Skip to main content
Log in

The effect of Mg doping concentration and annealing on the structure and luminescence properties of ZnO thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In order to gain a deeper understanding of the relationship between defects and luminescent properties in thin films, ZnO films containing 0 to 8 at % Mg were prepared on amorphous quartz substrates by room temperature radio-frequency (RF) magnetron sputtering, followed by annealing in air at 400 °C. X-ray diffraction (XRD) results indicate that the ZnMgO film is a solid solution with a hexagonal close-packed wurtzite structure and preferential c-axis growth direction. With the increase in Mg concentration, the intensity of the (002) diffraction peak gradually decreases. Field emission scanning electron microscopy (FESEM) observations reveal a transition in surface particle shapes from approximately circular to a mixture of circular and irregular polygonal shapes. The optical bandgap (Eg), obtained from optical transmittance measured using a UV–visible spectrophotometer, decreases first and then increases with increasing Mg concentration. Photoluminescence (PL) spectra show a strong violet peak and a weak near-infrared (NIR) peak. Gaussian fitting of the two peaks reveals that the violet peak mainly originates from the radiative recombination of electrons bound to shallow donor interstitial zinc (Zni) with holes in the valence band. The NIR peak primarily arises from the radiative recombination of electrons captured by shallow donor interstitial zinc (Zni) with holes captured by deep-level acceptor interstitial oxygen (Oi).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  1. P. Shimpi, Y. Ding, E. Suarez, J. Ayers, P.-X. Gao, Appl. Phys. Lett.Lett. 97, 200 (2010)

    Google Scholar 

  2. D. Fang, C. Li, N. Wang, P. Li, P. Yao, Cryst. Res. Technol. 48, 265–272 (2013)

    CAS  Google Scholar 

  3. M. Boshta, M.O. Abou-Helal, D. Ghoneim, N.A. Mohsen, R.A. Zaghlool, Surf. Coat. Technol. 205, 271–274 (2010)

    CAS  Google Scholar 

  4. V.V. Petrov, V.V. Sysoev, A.P. Starnikova, M.G. Volkova, Z.K. Kalazhokov, V.Y. Storozhenko, S.A. Khubezhov, E.M. Bayan, Chemosensors 9, 124 (2021)

    CAS  Google Scholar 

  5. N. Siregar, J.H. Motlan, M. Panggabean, J. Sirait, N.S. Rajagukguk, F.K. Gultom, J.C. Sabir, Int. J. Photoenergy 2021, 1–7 (2021)

    Google Scholar 

  6. S. Aksoy, Y. Caglar, S. Ilican, M. Caglar, J. Alloys Compd. 512, 171–178 (2012)

    CAS  Google Scholar 

  7. H. Benali, B. Hartiti, F. Lmai, A. Batan, S. Fadili, P. Thevenin, Mater. Today. Proc. 66, 212–216 (2022)

    CAS  Google Scholar 

  8. R. Dhawan, E. Panda, J. Alloys Compd. 788, 1037–1047 (2019)

    CAS  Google Scholar 

  9. P.F.H. Inbaraj, J.J. Prince, J. Mater. Sci. Mater. Electron. 29, 935–943 (2017)

    Google Scholar 

  10. T. Ivanova, A. Harizanova, T. Koutzarova, B. Vertruyen, R. Closset, Materials 15, 8883 (2022)

    CAS  PubMed  PubMed Central  Google Scholar 

  11. A. Rana, A. Sharma, S.P. Khanna, R. Srivastava, C.K. Suman, J. Mater. Sci. Mater. Electron. 34, 1379 (2023)

    CAS  Google Scholar 

  12. S. Talu, S. Boudour, I. Bouchama, B. Astinchap, H. Ghanbaripour, M.S. Akhtar, S. Zahra, Microsc. Res. Tech. 85, 1213–1223 (2022)

    CAS  PubMed  Google Scholar 

  13. A. Das, P. Guha Roy, A. Dutta, S. Sen, P. Pramanik, D. Das, A. Banerjee, A. Bhattacharyya, Mat. Sci. Semicon. Proc. 54, 36–41 (2016)

    CAS  Google Scholar 

  14. M. Caglar, Y. Caglar, S. Ilican, Physica B 485, 6–13 (2016)

    CAS  Google Scholar 

  15. Y. Hu, C. Mao, Proceedings of the 3rd International Conference on Material, Mechanical and Manufacturing Engineering. June 27–28, 2015. Guangzhou, China. Paris, France: Atlantis Press, 2015: 1771–1776. https://doi.org/10.2991/ic3me-15.2015.342

  16. F. Kayaci, S. Vempati, I. Donmez, N. Biyikli, T. Uyar, Nanoscale 6, 10224–10234 (2014)

    CAS  PubMed  Google Scholar 

  17. C.C. Singh, E. Panda, J. Appl. Phys. 123, 165106 (2018)

    Google Scholar 

  18. C.-Y. Chang, J. Shieh, Y.-L. Kuo, J.-Y. Guo, S.-Y. Chen, C.-L. Kuo, Appl. Surf. Sci. 638, 158018 (2023)

    CAS  Google Scholar 

  19. J. Varghese, S.K. Saji, N.R. Aswathy, R. Vinodkumar, Eur. Phys. J. Plus. 136, 1–13 (2021)

    Google Scholar 

  20. X. Long, X. Li, P.T. Lin, X.W. Cheng, Y. Liu, C.B. Cao, Chinese Phys. B 19, 027202 (2010)

    Google Scholar 

  21. P. Giri, P. Chakrabarti, Superlattices and Microstruct. 93, 248–260 (2016)

    CAS  Google Scholar 

  22. Z.K. Heiba, M.B. Mohamed, J. Mol. Struct. 1181, 507–517 (2019)

    CAS  Google Scholar 

  23. M. Wang, Y. Zhou, Y. Zhang, E.J. Kim, S.H. Hahn, S.G. Seong, Appl. Phys. Lett.Phys. Lett. 100, 101906 (2012)

    Google Scholar 

  24. K. Panturotai, C. Krataithong, P. Pluengphon, E. Wongrat, A. Tubtimtae, B. Inceesungvorn, Opt. Mater. 126, 112179 (2022)

