Skip to main content
Log in

Single W18O49 nanowires: A multifunctional nanoplatform for computed tomography imaging and photothermal/photodynamic/radiation synergistic cancer therapy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Combination therapy is a promising cancer treatment strategy that is usually based on the utilization of complicated nanostructures with multiple components functioning as photo-thermal energy transducers, photo-sensitizers, or dose intensifiers for photothermal therapy (PTT), photodynamic therapy (PDT), or radiation therapy (RT). In this study, ultrathin tungsten oxide nanowires (W18O49) were synthesized using a solvothermal approach and examined as a multifunctional theranostic nanoplatform. In vitro and in vivo analyses demonstrated that these nanowires could induce extensive heat- and singlet oxygen-mediated damage to cancer cells under 980 nm near infrared (NIR)-laser excitation. They were also shown to function as radiation dose intensifying agents that enhance irradiative energy deposition locally and selectively during radiation therapy. Compared to NIR-induced PTT/PDT and RT alone, W18O49-based synergistic tri-modal therapy eradicated xenograft tumors and no recurrence was observed within a 9-month follow up. Moreover, the strong X-ray attenuation ability of the tungsten element (Z = 74, 4.438 cm2·g–1, 100 KeV) qualified these nanowires as excellent contrast agents in X-ray-based imaging, such as diagnostic computed tomography (CT) and cone-beam CT for image-guided radiation therapy. Toxicity studies demonstrated minimal adverse effects on the hematologic system and major organs of mice within one month. In conclusion, these nanowires have shown significant potential for cancer therapy with inherent image guidance and synergistic effects from phototherapy and radiation therapy, which warrants further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hauck, T. S.; Jennings, T. L.; Yatsenko, T.; Kumaradas, J. C.; Chan, W. C. W. Enhancing the toxicity of cancer chemotherapeutics with gold nanorod hyperthermia. Adv. Mater. 2008, 20, 3832–3838.

    Article  Google Scholar 

  2. Liu, H. Y.; Liu, T. L.; Wu, X. L.; Li, L. L.; Tan, L. F.; Chen, D.; Tang, F. Q. Targeting gold nanoshells on silica nanorattles: A drug cocktail to fight breast tumors via a single irradiation with near-infrared laser light. Adv. Mater. 2012, 24, 755–761.

    Article  Google Scholar 

  3. Liu, H. Y.; Chen, D.; Li, L. L.; Liu, T. L.; Tan, L. F.; Wu, X. L.; Tang, F. Q. Multifunctional gold nanoshells on silica nanorattles: A platform for the combination of photothermal therapy and chemotherapy with low systemic toxicity. Angew. Chem., Int. Ed. 2011, 50, 891–895.

    Article  Google Scholar 

  4. Fang, W. J.; Tang, S. H.; Liu, P. X.; Fang, X. L.; Gong, J. W.; Zheng, N. F. Pd nanosheet-covered hollow mesoporous silica nanoparticles as a platform for the chemo-photothermal treatment of cancer cells. Small 2012, 8, 3816–3822.

    Article  Google Scholar 

  5. Peng, C. L.; Shih, Y. H.; Lee, P. C.; Hsieh, T. M.; Luo, T. Y.; Shieh, M. J. Multimodal image-guided photothermal therapy mediated by 188Re-labeled micelles containing a cyanine-type photosensitizer. ACS Nano 2011, 5, 5594–5607.

    Article  Google Scholar 

  6. Chen, Z. W.; Li, Z. H.; Wang, J. S.; Ju, E. G.; Zhou, L.; Ren, J. S.; Qu, X. G. A multi-synergistic platform for sequential irradiation-activated high-performance apoptotic cancer therapy. Adv. Funct. Mater. 2014, 24, 522–529.

    Article  Google Scholar 

  7. Hayashi, K.; Nakamura, M.; Miki, H.; Ozaki, S.; Abe, M.; Matsumoto, T.; Kori, T.; Ishimura, K. Photostable iodinated silica/porphyrin hybrid nanoparticles with heavy-atom effect for wide-field photodynamic/photothermal therapy using single light source. Adv. Funct. Mater. 2014, 24, 503–513.

    Article  Google Scholar 

  8. Kuo, W. S.; Chang, C. N.; Chang, Y. T.; Yang, M. H.; Chien, Y. H.; Chen, S. J.; Yeh, C. S. Gold nanorods in photodynamic therapy, as hyperthermia agents, and in near-infrared optical imaging. Angew. Chem., Int. Ed. 2010, 49, 2711–2715.

