Skip to main content
Log in

Recent progress in homoepitaxial single-crystal diamond growth via MPCVD

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Microwave plasma chemical vapor deposition (MPCVD) is regarded as one of the most promising techniques for the preparation of large-scale and high-quality epitaxial single-crystal diamonds. This review paper provides an overview of recent advancements in MPCVD single-crystal diamond growth, including discussions on the growth mechanism, substrate holder design, and seed crystal screening and pretreatment for achieving homogeneous epitaxial single-crystal diamond. Key growth parameters such as temperature, methane concentration, power density, etc., are investigated to guide the attainment of optimal growth conditions. Furthermore, critical growth techniques like three-dimensional growth, repeated growth, and mosaic splicing are analyzed to enhance the area coverage of single-crystal diamonds. The work on achieving low defect and high purity growth is also elucidated. Additionally, this paper discusses the progress made in n-type and p-type doping of diamond materials. Finally, a summary is provided highlighting the challenges encountered during MPCVD single-crystal diamonds growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

No data were used for the research described in the article.

References

  1. C.S. Yan, Y.K. Vohra, H.K. Mao, R.J. Hemley, Very high growth rate chemical vapor deposition of single-crystal diamond. Proc. Natl. Acad. Sci. USA. 99, 12523–12525 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. R.S. Balmer, J.R. Brandon, S.L. Clewes et al., Chemical vapour deposition synthetic diamond: materials, technology and applications. J. Phys. Condens. Matter. 21, 364221 (2009)

    Article  CAS  PubMed  Google Scholar 

  3. C. Dang, A. Lu, H. Wang, H. Zhang, Y. Lu, Diamond semiconductor and elastic strain engineering. J. Semicond. 43, 021801 (2022)

    Article  CAS  Google Scholar 

  4. C.T. Luo, L. Lindner, J. Langer, V. Cimalla, F. Hahl, Creation of nitrogen-vacancy centers in chemical vapor deposition diamond for sensing applications Creation of nitrogen-vacancy centers in chemical vapor deposition diamond for sensing applications. New J. Phys. 24, 033030 (2022)

    Article  Google Scholar 

  5. T. Teraji, Chemical vapor deposition of homoepitaxial diamond films. Phys. Status Solidi Appl. Mater. Sci. 203, 3324–3357 (2006)

    Article  CAS  Google Scholar 

  6. Q. Liang, C.S. Yan, Y. Meng et al., Recent advances in high-growth rate single-crystal CVD diamond. Diam. Relat. Mater. 18, 698–703 (2009)

    Article  CAS  Google Scholar 

  7. M. Schwander, K. Partes, A review of diamond synthesis by CVD processes. Diam. Relat. Mater. 20, 1287–1301 (2011)

    Article  CAS  Google Scholar 

  8. F. Silva, J. Achard, O. Brinza et al., High quality, large surface area, homoepitaxial MPACVD diamond growth. Diam. Relat. Mater. 18, 683–697 (2009)

    Article  CAS  Google Scholar 

  9. D.G. Goodwin, Scaling laws for diamond chemical-vapor deposition. I. Diamond surface chemistry. J. Appl. Phys. 74, 6888–6894 (1993)

    Article  CAS  Google Scholar 

  10. D.G. Goodwin, Scaling laws for diamond chemical-vapor deposition. II. Atomic hydrogen transport. J. Appl. Phys. 74, 6895–6906 (1993)

    Article  CAS  Google Scholar 

  11. T.R. Anthony, Metastable synthesis of diamond. Vacuum 41, 1356–1359 (1990)

    Article  CAS  Google Scholar 

  12. Q. Yang, W. Chen, C. Xiao, A. Hirose, M. Bradley, Low temperature synthesis of diamond thin films through graphite etching in a microwave hydrogen plasma. Carbon NY. 43, 2635–2638 (2005)

    Article  CAS  Google Scholar 

  13. J.C. Angus, H.A. Will, W.S. Stanko, Growth of diamond seed crystals by vapor deposition. J. Appl. Phys. 39, 2915–2922 (1968)

    Article  CAS  Google Scholar 

  14. O.A. Ivanov, A.B. Muchnikov, V.V. Chernov et al., Experimental study of hydrogen plasma etching of (1 0 0) single crystal diamond in a MPACVD reactor. Mater. Lett. 151, 115–118 (2015)

