a 1.3 nm indium phosphide nanocluster. J. Am. Chem. Soc. 2016, 138, 1510–1513.

    Article  Google Scholar 

  51. Chen, O.; Yang, Y. A.; Wang, T.; Wu, H. M.; Niu, C. G.; Yang, J. H.; Cao, Y. C. Surface-functionalization-dependent optical properties of II-VI semiconductor nanocrystals. J. Am. Chem. Soc. 2011, 133, 17504–17512.

    Article  Google Scholar 

  52. Li, Z.; Ji, Y. J.; Xie, R. G.; Grisham, S. Y.; Peng, X. G. Correlation of CdS nanocrystal formation with elemental sulfur activation and its implication in synthetic development. J. Am. Chem. Soc. 2011, 133, 17248–17256.

    Article  Google Scholar 

  53. Haubold, S.; Haase, M.; Kornowski, A.; Weller, H. Strongly luminescent InP/ZnS core–shell nanoparticles. ChemPhysChem 2001, 2, 331–334.

    Article  Google Scholar 

  54. Lowrey, A. H.; George, C.; D’Antonio, P.; Karle, J. Structure of acetylacetone by electron diffraction. J. Am. Chem. Soc. 1971, 93, 6399–6403.

    Article  Google Scholar 

  55. Nakamura, Y.; Isobe, K.; Morita, H.; Yamazaki, S.; Kawaguchi, S. Metal complexes containing acetylacetone as a neutral ligand. Inorg. Chem. 1972, 11, 1573–1578.

    Article  Google Scholar 

  56. Gomes, R.; Hassinen, A.; Szczygiel, A.; Zhao, Q. A.; Vantomme, A.; Martins, J. C.; Hens, Z. Binding of phosphonic acids to CdSe quantum dots: A solution NMR study. J. Phys. Chem. Lett. 2011, 2, 145–152.

    Article  Google Scholar 

  57. Baek, J.; Allen, P. M.; Bawendi, M. G.; Jensen, K. F. Investigation of indium phosphide nanocrystal synthesis using a high-temperature and high-pressure continuous flow microreactor. Angew. Chem., Int. Ed. 2011, 50, 627–630.

    Article  Google Scholar 

  58. Chang, S. M.; Hsu, Y. Y.; Chan, T. S. Chemical capture of phosphine by a sol–gel-derived Cu/TiO2 adsorbent—Interaction mechanisms. J. Phys. Chem. C 2011, 115, 2005–2013.

    Article  Google Scholar 

  59. Ryu, E.; Kim, S.; Jang, E.; Jun, S.; Jang, H.; Kim, B.; Kim, S. W. Step-wise synthesis of InP/ZnS core–shell quantum dots and the role of zinc acetate. Chem. Mater. 2009, 21, 573–575.

    Article  Google Scholar 

  60. Lim, J.; Bae, W. K.; Lee, D.; Nam, M. K.; Jung, J.; Lee, C.; Char, K.; Lee, S. InP@ZnSeS, core@composition gradient shell quantum dots with enhanced stability. Chem. Mater. 2011, 23, 4459–4463.

    Article  Google Scholar 

  61. Pu, C. D.; Zhou, J. H.; Lai, R. C.; Niu, Y.; Nan, W. N.; Peng, X. G. Highly reactive, flexible yet green Se precursor for metal selenide nanocrystals: Se-octadecene suspension (Se-SUS). Nano Res. 2013, 6, 652–670.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2016YFB0401600) and the National Natural Science Foundation of China (Nos. 21233005 and 914433204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaogang Peng.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Pu, C. & Peng, X. Surface activation of colloidal indium phosphide nanocrystals. Nano Res. 10, 941–958 (2017). https://doi.org/10.1007/s12274-016-1353-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1353-x

Keywords

Navigation