    Article  Google Scholar 

  9. Wang, Y. H.; Wang, H. G.; Liu, D. P.; Song, S. Y.; Wang, X.; Zhang, H. J. Graphene oxide covalently grafted upconversion nanoparticles for combined NIR mediated imaging and photothermal/photodynamic cancer therapy. Biomaterials 2013, 34, 7715–7724.

    Article  Google Scholar 

  10. Song, X. J.; Chen, Q.; Liu, Z. Recent advances in the development of organic photothermal nano-agents. Nano Res. 2015, 8, 340–354.

    Article  Google Scholar 

  11. Terentyuk, G.; Panfilova, E.; Khanadeev, V.; Chumakov, D.; Genina, E.; Bashkatov, A.; Tuchin, V.; Bucharskaya, A.; Maslyakova, G.; Khlebtsov, N. et al. Gold nanorods with a hematoporphyrin-loaded silica shell for dual-modality photodynamic and photothermal treatment of tumors in vivo. Nano Res. 2014, 7, 325–337.

    Article  Google Scholar 

  12. Wang, N. N.; Zhao, Z. L.; Lv, Y. F.; Fan, H. H.; Bai, H. R.; Meng, H. M.; Long, Y. Q.; Fu, T.; Zhang, X. B.; Tan, W. H. Gold nanorod-photosensitizer conjugate with extracellular pH-driven tumor targeting ability for photothermal/ photodynamic therapy. Nano Res. 2014, 7, 1291–1301.

    Article  Google Scholar 

  13. Gerweck, L. E.; Gillette, E. L.; Dewey, W. C. Effect of heat and radiation on synchronous Chinese hamster cells: Killing and repair. Radiat. Res. 1975, 64, 611–623.

    Article  Google Scholar 

  14. Overgaard, J.; Bichel, P. The influence of hypoxia and acidity on the hyperthermic response of malignant cells in vitro. Radiology 1977, 123, 511–514.

    Article  Google Scholar 

  15. Horsman, M. R.; Overgaard, J. Hyperthermia: A potent enhancer of radiotherapy. Clin. Oncol. 2007, 19, 418–426.

    Article  Google Scholar 

  16. Ben-Hur, E.; Elkind, M. M.; Bronk, B. V. Thermally enhanced radioresponse of cultured Chinese hamster cells: Inhibition of repair of sublethal damage and enhancement of lethal damage. Radiat. Res. 1974, 58, 38–51.

    Article  Google Scholar 

  17. Xiao, Q. F.; Zheng, X. P.; Bu, W. B.; Ge, W. Q.; Zhang, S. J.; Chen, F.; Xing, H. Y.; Ren, Q. G.; Fan, W. P.; Zhao, K. L. et al. A core/satellite multifunctional nanotheranostic for in vivo imaging and tumor eradication by radiation/photothermal synergistic therapy. J. Am. Chem. Soc. 2013, 135, 13041–13048.

    Article  Google Scholar 

  18. Chen, Z. G.; Wang, Q.; Wang, H. L.; Zhang, L. S.; Song, G. S.; Song, L. L.; Hu, J. Q.; Wang, H. Z.; Liu, J. S.; Zhu, M. F. et al. Ultrathin PEGylated W18O49 nanowires as a new 980 nm-laser-driven photothermal agent for efficient ablation of cancer cells in vivo. Adv. Mater. 2013, 25, 2095–2100.

    Article  Google Scholar 

  19. Kalluru, P.; Vankayala, R.; Chiang, C. S.; Hwang, K. C. Photosensitization of singlet oxygen and in vivo photodynamic therapeutic effects mediated by PEGylated W18O49 nanowires. Angew. Chem., Int. Ed. 2013, 52, 12332–12336.

    Article  Google Scholar 

  20. Gao, L.; Fei, J. B.; Zhao, J.; Li, H.; Cui, Y.; Li, J. B. Hypocrellin-loaded gold nanocages with high two-photon efficiency for photothermal/photodynamic cancer therapy in vitro. ACS Nano 2012, 6, 8030–8040.

    Article  Google Scholar 

  21. Tian, B.; Wang, C.; Zhang, S.; Feng, L. Z.; Liu, Z. Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide. ACS Nano 2011, 5, 7000–7009.

    Article  Google Scholar 

  22. Orenstein, A.; Kostenich, G.; Kopolovic, Y.; Babushkina, T.; Malik, Z. Enhancement of ALA-PDT damage by IR-induced hyperthermia on a colon carcinoma model. Photochem. Photobiol. 1999, 69, 703–707.

    Google Scholar 

  23. Yanase, S.; Nomura, J.; Matsumura, Y.; Kato, H.; Tagawa, T. Hyperthermia Enhances the antitumor effect of photodynamic therapy with ALA hexyl ester in a squamous cell carcinoma tumor model. Photodiagn. Photodyn. Ther. 2012, 9, 369–375.