    Article  CAS  Google Scholar 

  15. F.P. Bundy, H.T. Hall, H.M. Strong, R.H. Wentorf, Man-made diamonds. Nature 176, 51–55 (1955)

    Article  CAS  Google Scholar 

  16. P. Bundy, The P-T phase and reaction diagram for elemental carbon. J. Geophys. Res. 85, 6930–6936 (1980)

    Article  CAS  Google Scholar 

  17. J.E. Butler, Y.A. Mankelevich, A. Cheesman, J. Ma, M.N.R. Ashfold, Understanding the chemical vapor deposition of diamond: Recent progress. J. Phys. Condens. Matter. 21, 364201 (2009)

    Article  CAS  PubMed  Google Scholar 

  18. A. Netto, M. Frenklach, Kinetic Monte Carlo simulations of CVD diamond growth-interlay among growth, etching, and migration. Diam. Relat. Mater. 14, 1630–1646 (2005)

    Article  CAS  Google Scholar 

  19. R.S. Sussmann, CVD diamond for electronic devices and sensors (Wiley, London, 2009)

    Book  Google Scholar 

  20. M. Jiang, C. Chen, Diamond formation mechanism in chemical vapor deposition. Appl. Phys. Sci. 119, 1–7 (2022)

    Google Scholar 

  21. Y. Mokuno, A. Chayahara, Y. Soda, Y. Horino, N. Fujimori, Synthesizing single-crystal diamond by repetition of high rate homoepitaxial growth by microwave plasma CVD. Diam. Relat. Mater. 14, 1743–1746 (2005)

    Article  CAS  Google Scholar 

  22. A. Chayahara, Y. Mokuno, Y. Horino et al., The effect of nitrogen addition during high-rate homoepitaxial growth of diamond by microwave plasma CVD. Diam. Relat. Mater. 13, 1954–1958 (2004)

    Article  CAS  Google Scholar 

  23. S. Nad, Y. Gu, J. Asmussen, Growth strategies for large and high quality single crystal diamond substrates. Diam. Relat. Mater. 60, 26–34 (2015)

    Article  CAS  Google Scholar 

  24. H. Yamada, A. Chayahara, Y. Mokuno, Y. Horino, S. Shikata, Simulation of microwave plasmas concentrated on the top surface of a diamond substrate with finite thickness. Diam. Relat. Mater. 15, 1383–1388 (2006)

    Article  CAS  Google Scholar 

  25. H. Yamada, A. Chayahara, Y. Mokuno, Y. Horino, S. Shikata, Simulation of temperature and gas flow distributions in region close to a diamond substrate with finite thickness. Diam. Relat. Mater. 15, 1738–1742 (2006)

    Article  CAS  Google Scholar 

  26. A. Charris, S. Nad, J. Asmussen, Exploring constant substrate temperature and constant high pressure SCD growth using variable pocket holder depths. Diam. Relat. Mater. 76, 58–67 (2017)

    Article  CAS  Google Scholar 

  27. M. Feng, P. Jin, X. Meng et al., One-step growth of a nearly 2 mm thick CVD single crystal diamond with an enlarged surface by optimizing the substrate holder structure. J. Cryst. Growth 603, 2–7 (2023)

    Article  Google Scholar 

  28. H.D. Li, G.T. Zou, Q.L. Wang et al., High-rate growth and nitrogen distribution in homoepitaxial chemical vapour deposited single-crystal diamond. Chin. Phys. Lett. 25, 1803–1806 (2008)

    Article  CAS  Google Scholar 

  29. C.J. Chu, R.H. Hauge, J.L. Margrave, M.P.D. Evelyn, Growth kinetics of (100), (110), and(111)homoepitaxial diamond films. Appl. Phys. Lett. 61, 1393–1395 (1992)

    Article  CAS  Google Scholar 

  30. Y. Zhao, Y. Guo, L. Lin et al., Comparison of the quality of single-crystal diamonds grown on two types of seed substrates by MPCVD. J. Cryst. Growth 491, 89–96 (2018)

    Article  CAS  Google Scholar 

  31. A. Tallaire, J. Achard, A. Boussadi et al., High quality thick CVD diamond films homoepitaxially grown on (111)-oriented substrates. Diam. Relat. Mater. 41, 34–40 (2014)