    Google Scholar 

  25. P.S. Shewale, S.H. Lee, Y.S. Yu, J. Alloys Compd. 774, 461–470 (2019)

    CAS  Google Scholar 

  26. M. Singh, A.K. Ambedkar, S. Tyagi, V. Kumar, P. Yadav, A. Kumar, Y.K. Gautam, B.P. Singh, Optik 257, 168860 (2022)

    Google Scholar 

  27. P.J. Kelly, R.D. Arnell, Vacuum 56, 159–172 (2000)

    CAS  Google Scholar 

  28. A. Goktas, A. Tumbul, Z. Aba, M. Durgun, Thin Solid Films 680, 20–30 (2019)

    CAS  Google Scholar 

  29. R. Cebulla, R. Wendt, K. Ellmer, J. Appl. Phys. 83, 1087–1095 (1998)

    CAS  Google Scholar 

  30. V. Kumar, V. Kumar, S. Som, A. Yousif, N. Singh, O.M. Ntwaeaborwa, A. Kapoor, H.C. Swart, J. Colloid Interf. Sci. 428, 8–15 (2014)

    CAS  Google Scholar 

  31. S. Shi, J. Xu, L. Li, Mater. Lett.Lett. 229, 178–181 (2018)

    CAS  Google Scholar 

  32. Y. Hu, H. Zeng, J. Du, Z. Hu, S. Zhang, Mater. Chem. Phys. 182, 15–21 (2016)

    CAS  Google Scholar 

  33. C.J. Gawlak, C.R. Aita, J. Vac. Sci. Technol. 1, 415–418 (1983)

    CAS  Google Scholar 

  34. J. Luo, H.Y. Liu, W.J. Deng, R.G. Zhang, C. He, J. Mater, Sci. Mater. El. 34, 2172 (2023)

    CAS  Google Scholar 

  35. M. Wang, J. Yi, S. Yang, Z. Cao, X. Huang, Y. Li, H. Li, J. Zhong, Appl. Surf. Sci.Surf. Sci. 382, 217–224 (2016)

    CAS  Google Scholar 

  36. H. Zhang, W. Li, G. Qin, H. Ruan, Z. Huang, F. Wu, C. Kong, L. Fang, Appl. Surf. Sci.Surf. Sci. 492, 392–398 (2019)

    CAS  Google Scholar 

  37. J. Sengupta, A. Ahmed, R. Labar, Mater. Lett. 109, 265–268 (2013)

    CAS  Google Scholar 

  38. C. Singh, E. Panda, RSC Adv. 6, 48910–48918 (2016)

    CAS  Google Scholar 

  39. B. Panigrahy, M. Aslam, D.S. Misra, M. Ghosh, D. Bahadur, Adv. Funct. Mater. 20, 1161–1165 (2010)

    CAS  Google Scholar 

  40. M. Bedrouni, B. Kharroubi, A. Ouerdane, Mh. Bouslama, Mh. Guezzoul, Y. Caudano, K.B. Bensassi, M. Bousmaha, M.A. Bezzerrouk, A. Mokadem, M. Abdelkrim, Opt. Mater.Mater. 111, 110560 (2021)

    CAS  Google Scholar 

  41. S. Vempati, J. Mitra, P. Dawson, Nanoscale Res. Lett. 7, 1–10 (2012)

    Google Scholar 

  42. M. Abdelkrim, Mh. Guezzoul, M. Bedrouni, Mh. Bouslama, A. Ouerdane, B. Kharroubi, J. Alloys Compd. 920, 165703 (2022)

    CAS  Google Scholar 

  43. B. Pal, D. Sarkar, P.K. Giri, Appl. Surf. Sci. 356, 804–811 (2015)

    CAS  Google Scholar 

  44. Q.P. Wang, D.H. Zhang, H.L. Ma, X.H. Zhang, X.J. Zhang, Appl. Surf. Sci. 220, 12–18 (2003)

    CAS  Google Scholar 

  45. F. Stavale, N. Nilius, H.J. Freund, J. Phys. Chem. Lett.Lett. 4, 3972–3976 (2013)

    CAS  Google Scholar 

  46. A. Janotti, C.G. Van de Walle, Rep. Prog. Phys. 72, 126501 (2009)

    Google Scholar 

  47. T.M. Borseth, B.G. Svensson, A.Y. Kuznetsov, P. Klason, Q.X. Zhao, M. Willander, Appl. Phys. Lett. 89, 26 (2006)

    Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (Project No. 11975173).

Funding

National Natural Science Foundation of China, 11975173, Jing Luo

Author information

Authors and Affiliations

Authors

Contributions

Hongyu Liu provided ideas and guided the design of research plans, and Jing Luo implemented the research process, collected and sorted out data and wrote a thesis. During the experiment, technical was supported by Rengang Zhang, Weijie Deng and Chen He.

Corresponding author

Correspondence to Hongyu Liu.

Ethics declarations

Competing interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, J., Liu, H., Deng, W. et al. The effect of Mg doping concentration and annealing on the structure and luminescence properties of ZnO thin films. J Mater Sci: Mater Electron 35, 744 (2024). https://doi.org/10.1007/s10854-024-12520-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12520-9

Navigation