Skip to main content
Log in

Chemical vapor deposition growth of large-scale hexagonal boron nitride with controllable orientation

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Chemical vapor deposition (CVD) synthesis of large-domain hexagonal boron nitride (h-BN) with a uniform thickness is very challenging, mainly due to the extremely high nucleation density of this material. Herein, we report the successful growth of wafer-scale, high-quality h-BN monolayer films that have large single-crystalline domain sizes, up to ~72 µm in edge length, prepared using a folded Cu-foil enclosure. The highly confined growth space and the smooth Cu surface inside the enclosure effectively reduced the precursor feeding rate together and induced a drastic decrease in the nucleation density. The orientation of the as-grown h-BN monolayer was found to be strongly correlated to the crystallographic orientation of the Cu substrate: the Cu (111) face being the best substrate for growing aligned h-BN domains and even single-crystalline monolayers. This is consistent with our density functional theory calculations. The present study offers a practical pathway for growing high-quality h-BN films by deepening our fundamental understanding of the process of their growth by CVD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novoselov, K. S; Geim, A. K; Morozov, S. V; Jiang, D.; Zhang, Y.; Dubonos, S. V; Grigorieva, I. V; Firsov, A. A Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    Article  Google Scholar 

  2. Huang, X.; Qi, X. Y; Boey, F.; Zhang, H. Graphene-based composites. Chem. Soc. Rev. 2012, 41, 666–686.

    Article  Google Scholar 

  3. Huang, X.; Yin, Z. Y; Wu, S. X; Qi, X. Y; He, Q. Y; Zhang, Q.; Yan, Q.; Boey, F.; Zhang, H. Graphene-based materials: Synthesis, characterization, properties, and applications. Small 2011, 7, 1876–1902.

    Article  Google Scholar 

  4. Gao, T.; Song, X. J; Du, H. W; Nie, Y. F; Chen, Y. B; Ji, Q. Q; Sun, J. Y; Yang, Y. L; Zhang, Y. F; Liu, Z. F Temperature-triggered chemical switching growth of in-plane and vertically stacked graphene-boron nitride heterostructures. Nat. Commun. 2015, 6. 6835.

    Article  Google Scholar 

  5. Hunt, B.; Sanchez Yamagishi, J. D; Young, A. F; Yankowitz, M.; LeRoy, B. J; Watanabe, K.; Taniguchi, T.; Moon, P.; Koshino, M.; Jarillo-Herrero, P. et al. Massive Dirac Fermions and Hofstadter Butterfly in a van der Waals heterostructure. Science 2013, 340, 1427–1430.

    Article  Google Scholar 

  6. Yang, W.; Chen, G. R; Shi, Z. W; Liu, C. C; Zhang, L. C; Xie, G. B; Cheng, M.; Wang, D. M; Yang, R.; Shi, D. X et al. Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 2013, 12, 792–797.

    Article  Google Scholar 

  7. Levendorf, M. P; Kim, C. J; Brown, L.; Huang, P. Y; Havener, R. W; Muller, D. A; Park, J. Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature 2012, 488, 627–632.

    Article  Google Scholar 

  8. Liu, Z.; Ma, L. L; Shi, G.; Zhou, W.; Gong, Y. J; Lei, S. D; Yang, X. B; Zhang, J. N; Yu, J. J; Hackenberg, K. P et al. In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nat. Nanotech. 2013, 8, 119–124.

    Article  Google Scholar 

  9. Wang, M.; Jang, S. K; Jang, W. J; Kim, M.; Park, S. Y; Kim, S. W; Kahng, S. J; Choi, J. Y; Ruoff, R. S; Song, Y. J et al. A platform for large-scale graphene electronics–CVD growth of single-layer graphene on CVD-grown hexagonal boron nitride. Adv. Mater. 2013, 25, 2746–2752.

    Article  Google Scholar 

  10. Zhang, C. H; Zhao, S. L; Jin, C. H; Koh, A. L; Zhou, Y.; Xu, W. G; Li, Q. C; Xiong, Q. H; Peng, H. L; Liu, Z. F Direct growth of large-area graphene and boron nitride heterostructures by a co-segregation method. Nat. Commun. 2015, 6, 6519.

    Article  Google Scholar 

  11. Dean, C. R; Young, A. F; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L; Hone, J. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotech. 2010, 5, 722–726.

    Article  Google Scholar 

  12. Decker, R.; Wang, Y.; Brar, V. W; Regan, W.; Tsai, H. Z; Wu, Q.; Gannett, W.; Zettl, A.; Crommie, M. F Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy. Nano Lett. 2011, 11, 2291–2295.

    Article  Google Scholar 

  13. Xue, J. M; Sanchez-Yamagishi, J.; Bulmash, D.; Jacquod, P.; Deshpande, A.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P.; LeRoy, B. J Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nat. Mater. 2011, 10, 282–285.