    Article  Google Scholar 

  24. Henderson, B. W.; Waldow, S. M.; Potter, W. R.; Dougherty, T. J. Interaction of photodynamic therapy and hyperthermia: Tumor response and cell survival studies after treatment of mice in vivo. Cancer Res. 1985, 45, 6071–6077.

    Google Scholar 

  25. Waldow, S. M.; Henderson, B. W.; Dougherty, T. J. Potentiation of photodynamic therapy by heat: Effect of sequence and time interval between treatments in vivo. Lasers Surg. Med. 1985, 5, 83–94.

    Article  Google Scholar 

  26. Christensen, T.; Wahl, A.; Smedshammer, L. Effects of haematoporphyrin derivative and light in combination with hyperthermia on cells in culture. Br. J. Cancer 1984, 50, 85–89.

    Article  Google Scholar 

  27. Christensen, T.; Smedshammer, L.; Wahl, A.; Moan, J. Photodynamic effects and hyperthermia in vitro. In Advances in Experimental Medicine and Biology: Methods in Porphyrin Photosensitization; Springer-Verlag: New York, USA, 1985; vol. 193, pp 69–78.

    Chapter  Google Scholar 

  28. Alvarez-Lorenzo, C.; Bromberg, L.; Concheiro, A. Lightsensitive intelligent drug delivery systems. Photochem. Photobiol. 2009, 85, 848–860.

    Article  Google Scholar 

  29. Kobayashi, K.; Usami, N.; Porcel, E.; Lacombe, S.; Le Sech, C. Enhancement of radiation effect by heavy elements. Mutat. Res. 2010, 704, 123–131.

    Article  Google Scholar 

  30. Prezado, Y.; Fois, G.; Le Duc, G.; Bravin, A. Gadolinium dose enhancement studies in microbeam radiation therapy. Med. Phys. 2009, 36, 3568–3574.

    Article  Google Scholar 

  31. Jain, S.; Hirst, D. G.; O'Sullivan, J. M. Gold nanoparticles as novel agents for cancer therapy. Br. J. Radiol. 2012, 85, 101–113.

    Article  Google Scholar 

  32. Chithrani, D. B.; Jelveh, S.; Jalali, F.; van Prooijen, M.; Allen, C.; Bristow, R. G.; Hill, R. P.; Jaffray, D. A. Gold nanoparticles as radiation sensitizers in cancer therapy. Radiat. Res. 2010, 173, 719–728.

    Article  Google Scholar 

  33. Jain, S.; Coulter, J. A.; Hounsell, A. R.; Butterworth, K. T.; McMahon, S. J.; Hyland, W. B.; Muir, M. F.; Dickson, G. R.; Prise, K. M.; Currell, F. J. et al. Cell-specific radiosensitization by gold nanoparticles at megavoltage radiation energies. Int. J. Radiat. Oncol. Biol. Phys. 2011, 79, 531–539.

    Article  Google Scholar 

  34. Chang, M. Y.; Shiau, A. L.; Chen, Y. H.; Chang, C. J.; Chen, H. H.; Wu, C. L. Increased apoptotic potential and dose-enhancing effect of gold nanoparticles in combination with single-dose clinical electron beams on tumor-bearing mice. Cancer Sci. 2008, 99, 1479–1484.

    Article  Google Scholar 

  35. Le Duc, G.; Miladi, I.; Alric, C.; Mowat, P.; Bräuer-Krisch, E.; Bouchet, A.; Khalil, E.; Billotey, C.; Janier, M.; Lux, F. et al. Toward an image-guided microbeam radiation therapy using gadolinium-based nanoparticles. ACS Nano 2011, 5, 9566–9574.

    Article  Google Scholar 

  36. Ai, K. L.; Liu, Y. L.; Liu, J. H.; Yuan, Q. H.; He, Y. Y.; Lu, L. H. Large-scale synthesis of Bi2S3 nanodots as a contrast agent for in vivo X-ray computed tomography imaging. Adv. Mater. 2011, 23, 4886–4891.

    Article  Google Scholar 

  37. Mendoza-Agüero, N.; Agarwal, V. Optical and structural characterization of tungsten oxide electrodeposited on nanostructured porous silicon: Effect of annealing atmosphere and temperature. J. Alloys Comp. 2013, 581, 596–601.

    Article  Google Scholar 

  38. Chen, F.; Zhang, S. J.; Bu, W. B.; Chen, Y.; Xiao, Q. F.; Liu, J. N.; Xing, H. Y.; Zhou, L. P.; Peng, W. J.; Shi, J. L. A uniform sub-50 nm-sized magnetic/upconversion fluorescent bimodal imaging agent capable of generating singlet oxygen by using a 980 nm laser. Chemistry 2012, 18, 7082–7090.

