Skip to main content
Log in

Gold nanorods with a hematoporphyrin-loaded silica shell for dual-modality photodynamic and photothermal treatment of tumors in vivo

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Nanocomposites (NCs) consisting of a gold nanorod core and a mesoporous silica shell doped with hematoporphyrin (HP) have been fabricated in order to improve the efficiency of cancer treatment by combining photothermal and photodynamic therapies (PDT + PTT) in vivo. In addition to the long-wavelength plasmon resonance near 810–830 nm, the fabricated NCs exhibited a 400-nm absorbance peak corresponding to bound HP, generated singlet oxygen under 633-nm excitation near the 632.5-nm Q-band, and produced heat under a 808-nm near-infrared (NIR) laser irradiation. These modalities were used for a combined PDT + PTT treatment of large (about 3 cm3) solid tumors in vivo with a xenorafted tumor rat model. NCs were directly injected into tumors and irradiated simultaneously with 633-nm and 808-nm lasers to stimulate the combined photodynamic and photothermal activities of NCs. The efficiency of the combined therapy was evaluated by optical coherence tomography, histological analysis, and by measurements of the tumor volume growth during a 21-day period. The NC-mediated PDT led to weak changes in tissue histology and to a moderate 20% decrease in the tumor volume. In contrast, the combined PDT + PTT treatment resulted in the large-area tumor necrosis and led to dramatic decrease in the tumor volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dykman, L. A.; Khlebtsov, N. G. Gold nanoparticles in biomedical applications: Recent advances and perspectives. Chem. Soc. Rev. 2012, 41, 2256–2282.

    Article  Google Scholar 

  2. Dreaden, E. C.; Alkilany, M. A.; Huang, X.; Murphy, C. J.; El-Sayed, M. A. The golden age: Gold nanoparticles for biomedicine. Chem. Soc. Rev. 2012, 41, 2740–2779.

    Article  Google Scholar 

  3. Yuan, H.; Fales, A. M.; Vo-Dinh, T. TAT peptide-functionalized gold nanostars: Enhanced intracellular delivery and efficient NIR photothermal therapy using ultralow irradiance. J. Am. Chem. Soc. 2012, 134, 11358–11361.

    Article  Google Scholar 

  4. Van de Broek, B.; Devoogdt, N.; D’Hollander, A.; Gijs, H. L.; Jans, K.; Lagae, L.; Muyldermans, S.; Maes, G.; Borghs, G. Specific cell targeting with nanobody conjugated branched gold nanoparticles for photothermal therapy. ACS Nano 2011, 5, 4319–4328.

    Article  Google Scholar 

  5. Huang, P.; Bao, L.; Zhang, C.; Lin, J.; Luo, T.; Yang, D.; He, M.; Li, Z.; Gao, G.; Gao, B. et al. Folic acid-conjugated silica-modified gold nanorods for X-ray/CT imaging-guided dual-mode radiation and photo-thermal therapy. Biomaterials 2011, 32, 9796–9809.

    Article  Google Scholar 

  6. Huang, P.; Pandoli, O.; Wang, X.; Wang, Z.; Li, Z.; Zhang, C.; Chen, F.; Lin, J.; Cui, D.; Chen, X. Chiral guanosine 5′-monophosphate-capped gold nanoflowers: Controllable synthesis, characterization, surface-enhanced Raman scattering activity, cellular imaging and photothermal therapy. Nano Res. 2012, 5, 630–639.

    Article  Google Scholar 

  7. Lukianova-Hleb, E. Y.; Sassaroli, E.; Jones, A.; Lapotko, D. O. Transient photothermal spectra of plasmonic nanobubbles. Langmuir 2012, 28, 4858–4866.

    Article  Google Scholar 

  8. Ratto, F.; Matteini, P.; Centi, S.; Rossi, F.; Pini, R. Gold nanorods as new nanochromophores for photothermal therapies. J. Biophotonics 2011, 4, 64–73.

    Article  Google Scholar 

  9. Lapotko, D.; Lukianova, E.; Oraevsky, A. Selective laser nano-thermolysis of human leukemia cells with microbubbles generated around clusters of gold nanoparticles. Lasers Surg. Med. 2006, 38, 631–642.

    Article  Google Scholar 

  10. Huang, X.; Jain, P. K.; El-Sayed, I. H.; El-Sayed, M. A. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci. 2008, 23, 217–228.

    Article  Google Scholar 

  11. Zharov, V. P.; Galitovskaya, E. N.; Johnson, C.; Kelly, T. Synergistic enhancement of selective nanophotothermolysis with gold nanoclusters: Potential for cancer therapy. Lasers Surg. Med. 2005, 37, 219–226.

