Skip to main content
Log in

Metal–organic framework derived CoSe2 nanoparticles anchored on carbon fibers as bifunctional electrocatalysts for efficient overall water splitting

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The development of efficient, low-cost, stable, non-noble-metal electrocatalysts for water splitting, particularly those that can catalyze both the hydrogen evolution reaction (HER) at the cathode and oxygen evolution reaction (OER) at the anode, is a challenge. We have developed a facile method for synthesizing CoSe2 nanoparticles uniformly anchored on carbon fiber paper (CoSe2/CF) via pyrolysis and selenization of in situ grown zeolitic imidazolate framework-67 (ZIF-67). CoSe2/CF shows high and stable catalytic activity in both the HER and OER in alkaline solution. At a low cell potential, i.e., 1.63 V, a water electrolyzer equipped with two CoSe2/CF electrodes gave a water-splitting current of 10 mA·cm−2. At a current of 20 mA·cm−2, it can operate without degradation for 30 h. This study not only offers a cost-effective solution for water splitting but also provides a new strategy for developing various catalytic nanostructures by changing the metal–organic framework precursors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Morales-Guio, C. G.; Stern, L. A.; Hu, X. L. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem. Soc. Rev. 2014, 43, 6555–6569.

    Article  Google Scholar 

  2. Zou, X. X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 44, 5148–5180.

    Article  Google Scholar 

  3. Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.

    Article  Google Scholar 

  4. Faber, M. S.; Jin, S. Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ. Sci. 2014, 7, 3519–3542.

    Article  Google Scholar 

  5. Greeley, J.; Jaramillo, T. F.; Bonde, J.; Chorkendorff, I.; Nørskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat. Mater. 2006, 5, 909–913.

    Article  Google Scholar 

  6. Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446–6473.

    Article  Google Scholar 

  7. Skúlason, E.; Karlberg, G. S.; Rossmeisl, J.; Bligaard, T.; Greeley, J.; Jónsson, H.; Nørskov, J. K. Density functional theory calculations for the hydrogen evolution reaction in an electrochemical double layer on the Pt(111) electrode. Phys. Chem. Chem. Phys. 2007, 9, 3241–3250.

    Article  Google Scholar 

  8. Lee, Y.; Suntivich, J.; May, K. J.; Perry, E. E.; Shao-Horn, Y. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 2012, 3, 399–404.

    Article  Google Scholar 

  9. Ledendecker, M.; Krick Calderón, S.; Papp, C.; Steinrück, H. P.; Antonietti, M.; Shalom, M. The synthesis of nano-structured Ni5P4 films and their use as a non-noble bifunctional electrocatalyst for full water splitting. Angew. Chem., Int. Ed. 2015, 127, 12538–12542.

    Article  Google Scholar 

  10. Dai, L. M.; Xue, Y. H.; Qu, L. T.; Choi, H.-J.; Baek, J.-B. Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 2015, 115, 4823–4892.

    Article  Google Scholar 

  11. Zhu, W. X.; Yue, X. Y.; Zhang, W. T.; Yu, S. X.; Zhang, Y. H.; Wang, J.; Wang, J. L. Nickel sulfide microsphere film on Ni foam as an efficient bifunctional electrocatalyst for overall water splitting. Chem. Commun. 2016, 52, 1486–1489.

    Article  Google Scholar 

  12. Ran, J. R.; Zhang, J.; Yu, J. G.; Jaroniec, M.; Qiao, S. Z. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 2014, 43, 7787–7812.

    Article  Google Scholar 

  13. Kaeffer, N.; Chavarot-Kerlidou, M.; Artero, V. Hydrogen evolution catalyzed by cobalt diimine–dioxime complexes. Acc. Chem. Res. 2015, 48, 1286–1295.

    Article  Google Scholar 

  14. Merki, D.; Hu, X. L. Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts. Energy Environ. Sci. 2011, 4, 3878–3888.

    Article  Google Scholar 

  15. Sun, C. C.; Yang, J.; Dai, Z. Y.; Wang, X. W.; Zhang, Y. F.; Li, L. Q.; Chen, P.; Huang, W.; Dong, X. C. Nanowires assembled from MnCo2O4@C nanoparticles for water splitting and all-solid-state supercapacitor. Nano Res. 2016, 9, 1300–1309.

    Article  Google Scholar 

  16. Zhu, J. X.; Sakaushi, K.; Clavel, G.; Shalom, M.; Antonietti, M.; Fellinger, T.-P. A general salt-templating method to fabricate vertically aligned graphitic carbon nanosheets and their metal carbide hybrids for superior lithium ion batteries and water splitting. J. Am. Chem. Soc. 2015, 137, 5480–5485.

    Article  Google Scholar 

  17. Kong, D. S.; Cha, J. J.; Wang, H. T.; Lee, H. R.; Cui, Y. First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. Energy Environ. Sci. 2013, 6, 3553–3558.

    Article  Google Scholar 

  18. Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 2011, 334, 1383–1385.