    Article  CAS  Google Scholar 

  32. A. Tallaire, V. Mille, O. Brinza et al., Thick CVD diamond films grown on high-quality type IIa HPHT diamond substrates from new diamond technology. Diam. Relat. Mater. 77, 146–152 (2017)

    Article  CAS  Google Scholar 

  33. X.C. Liu, X.G. Ge, Y.F. Li et al., Preparation of single-crystal diamond for small angle X-ray scattering in situ loading test. Diam. Relat. Mater. 121, 108719 (2022)

    Article  CAS  Google Scholar 

  34. A. Tallaire, J. Achard, F. Silva et al., Oxygen plasma pre-treatments for high quality homoepitaxial CVD diamond deposition. Phys. Status Solidi Appl. Res. 201, 2419–2424 (2014)

    Article  Google Scholar 

  35. M. Naamoun, A. Tallaire, F. Silva et al., Etch-pit formation mechanism induced on HPHT and CVD diamond single crystals by H2/O2 plasma etching treatment: part of topical section on fundamentals and applications of diamond. Phys. Status Solidi Appl. Mater. Sci. 209, 1715–1720 (2012)

    Article  CAS  Google Scholar 

  36. J. Achard, A. Tallaire, R. Sussmann, F. Silva, A. Gicquel, The control of growth parameters in the synthesis of high-quality single crystalline diamond by CVD. J. Cryst. Growth 284, 396–405 (2015)

    Article  Google Scholar 

  37. N. Derkaoui, C. Rond, K. Hassouni, A. Gicquel, Spectroscopic analysis of H2/CH4 microwave plasma and fast growth rate of diamond single crystal. J. Appl. Phys. (2014). https://doi.org/10.1063/1.4883955

    Article  Google Scholar 

  38. T. Teraji, T. Ito, Homoepitaxial diamond growth by high-power microwave-plasma chemical vapor deposition. J. Cryst. Growth 271, 409–419 (2014)

    Article  Google Scholar 

  39. A. Tallaire, J. Achard, F. Silva, R.S. Sussmann, A. Gicquel, Homoepitaxial deposition of high-quality thick diamond films: Effect of growth parameters. Diam. Relat. Mater. 14, 249–254 (2005)

    Article  CAS  Google Scholar 

  40. G. Lombardi, K. Hassouni, G.D. Stancu et al., Modeling of microwave discharges of H2 admixed with CH4 for diamond deposition. J. Appl. Phys. (2005). https://doi.org/10.1063/1.2034646

    Article  Google Scholar 

  41. J. Sierra Gómez, J. Vieira, M.A. Fraga, E.J. Corat, V.J. Trava-Airoldi, Surface morphology and spectroscopic features of homoepitaxial diamond films prepared by MWPACVD at High CH4 concentrations. Materials (Basel). 15, 7416 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  42. F. Silva, K. Hassouni, X. Bonnin, A. Gicquel, Microwave engineering of plasma-assisted CVD reactors for diamond deposition. J. Phys. Condens. Matter. 21, 364202 (2009)

    Article  CAS  PubMed  Google Scholar 

  43. A. Gicquel, F. Silva, C. Rond et al., Ultrafast deposition of diamond by plasma-enhanced CVD (Elsevier, Amsterdam, 2014)

    Book  Google Scholar 

  44. J. Achard, F. Silva, A. Tallaire et al., High quality MPACVD diamond single crystal growth: high microwave power density regime. J. Phys. D Appl. Phys. 40, 6175–6188 (2007)

    Article  CAS  Google Scholar 

  45. A.P. Bolshakov, V.G. Ralchenko, G. Shu et al., Single crystal diamond growth by MPCVD at subatmospheric pressures. Mater. Today Commun. 25, 101635 (2020)

    Article  CAS  Google Scholar 

  46. J. Lu, Y. Gu, T.A. Grotjohn, T. Schuelke, J. Asmussen, Experimentally defining the safe and efficient, high pressure microwave plasma assisted CVD operating regime for single crystal diamond synthesis. Diam. Relat. Mater. 37, 17–28 (2013)

    Article  CAS  Google Scholar 

  47. A. Tallaire, C. Rond, F. Bénédic et al., Effect of argon addition on the growth of thick single crystal diamond by high-power plasma CVD. Phys. Status Solidi Appl. Mater. Sci. 208, 2028–2032 (2011)