    Article  Google Scholar 

  12. Tuchina, E. S.; Tuchin, V. V.; Khlebtsov, B. N.; Khlebtsov, N. G. Phototoxic effect of conjugates of plasmon-resonance nanoparticles with indocyanine green dye on Staphylococcus aureus induced by IR laser radiation. Quantum Electron. 2011, 41, 354–359.

    Article  Google Scholar 

  13. Dinish, U. S.; Goh, D.; Fu, C. Y.; Bhuvaneswari, R.; Sun, W.; Olivo, M. Optimized synthesis of PEG-encapsulated gold nanorods for improved stability and its application in OCT imaging with enhanced contrast. Plasmonics 2013, 8, 591–598.

    Article  Google Scholar 

  14. Jung, Y.; Reif, R.; Zeng, Y.; Wang, R. K. Three-dimensional high-resolution imaging of gold nanorods uptake in sentinel lymph nodes. Nano Lett. 2011, 11, 2938–2943.

    Article  Google Scholar 

  15. Durr, N. J.; Larson, T.; Smith, D. K.; Korgel, B. A.; Sokolov, K.; Ben-Yakar, A. Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. Nano Lett. 2007, 7, 941–945.

    Article  Google Scholar 

  16. Yuan, H.; Khoury, C. G.; Hwang, H.; Wilson, C. M.; Grant, G. A.; Vo-Dinh, T. Gold nanostars: Surfactant-free synthesis, 3D modelling, and two-photon photoluminescence imaging. Nanotechnology 2012, 23, 075102.

    Article  Google Scholar 

  17. Cho, E. C.; Zhang, Y.; Cai, X.; Moran, C. M.; Wang, L. V.; Xia, Y. Quantitative analysis of the fate of gold nanocages in vitro and in vivo after uptake by U87-MG tumor cells. Angew. Chem. Int. Ed. 2013, 52, 1152–1155.

    Article  Google Scholar 

  18. Li, W.; Brown, P. K.; Wang, L. V.; Xia, Y. Gold nanocages as contrast agents for photoacoustic imaging. Contrast Media Mol. I. 2011, 6, 370–377.

    Article  Google Scholar 

  19. Lukianova-Hleb, E. Y.; Hanna, E. Y.; Hafner, J. H.; Lapotko, D. O. Tunable plasmonic nanobubbles for cell theranostics. Nanotechnology 2010, 21, 085102.

    Article  Google Scholar 

  20. Lammers, T.; Aime, S.; Hennink, W. E.; Storm, G.; Kiessling, F. Theranostic nanomedicine. Acc. Chem. Res. 2011, 44, 1029–1038.

    Article  Google Scholar 

  21. Khlebtsov, N.; Bogatyrev, V.; Dykman, L.; Khlebtsov, B.; Staroverov, S.; Shirokov, A.; Matora, L.; Khanadeev, V.; Pylaev, T.; Tsyganova, N. et al. Analytical and theranostic applications of gold nanoparticles and multifunctional nanocomposites. Theranostics 2013, 3, 167–180.

    Article  Google Scholar 

  22. Xiong, R.; Soenen, S.; Braeckmans, K.; Skirtach, A. Towards theranostic multicompartment microcapsules: In-situ diagnostics and laser-induced treatment. Theranostics 2013, 3, 141–151.

    Article  Google Scholar 

  23. Khlebtsov, B. N.; Panfilova, E. V.; Khanadeev, V. A.; Bibikova, O. A.; Terentyuk, G. S.; Ivanov, A.; Rumyantseva, V.; Shilov, I.; Ryabova, A.; Loshchenov, V. et al. Nanocomposites containing silica-coated gold-silver nanocages and Yb-2,4-dimethoxyhematoporphyrin: Multifunctional capability of IR-luminescence detection, photosensitization, and photothermolysis. ACS Nano 2011, 5, 7077–7089.

    Article  Google Scholar 

  24. Wang, S.; Huang, P.; Nie, L.; Xing, R.; Liu, D.; Wang, Z.; Lin, J.; Chen, S.; Niu, G.; Lu, G. et al. Single continuous wave laser induced photodynamic/plasmonic photothermal therapy using photosensitizer-functionalized gold nanostars. Adv. Mater. 2013, 25, 3055–3061.

    Article  Google Scholar 

  25. Chen, W. Nanoparticle based photodynamic therapy for cancer treatment. In Cancer Nanotechnology. Nalwa, H. S.; Webster, T. J., Eds.; American Scientific Publishers: Los Angeles, 2007; pp 235–258.

    Google Scholar 

  26. Zhao, T.; Shen, X.; Li, L.; Guan, Z.; Gao, N.; Yuan, P.; Yao, S. Q.; Xu, Q. H.; Xu G. Q. Gold nanorods as dual photo-sensitizing and imaging agents for two-photon photodynamic therapy. Nanoscale 2012, 4, 7712–7719.