    Article  Google Scholar 

  19. Liu, Y. W.; Cheng, H.; Lyu, M. J.; Fan, S. J.; Liu, Q. H.; Zhang, W. S.; Zhi, Y. D.; Wang, C. M.; Xiao, C.; Wei, S. Q. et al. Low overpotential in vacancy-rich ultrathin CoSe2 nanosheets for water oxidation. J. Am. Chem. Soc. 2014, 136, 15670–15675.

    Article  Google Scholar 

  20. Zhu, Q. L.; Xu, Q. Metal–organic framework composites. Chem. Soc. Rev. 2014, 43, 5468–5512.

    Article  Google Scholar 

  21. Li, H. L.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M. Design and synthesis of an exceptionally stable and highly porous metal–organic framework. Nature 1999, 402, 276–279.

    Article  Google Scholar 

  22. Murray, L. J.; Dincă, M.; Long, J. R. Hydrogen storage in metal–organic frameworks. Chem. Soc. Rev. 2009, 38, 1294–1314.

    Article  Google Scholar 

  23. Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Metal–organic framework materials as catalysts. Chem. Soc. Rev. 2009, 38, 1450–1459.

    Article  Google Scholar 

  24. Jiang, H.-L.; Akita, T.; Ishida, T.; Haruta, M.; Xu, Q. Synergistic catalysis of Au@ Ag core−shell nanoparticles stabilized on metal−organic framework. J. Am. Chem. Soc. 2011, 133, 1304–1306.

    Article  Google Scholar 

  25. Hu, Z. C.; Deibert, B. J.; Li, J. Luminescent metal–organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev. 2014, 43, 5815–5840.

    Article  Google Scholar 

  26. Zhang, M.; Feng, G. X.; Song, Z. G.; Zhou, Y.-P.; Chao, H.-Y.; Yuan, D. Q.; Tan, T. T. Y.; Guo, Z. G.; Hu, Z. G.; Tang, B. Z. et al. Two-dimensional metal–organic framework with wide channels and responsive turn-on fluorescence for the chemical sensing of volatile organic compounds. J. Am. Chem. Soc. 2014, 136, 7241–7244.

    Article  Google Scholar 

  27. He, C. B.; Liu, D. M.; Lin, W. B. Nanomedicine applications of hybrid nanomaterials built from metal-ligand coordination bonds: Nanoscale metal–organic frameworks and nanoscale coordination polymers. Chem. Rev. 2015, 115, 11079–11108.

    Article  Google Scholar 

  28. Xia, W.; Mahmood, A.; Zou, R. Q.; Xu, Q. Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ. Sci. 2015, 8, 1837–1866.

    Article  Google Scholar 

  29. Li, S.-L.; Xu, Q. Metal–organic frameworks as platforms for clean energy. Energy Environ. Sci. 2013, 6, 1656–1683.

    Article  Google Scholar 

  30. Zhang, L.; Wu, H. B.; Madhavi, S.; Hng, H. H.; Lou, X. W. Formation of Fe2O3 microboxes with hierarchical shell structures from metal–organic frameworks and their lithium storage properties. J. Am. Chem. Soc. 2012, 134, 17388–17391.

    Article  Google Scholar 

  31. Hou, Y.; Li, J. Y.; Wen, Z. H.; Cui, S. M.; Yuan, C.; Chen, J. H. Co3O4 nanoparticles embedded in nitrogen-doped porous carbon dodecahedrons with enhanced electrochemical properties for lithium storage and water splitting. Nano Energy 2015, 12, 1–8.

    Article  Google Scholar 

  32. Hou, Y.; Wen, Z. H.; Cui, S. M.; Ci, S. Q.; Mao, S.; Chen, J. H. An advanced nitrogen-doped graphene/cobalt-embedded porous carbon polyhedron hybrid for efficient catalysis of oxygen reduction and water splitting. Adv. Funct. Mater. 2015, 25, 872–882.

    Article  Google Scholar 

  33. Wu, H. B.; Xia, B. Y.; Yu, L.; Yu, X. Y.; Lou, X. W. Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal–organic frameworks for efficient hydrogen production. Nat. Commun. 2015, 6, 6512–6519.

    Article  Google Scholar 

  34. You, B.; Jiang, N.; Sheng, M. L.; Gul, S.; Yano, J.; Sun, Y. J. High-performance overall water splitting electrocatalysts derived from cobalt-based metal–organic frameworks. Chem. Mater. 2015, 27, 7636–7642.

    Article  Google Scholar 

  35. Liu, B.; Zhang, J.; Wang, X. F.; Chen, G.; Chen, D.; Zhou, C. W.; Shen, G. Z. Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett. 2012, 12, 3005–3011.

    Article  Google Scholar 

  36. Sun, C. C.; Yang, J.; Rui, X. H.; Zhang, W. N.; Yan, Q. Y.; Chen, P.; Huo, F. W.; Huang, W.; Dong, X. C. MOFdirected templating synthesis of a porous multicomponent dodecahedron with hollow interiors for enhanced lithiumion battery anodes. J. Mater. Chem. A 2015, 3, 8483–8488.