    Article  Google Scholar 

  14. Watanabe, K.; Taniguchi, T.; Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 2004, 3, 404–409.

    Article  Google Scholar 

  15. Liu, Z.; Gong, Y. J; Zhou, W.; Ma, L. L; Yu, J. J; Idrobo, J. C; Jung, J.; MacDonald, A. H; Vajtai, R.; Lou, J. et al. Ultrathin high-temperature oxidation-resistant coatings of hexagonal boron nitride. Nat. Commun. 2013, 4, 2541.

    Google Scholar 

  16. Lee, G. H; Yu, Y. J; Cui, X.; Petrone, N.; Lee, C. H; Choi, M. S; Lee, D. Y; Lee, C.; Yoo, W. J; Watanabe, K. et al. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano 2013, 7, 7931–7936.

    Article  Google Scholar 

  17. Song, L.; Ci, L. J; Lu, H.; Sorokin, P. B; Jin, C. H; Ni, J.; Kvashnin, A. G; Kvashnin, D. G; Lou, J.; Yakobson, B. I et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 2010, 10, 3209–3215.

    Article  Google Scholar 

  18. Shi, Y.; Hamsen, C.; Jia, X. T; Kim, K. K; Reina, A.; Hofmann, M.; Hsu, A. L; Zhang, K.; Li, H. N; Juang, Z. Y et al. Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. Nano Lett. 2010, 10, 4134–4139.

    Article  Google Scholar 

  19. Zhang, C.; Fu, L.; Zhao, S.; Zhou, Y.; Peng, H.; Liu, Z. Controllable co-segregation synthesis of wafer-scale hexagonal boron nitride thin films. Adv. Mater. 2014, 26, 1776–1781.

    Article  Google Scholar 

  20. Gao, Y.; Ren, W. C; Ma, T.; Liu, Z. B; Zhang, Y.; Liu, W. B; Ma, L. P; Ma, X. L; Cheng, H. M Repeated and controlled growth of monolayer, bilayer and few-layer hexagonal boron nitride on Pt foils. ACS Nano 2013, 7, 5199–5206.

    Article  Google Scholar 

  21. Lu, G. Y; Wu, T. R; Yuan, Q. H; Wang, H.; Wang, H. S; Ding, F.; Xie, X. M; Jiang, M. H Synthesis of large singlecrystal hexagonal boron nitride grains on Cu-Ni alloy. Nat. Commun. 2015, 6, 6160.

    Article  Google Scholar 

  22. Caneva, S.; Weatherup, R. S; Bayer, B. C; Brennan, B.; Spencer, S. J; Mingard, K.; Cabrero-Vilatela, A.; Baehtz, C.; Pollard, A. J; Hofmann, S. Nucleation control for large, single crystalline domains of monolayer hexagonal boron nitride via Si-doped Fe catalysts. Nano Lett. 2015, 15, 1867–187.

    Article  Google Scholar 

  23. Park, J. H; Park, J. C; Yun, S. J; Kim, H.; Luong, D. H; Kim, S. M; Choi, S. H; Yang, W.; Kong, J.; Kim, K. K; Lee, Y. H Large-area monolayer hexagonal boron nitride on Pt foil. ACS Nano 2014, 8, 8520–852.

    Article  Google Scholar 

  24. Camilli, L.; Sutter, E.; Sutter, P. Growth of two-dimensional materials on non-catalytic substrates: h-BN/Au(111). 2D Mater. 2014, 1, 025003.

    Article  Google Scholar 

  25. Kim, K. K; Hsu, A.; Jia, X. T; Kim, S. M; Shi, Y. S; Hofmann, M.; Nezich, D.; Rodriguez-Nieva, J. F; Dresselhaus, M.; Palacios, T. et al. Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. Nano Lett. 2012, 12, 161–166.

    Article  Google Scholar 

  26. Tay, R. Y; Griep, M. H; Mallick, G.; Tsang, S. H; Singh, R. S; Tumlin, T.; Teo, E. H; Karna, S. P Growth of large single-crystalline two-dimensional boron nitride hexagons on electropolished copper. Nano Lett. 2014, 14, 839–846.

    Article  Google Scholar 

  27. Wang, L. F; Wu, B.; Chen, J. S; Liu, H. T; Hu, P. A; Liu, Y. Q Monolayer hexagonal boron nitride films with large domain size and clean interface for enhancing the mobility of graphene-based field-effect transistors. Adv. Mater. 2014, 26, 1559–1564.

    Article  Google Scholar 

  28. Li, X.; Magnuson, C. W; Venugopal, A.; Tromp, R. M; Hannon, J. B; Vogel, E. M; Colombo, L.; Ruoff, R. S Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J. Am. Chem. Soc. 2011, 133, 2816–2819.