    Article  CAS  Google Scholar 

  48. A.P. Bolshakov, V.G. Ralchenko, V.Y. Yurov et al., High-rate growth of single crystal diamond in microwave plasma in CH4/H2 and CH4/H2/Ar gas mixtures in presence of intensive soot formation. Diam. Relat. Mater. 62, 49–57 (2016)

    Article  CAS  Google Scholar 

  49. Y. Mokuno, A. Chayahara, Y. Soda et al., High rate homoepitaxial growth of diamond by microwave plasma CVD with nitrogen addition. Diam. Relat. Mater. 15, 455–459 (2006)

    Article  CAS  Google Scholar 

  50. A. Tallaire, A.T. Collins, D. Charles et al., Characterisation of high-quality thick single-crystal diamond grown by CVD with a low nitrogen addition. Diam. Relat. Mater. 15, 1700–1707 (2006)

    Article  CAS  Google Scholar 

  51. Q. Liang, C.Y. Chin, J. Lai et al., Enhanced growth of high quality single crystal diamond by microwave plasma assisted chemical vapor deposition at high gas pressures. Appl. Phys. Lett. 94, 1–4 (2009)

    Article  Google Scholar 

  52. A.M. Zaitsev, W. Wang, K.S. Moe, P. Johnson, Spectroscopic studies of yellow nitrogen-doped CVD diamonds. Diam. Relat. Mater. 68, 51–61 (2016)

    Article  CAS  Google Scholar 

  53. J. Achard, F. Silva, O. Brinza, A. Tallaire, A. Gicquel, Coupled effect of nitrogen addition and surface temperature on the morphology and the kinetics of thick CVD diamond single crystals. Diam. Relat. Mater. 16, 685–689 (2007)

    Article  CAS  Google Scholar 

  54. Y. Mokuno, A. Chayahara, H. Yamada, N. Tsubouchi, Improving purity and size of single-crystal diamond plates produced by high-rate CVD growth and lift-off process using ion implantation. Diam. Relat. Mater. 18, 1258–1261 (2009)

    Article  CAS  Google Scholar 

  55. Y. Liou, A. Inspektor, R. Weimer, D. Knight, R. Messier, The effect of oxygen in diamond deposition by microwave plasma enhanced chemical vapor deposition. Mater. Res. Soc. 5, 2305–2312 (1990)

    Article  CAS  Google Scholar 

  56. J. Liu, L. Lin, Y. Zhao et al., Homo-epitaxial growth of single crystal diamond in the purified environment by active O atoms. Vacuum 155, 391–397 (2018)

    Article  Google Scholar 

  57. T. Teraji, High-quality and high-purity homoepitaxial diamond (100) film growth under high oxygen concentration condition. J. Appl. Phys. (2015). https://doi.org/10.1063/1.4929962

    Article  Google Scholar 

  58. M. Gong, Y. Chen, W. Yu et al., The effect of oxygen on the epitaxial growth of diamond. J. Semicond. 39, 123004 (2018)

    Article  CAS  Google Scholar 

  59. C.J. Tang, A.J. Neves, A.J.S. Fernandes, Study the effect of O2 addition on hydrogen incorporation in CVD diamond. Diam. Relat. Mater. 13, 203–208 (2004)

    Article  CAS  Google Scholar 

  60. G. Janssen, L.J. Giling, “Mosaic” growth of diamond. Diam. Relat. Mater. 4, 1025–1031 (1995)

    Article  CAS  Google Scholar 

  61. A. Tallaire, J. Achard, F. Silva, O. Brinza, A. Gicquel, Growth of large size diamond single crystals by plasma assisted chemical vapour deposition: Recent achievements and remaining challenges. Comptes Rendus Phys. 14, 169–184 (2013)

    Article  CAS  Google Scholar 

  62. H. Yamada, A. Chayahara, Y. Mokuno et al., Developments of elemental technologies to produce inch-size single-crystal diamond wafers. Diam. Relat. Mater. 20, 616–619 (2011)

    Article  CAS  Google Scholar 

  63. H. Yamada, A. Chayahara, Y. Mokuno, Y. Kato, S. Shikata, A 2-in. mosaic wafer made of a single-crystal diamond. Appl. Phys. Lett. (2014). https://doi.org/10.1063/1.4868720