    Article  Google Scholar 

  39. Fong, P. M.; Keil, D. C.; Does, M. D.; Gore, J. C. Polymer gels for magnetic resonance imaging of radiation dose distributions at normal room atmosphere. Phys. Med. Biol. 2001, 46, 3105–3113.

    Article  Google Scholar 

  40. Cheng, L.; Liu, J. J.; Gu, X.; Gong, H.; Shi, X. Z.; Liu, T.; Wang, C.; Wang, X. Y.; Liu, G.; Xing, H. Y. et al. PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy. Adv. Mater. 2014, 26, 1886–1893.

    Article  Google Scholar 

  41. Zhou, Z. G.; Kong, B.; Yu, C.; Shi, X. Y.; Wang, M. W.; Liu, W.; Sun, Y. N.; Zhang, Y. J.; Yang, H.; Yang, S. P. Tungsten oxide nanorods: An efficient nanoplatform for tumor CTimaging and photothermal therapy. Sci. Rep. 2014, 4, 3653.

    Google Scholar 

  42. Liu, J. H.; Han, J. G.; Kang, Z. C.; Golamaully, R.; Xu, N. N.; Li, H. P.; Han, X. L. In vivo near-infrared photothermal therapy and computed tomography imaging of cancer cells using novel tungsten-based theranostic probe. Nanoscale 2014, 6, 5770–5776.

    Article  Google Scholar 

  43. Huo, D.; He, J.; Li, H.; Huang, A. J.; Zhao, H. Y.; Ding, Y.; Zhou, Z. Y.; Hu, Y. X-ray CTguided fault-free photothermal ablation of metastatic lymph nodes with ultrafine HER-2 targeting W18O49 nanoparticles. Biomaterials 2014, 35, 9155–9166.

    Article  Google Scholar 

  44. Song, G. S.; Wang, Q.; Wang, Y.; Lv, G.; Li, C.; Zou, R. J.; Chen, Z. G.; Qin, Z. Y.; Huo, K. K.; Hu, R. G. et al. A lowtoxic multifunctional nanoplatform based on Cu9S5@MSiO2 core-shell nanocomposites: Combining photothermal- and chemotherapies with infrared thermal imaging for cancer treatment. Adv. Funct. Mater. 2013, 23, 4281–4292.

    Article  Google Scholar 

  45. Yavuz, M. S.; Cheng, Y. Y.; Chen, J. Y.; Cobley, C. M.; Zhang, Q.; Rycenga, M.; Xie, J. W.; Kim, C.; Song, K. H.; Schwartz, A. G. et al. Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat. Mater. 2009, 8, 935–939.

    Article  Google Scholar 

  46. Bardhan, R.; Chen, W. X.; Perez-Torres, C.; Bartels, M.; Huschka, R. M.; Zhao, L. L.; Morosan, E.; Pautler, R. G.; Joshi, A.; Halas, N. J. Nanoshells with targeted simultaneous enhancement of magnetic and optical imaging and photothermal therapeutic response. Adv. Funct. Mater. 2009, 19, 3901–3909.

    Article  Google Scholar 

  47. Xing, H. Y.; Zheng, X. P.; Ren, Q. G.; Bu, W. B.; Ge, W. Q.; Xiao, Q. F.; Zhang, S. J.; Wei, C. Y.; Qu, H. Y.; Wang, Z. et al. Computed tomography imaging-guided radiotherapy by targeting upconversion nanocubes with significant imaging and radiosensitization enhancements. Sci. Rep. 2013, 3, 1751.

    Google Scholar 

  48. Chen, Y. S.; Frey, W.; Kim, S.; Homan, K.; Kruizinga, P.; Sokolov, K.; Emelianov, S. Enhanced thermal stability of silica-coated gold nanorods for photoacoustic imaging and image-guided therapy. Opt. Express 2010, 18, 8867–8878.

    Article  Google Scholar 

  49. Ku, G.; Zhou, M.; Song, S. L.; Huang, Q.; Hazle, J.; Li, C. Copper sulfide nanoparticles as a new class of photoacoustic contrast agent for deep tissue imaging at 1064 nm. ACS Nano 2012, 6, 7489–7496.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangpeng Zheng or Wenbo Bu.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, J., Xiao, Q., Zheng, X. et al. Single W18O49 nanowires: A multifunctional nanoplatform for computed tomography imaging and photothermal/photodynamic/radiation synergistic cancer therapy. Nano Res. 8, 3580–3590 (2015). https://doi.org/10.1007/s12274-015-0858-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0858-z

Keywords

Navigation