    Article  Google Scholar 

  29. Chen, S. S; Ji, H. X; Chou, H.; Li, Q. Y; Li, H. Y; Suk, J. W; Piner, R.; Liao, L.; Cai, W. W; Ruoff, R. S Millimetersize single-crystal graphene by suppressing evaporative loss of Cu during low pressure chemical vapor deposition. Adv. Mater. 2013, 25, 2062–2065.

    Article  Google Scholar 

  30. Fang, W. J; Hsu, A. L; Caudillo, R.; Song, Y.; Birdwell, A. G; Zakar, E.; Kalbac, M.; Dubey, M.; Palacios, T.; Dresselhaus, M. S et al. Rapid identification of stacking orientation in isotopically labeled chemical-vapor grown bilayer graphene by Raman spectroscopy. Nano Lett. 2013, 13, 1541–1548.

    Google Scholar 

  31. Frueh, S.; Kellett, R.; Mallery, C.; Molter, T.; Willis, W. S; King’ondu, C.; Suib, S. L Pyrolytic decomposition of ammonia borane to boron nitride. Inorg. Chem. 2011, 50, 783–792.

    Article  Google Scholar 

  32. Reina, A.; Son, H.; Jiao, L.; Fan, B.; Dresselhaus, M. S; Liu, Z.; Kong, J. Transferring and identification of singleand few-layer graphene on arbitrary substrates. J. Phys. Chem. C 2008, 112, 17741–17744.

    Article  Google Scholar 

  33. Pacilé, D.; Meyer, J. C; Girit, C. O; Zettl, A. The twodimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes. Appl. Phys. Lett. 2008, 92, 133107.

    Article  Google Scholar 

  34. Gorbachev, R. V; Riaz, I.; Nair, R. R; Jalil, R.; Britnell, L.; Belle, B. D; Hill, E. W; Novoselov, K. S; Watanabe, K.; Taniguchi, T.; Geim, A. K et al. Hunting for monolayer boron nitride: Optical and raman signatures. Small 2011, 7, 465–468.

    Article  Google Scholar 

  35. Blase, X.; Rubio, A.; Louie, S. G; Cohen, M. L Quasiparticle band structure of bulk hexagonal boron nitride and related systems. Phys. Rev. B 1995, 51, 6868–6875.

    Article  Google Scholar 

  36. Vanin, M.; Mortensen, J. J; Kelkkanen, A. K; Garcia-Lastra, J. M; Thygesen, K. S; Jacobsen, K. W Graphene on metals: A van der Waals density functional study. Phys. Rev. B 2010, 81, 081408(R).

    Article  Google Scholar 

  37. Joshi, S.; Ecija, D.; Koitz, R.; Iannuzzi, M.; Seitsonen, A. P; Hutter, J.; Sachdev, H.; Vijayaraghavan, S.; Bischoff, F.; Seufert, K. et al. Boron nitride on Cu(111): An electronically corrugated monolayer. Nano Lett. 2012, 12, 5821–5828.

    Article  Google Scholar 

  38. Kim, G.; Jang, A. R; Jeong, H. Y; Lee, Z.; Kang, D. J; Shin, H. S Growth of high-crystalline, single-layer hexagonal boron nitride on recyclable platinum foil. Nano Lett. 2013, 13, 1834–1839.

    Article  Google Scholar 

  39. van der Zande, A. M; Huang, P. Y; Chenet, D. A; Berkelbach, T. C; You, Y.; Lee, G.-H.; Heinz, T. F; Reichman, D. R; Muller, D. A; Hone, J. C Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 2013, 12, 554–561.

    Article  Google Scholar 

  40. Lee, J. H; Lee, E. K; Joo, W. J; Jang, Y.; Kim, B.-S.; Lim, J. Y; Choi, S. H; Ahn, S. J; Ahn, J. R; Park, M. H et al. Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 2014, 344, 286–289.

    Article  Google Scholar 

  41. Zhang, X.; Xu, Z.; Hui, L.; Xin, J.; Ding, F. How the orientation of graphene is determined during chemical vapor deposition growth. J. Phys. Chem. Lett. 2012, 3, 2822–2827.

    Article  Google Scholar 

  42. Gao, L.; Guest, J. R; Guisinger, N. P Epitaxial graphene on Cu(111). Nano Lett. 2010, 10, 3512–3516.

    Article  Google Scholar 

  43. Liu, Y.; Zou, X. L; Yakobson, B. I Dislocations and grain boundaries in two-dimensional boron nitride. ACS Nano 2012, 6, 7053–7058.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Ding, Yanfeng Zhang or Zhongfan Liu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, X., Gao, J., Nie, Y. et al. Chemical vapor deposition growth of large-scale hexagonal boron nitride with controllable orientation. Nano Res. 8, 3164–3176 (2015). https://doi.org/10.1007/s12274-015-0816-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0816-9

Keywords

Navigation