    Article  Google Scholar 

  27. Jiang, C.; Zhao, T.; Yuan, P.; Gao, N.; Pan, Y.; Guan, Z.; Zhou, N.; Xu Q. H. Two-photon induced photoluminescence and singlet oxygen generation from aggregated gold nanoparticles, ACS Appl. Mater. Interfaces 2013, 12, 4972–4977.

    Article  Google Scholar 

  28. Jang, B.; Park, J. Y.; Tung, C. H.; Kim, I. H.; Choi, Y. Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo. ACS Nano 2011, 5, 1086–1094.

    Article  Google Scholar 

  29. Jang, B.; Choi, Y. Photosensitizer-conjugated gold nanorods for enzyme-activatable fluorescence imaging and photodynamic therapy. Theranostics 2012, 2, 190–197.

    Article  Google Scholar 

  30. Wang, J.; Tang, H. Y.; Yang, W. L.; Chen, J. Y. Aluminum phthalocyanine and gold nanorod conjugates: The combination of photodynamic therapy and photothermal therapy to kill cancer cells. J. Porphyr. Phthalocya. 2012, 16, 802–808.

    Article  Google Scholar 

  31. Wang, J.; You, M. X.; Zhu, G. Z.; Shukoor, M. I.; Chen, Z.; Zhao, Z. L.; Altman, M. B.; Yuan, Q.; Zhu, Z.; Chen, Y. et al. Photosensitizer-gold nanorod composite for targeted multimodal therapy. Small, in press, DOI: 10.1002/smll.201202155.

  32. Zhang, Y. X.; Aslan, K.; Previte, M. J. R.; Geddes, C. D. Metal-enhanced singlet oxygen generation: A consequence of plasmon enhanced triplet yields. J. Fluoresc. 2007, 17, 345–349.

    Article  Google Scholar 

  33. Khlebtsov, B. N.; Tuchina, E. S.; Khanadeev, V. A.; Panfilova, E. V.; Petrov, P. O.; Tuchin, V. V.; Khlebtsov, N. G. Enhanced photoinactivation of Staphylococcus aureus with nanocomposites containing plasmonic particles and hematoporphyrin. J. Biophotonics 2013, 6, 338–351.

    Article  Google Scholar 

  34. Zhang, Y.; Qian, J.; Wang, D.; Wang, Y. L.; He, S. L. Multifunctional gold nanorods with ultrahigh stability and tunability for in vivo fluorescence imaging, SERS detection, and photodynamic therapy. Angew. Chem. Int. Ed. 2013, 52, 1148–1151.

    Article  Google Scholar 

  35. Khlebtsov, N.; Dykman, L. Biodistribution and toxicity of engineered gold nanoparticles: A review of in vitro and in vivo studies. Chem. Soc. Rev. 2011, 40, 1647–1671.

    Article  Google Scholar 

  36. Terentyuk, G. S.; Maslyakova, G. N.; Khlebtsov, N. G.; Akchurin, G. G.; Tuchin, V. V.; Maksimova, I. L.; Khlebtsov, B. N.; Suleymanova, L. V. Laser-induced tissue hyperthermia mediated by gold nanoparticles: Toward cancer phototherapy. J. Biomed. Opt. 2009, 14, 021016.

    Article  Google Scholar 

  37. Nikoobakht, B.; El-Sayed, M. A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 2003, 15, 1957–1962.

    Article  Google Scholar 

  38. Khlebtsov, B. N.; Khanadeev, V. A.; Khlebtsov, N. G. Observation of extra-high depolarized light scattering spectra from gold nanorods. J. Phys. Chem. C 2008, 112, 12760–12768.

    Article  Google Scholar 

  39. Chen, Y. S.; Frey, W.; Kim, S.; Kruizinga, P.; Homan, K.; Emelianov, S. Silica-coated gold nanorods as photoacoustic signal nanoamplifiers. Nano Lett. 2011, 11, 348–354.

    Article  Google Scholar 

  40. Xie, H.; Goins, B.; Bao, A.; Wang, Z. J.; Philips, W. T. Effect of intratumoral administration on biodistribution of 64Cu-labeled nanoshells. Int. J. Nanomedicine 2012, 7, 2227–2238.

    Article  Google Scholar 

  41. Genina, E. A.; Bashkatov, A. N.; Tuchin, V. V. Tissue optical immersion clearing. Expert Rev. Med. Devices 2010, 7, 825–842.

    Article  Google Scholar 

  42. Chen, Y. S.; Frey, W.; Kim, S.; Kruizinga, P.; Homan, K.; Emelianov, S. Silica-coated gold nanorods as photoacoustic signal nanoamplifiers. Nano Lett. 2011, 11, 348–354.