    Article  Google Scholar 

  37. Shi, Q.; Chen, Z. F.; Song, Z. W.; Li, J. P.; Dong, J. X. Synthesis of ZIF-8 and ZIF-67 by steam-assisted conversion and an investigation of their tribological behaviors. Angew. Chem., Int. Ed. 2011, 50, 672–675.

    Article  Google Scholar 

  38. Cabán-Acevedo, M.; Faber, M. S.; Tan, Y. Z.; Hamers, R. J.; Jin, S. Synthesis and properties of semiconducting iron pyrite (FeS2) nanowires. Nano Lett. 2012, 12, 1977–1982.

    Article  Google Scholar 

  39. Feng, Y. J.; He, T.; Alonso-Vante, N. Oxygen reduction reaction on carbon-supported CoSe2 nanoparticles in an acidic medium. Electrochim. Acta 2009, 54, 5252–5256.

    Article  Google Scholar 

  40. Xu, Y. F.; Gao, M. R.; Zheng, Y. R.; Jiang, J.; Yu, S. H. Nickel/nickel(II) oxide nanoparticles anchored onto cobalt(IV) diselenide nanobelts for the electrochemical production of hydrogen. Angew. Chem., Int. Ed. 2013, 52, 8546–8550.

    Article  Google Scholar 

  41. Van der Heide, H.; Hemmel, R.; Van Bruggen, C. F.; Haas, C. X-ray photoelectron spectra of 3d transition metal pyrites. J. Solid State Chem. 1980, 33, 17–25.

    Article  Google Scholar 

  42. Liu, T. T.; Liu, Q.; Asiri, A. M.; Luo, Y. L.; Sun, X. P. An amorphous CoSe film behaves as an active and stable full water-splitting electrocatalyst under strongly alkaline conditions. Chem. Commun. 2015, 51, 16683–16686.

    Article  Google Scholar 

  43. Kong, D. S.; Wang, H. T.; Lu, Z. Y.; Cui, Y. CoSe2 nanoparticles grown on carbon fiber paper: An efficient and stable electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 2014, 136, 4897–4900.

    Article  Google Scholar 

  44. Zhang, H. X.; Yang, B.; Wu, X. L.; Li, Z. J.; Lei, L. C.; Zhang, X. W. Polymorphic CoSe2 with mixed orthorhombic and cubic phases for highly efficient hydrogen evolution reaction. ACS Appl Mater Interfaces 2015, 7, 1772–1779.

    Article  Google Scholar 

  45. Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780–786.

    Article  Google Scholar 

  46. Liu, X. J.; Chang, Z.; Luo, L.; Xu, T. H.; Lei, X. D.; Liu, J. F.; Sun, X. M. Hierarchical ZnxCo3–x O4 nanoarrays with high activity for electrocatalytic oxygen evolution. Chem. Mater. 2014, 26, 1889–1895.

    Article  Google Scholar 

  47. Cui, X. J.; Ren, P. J.; Deng, D. H.; Deng, J.; Bao, X. H. Single layer graphene encapsulating non-precious metals as high-performance electrocatalysts for water oxidation. Energy Environ. Sci. 2016, 9, 123–129.

    Article  Google Scholar 

  48. Zou, X. X.; Huang, X. X.; Goswami, A.; Silva, R.; Sathe, B. R.; Mikmeková, E.; Asefa, T. Cobalt-embedded nitrogen-rich carbon nanotubes efficiently catalyze hydrogen evolution reaction at all pH values. Angew. Chem. 2014, 126, 4461–4465.

    Article  Google Scholar 

  49. Duan, J. J.; Chen, S.; Chambers, B. A.; Andersson, G. G.; Qiao, S. Z. 3D WS2 nanolayers@heteroatom-doped graphene films as hydrogen evolution catalyst electrodes. Adv. Mater. 2015, 27, 4234–4241.

    Article  Google Scholar 

  50. Tian, J. Q.; Liu, Q.; Asiri, A. M.; Sun, X. P. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J. Am. Chem. Soc. 2014, 136, 7587–7590.

    Article  Google Scholar 

  51. Pentland, N.; Bockris, J. O. M.; Sheldon, E. Hydrogen evolution reaction on copper, gold, molybdenum, palladium, rhodium, and iron: Mechanism and measurement technique under high purity conditions. J. Electrochem. Soc. 1957, 104, 182–194.

    Article  Google Scholar 

  52. de Chialvo, M. R. G.; Chialvo, A. C. Hydrogen evolution reaction: Analysis of the Volmer-Heyrovsky-Tafel mechanism with a generalized adsorption model. J. Electroanal. Chem. 1994, 372, 209–223.

    Article  Google Scholar 

  53. Ma, T. Y.; Dai, S.; Qiao, S. Z. Self-supported electrocatalysts for advanced energy conversion processes. Mater. Today, in press, DOI: 10.1016/j.mattod.2015.10.012.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Chen, Wei Huang or Xiaochen Dong.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, C., Dong, Q., Yang, J. et al. Metal–organic framework derived CoSe2 nanoparticles anchored on carbon fibers as bifunctional electrocatalysts for efficient overall water splitting. Nano Res. 9, 2234–2243 (2016). https://doi.org/10.1007/s12274-016-1110-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1110-1

Keywords

Navigation