    Article  Google Scholar 

  43. Gorelikov, I.; Matsuura N. Single-step coating of mesoporous silica on cetyltrimethyl ammonium bromide-capped nanoparticles. Nano Lett. 2008, 8, 369–373.

    Article  Google Scholar 

  44. Joo, S. H.; Park, J. Y.; Tsung, C. K.; Yamada, Y.; Yang, P. D.; Somorjai, G. A. Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions. Nat. Mater. 2009, 8, 126–131.

    Article  Google Scholar 

  45. Zhao, T.; Wu, H.; Yao, S. Q.; Xu, Q. H.; Xu, G. Q. Nanocomposites containing gold nanorods and porphyrin-doped mesoporous silica with dual capability of two-photon imaging and photosensitization. Langmuir 2010, 26, 14937–14942.

    Article  Google Scholar 

  46. Khlebtsov, B. N.; Khanadeev, V. A.; Maksimova, I. L.; Terentyuk, G. S.; Khlebtsov, N. G. Silver nanocubes and gold nanocages: Fabrication and optical and photothermal properties. Nanotechnol. Russia 2010, 5, 454–468.

    Article  Google Scholar 

  47. Pattan, V. P.; Tunnell, J. W. Nanoparticle-mediated photothermal therapy: A comparative study of heating for different particle types. Lasers Surg. Med. 2012, 44, 675–684.

    Article  Google Scholar 

  48. Goldberg, S. N.; Gazelle, G. S.; Mueller, P. R. Thermal ablation therapy for focal malignancy: A unified approach to underlying principles, techniques, and diagnostic imaging guidance. AJR Am. J. Roentgenol. 2000, 174, 323–331.

    Article  Google Scholar 

  49. Zagaynova, E. V.; Shirmanova, M. V.; Kirillin, M. Y.; Khlebtsov, B. N.; Orlova, A. G.; Balalaeva, I. V.; Sirotkina, M. A.; Bugrova, M. L.; Agrba, P. D.; Kamensky, V. A. Contrasting properties of gold nanoparticles for optical coherence tomography: Phantom, in vivo studies and Monte Carlo simulation. Phys. Med. Biol. 2008, 53, 4995–5009.

    Article  Google Scholar 

  50. Larin, K. V.; Ghosn, M. G.; Bashkatov, A. N.; Genina E. A.; Trunina, N. A.; Tuchin, V. V. Optical clearing for OCT image enhancement and in-depth monitoring of molecular diffusion. IEEE J. Sel. Top. Quant. 2012, 18, 1244–1259.

    Article  Google Scholar 

  51. Kozina, A. M.; Genina, E. A.; Terentyuk, G. S.; Terentyuk, A. G.; Bashkatov, A. N.; Tuchin, V. V.; Khlebtsov, B. N. The development of skin immersion clearing method for increasing of laser exposure efficiency on subcutaneous objects. Proc. SPIE 2012, 8427, 842726.

    Article  Google Scholar 

  52. Chen, W. R.; Li, X.; Naylor, M. F.; Liu, H.; Nordquist, R. E. Advances in cancer photothermal therapy. In Handbook of Photonics for Biomedical Science. Tuchin V. V., Ed; CRC Press, Taylor & Francis Group: London, 2010; pp 739–761.

    Chapter  Google Scholar 

  53. Chen, W. R.; Adams, R. L.; Carubelli, R.; Nordquist, R. E. Laser-photosensitizer assisted immunotherapy: A novel modality of cancer treatment. Cancer Lett. 1997, 115, 25–30.

    Article  Google Scholar 

  54. Chen, W. R.; Singhal, A. K.; Liu, H.; Nordquist, R. E. Antitumor immunity induced by laser immunotherapy and its adoptive transfer. Cancer Res. 2001, 61, 459–461.

    Google Scholar 

  55. Zhou, F. F.; Xing, D.; Wu, B. Y.; Wu, S. N.; Ou, Z. M.; Chen, W. R. New insights of transmembranal mechanism and subcellular localization of noncovalently modified single-walled carbon nanotubes. Nano Lett. 2010, 10, 1677–1681.

    Article  Google Scholar 

  56. Zhou, F. F.; Wu, S. N.; Song, S.; Chen, W. R.; Resasco, D. E.; Xing, D. Antitumor immunologically modified carbon nanotubes for photothermal therapy. Biomaterials 2012, 33, 3235–3242.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Khlebtsov.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terentyuk, G., Panfilova, E., Khanadeev, V. et al. Gold nanorods with a hematoporphyrin-loaded silica shell for dual-modality photodynamic and photothermal treatment of tumors in vivo . Nano Res. 7, 325–337 (2014). https://doi.org/10.1007/s12274-013-0398-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-013-0398-3

Keywords

Navigation