    Article  Google Scholar 

  64. C. Findeling-Dufour, A. Gicquel, Study for fabricating large area diamond single-crystal layers. Thin Solid Films 308–309, 178–185 (1997)

    Article  Google Scholar 

  65. H. Yamada, A. Chayahara, Y. Mokuno, N. Tsubouchi, S.I. Shikata, Uniform growth and repeatable fabrication of inch-sized wafers of a single-crystal diamond. Diam. Relat. Mater. 33, 27–31 (2013)

    Article  CAS  Google Scholar 

  66. P. Bergonzo, D. Tromson, C. Descamps et al., Improving diamond detectors: a device case. Diam. Relat. Mater. 16, 1038–1043 (2007)

    Article  CAS  Google Scholar 

  67. K. Ikeda, H. Umezawa, K. Ramanujam, S.I. Shikata, Thermally stable schottky barrier diode by Ru/diamond. Appl. Phys. Express 2, 0112021–0112023 (2009)

    Article  Google Scholar 

  68. A.T. Blumenau, M.I. Heggie, C.J. Fall, R. Jones, T. Frauenheim, Dislocations in diamond: core structures and energies. Phys. Rev. B Condens. Matter Mater. Phys. 65, 2052051–2052058 (2002)

    Article  Google Scholar 

  69. A. Tallaire, T. Ouisse, A. Lantreibecq et al., Identification of dislocations in synthetic chemically vapor deposited diamond single crystals. Cryst. Growth Des. (2016). https://doi.org/10.1021/acs.cgd.6b00053

    Article  Google Scholar 

  70. Y. Kato, H. Umezawa, S. Shikata, M. Touge, Effect of an ultraflat substrate on the epitaxial growth of chemical-vapor-deposited diamond. Appl. Phys. Express 6, 4–7 (2013)

    Article  Google Scholar 

  71. Y. Mokuno, Y. Kato, N. Tsubouchi et al., A nitrogen doped low-dislocation density free-standing single crystal diamond plate fabricated by a lift-off process. Appl. Phys. Lett. (2014). https://doi.org/10.1063/1.4885552

    Article  Google Scholar 

  72. P.M. Martineau, M.P. Gaukroger, K.B. Guy et al., High crystalline quality single crystal chemical vapour deposition diamond. J. Phys. Condens. Matter. 21, 364205 (2009)

    Article  CAS  PubMed  Google Scholar 

  73. Y. Mokuno, A. Chayahara, H. Yamada, N. Tsubouchi, Improvements of crystallinity of single crystal diamond plates produced by lift-off process using ion implantation. Diam. Relat. Mater. 19, 128–130 (2010)

    Article  CAS  Google Scholar 

  74. N. Mizuochi, H. Watanabe, J. Isoya, H. Okushi, S. Yamasaki, Hydrogen-related defects in single crystalline CVD homoepitaxial diamond film studied by EPR. Diam. Relat. Mater. 13, 765–768 (2014)

    Article  Google Scholar 

  75. A.M. Zaïtsev, Optical properties of diamond: a data handbook. Criminol. Crim. Justice. 11, 277–278 (2011)

    Google Scholar 

  76. S.J. Charles, J.E. Butler, B.N. Feygelson et al., Characterization of nitrogen doped chemical vapor deposited single crystal diamond before and after high pressure, high temperature annealing. Phys. Status Solidi Appl. Res. 201, 2473–2485 (2004)

    Article  CAS  Google Scholar 

  77. T. Teraji, High-quality and high-purity homoepitaxial diamond (100) film growth under high oxygen concentration condition. J. Appl. Phys. (2015). https://doi.org/10.1063/1.4929962

    Article  Google Scholar 

  78. B. Willems, A. Tallaire, J. Achard, Optical study of defects in thick undoped CVD synthetic diamond layers. Diam. Relat. Mater. 41, 25–33 (2014)

    Article  CAS  Google Scholar 

  79. R. Rouzbahani, S.S. Nicley, D.E.P. Vanpoucke et al., Impact of methane concentration on surface morphology and boron incorporation of heavily boron-doped single crystal diamond layers. Carbon NY. 172, 463–473 (2021)

    Article  CAS  Google Scholar 

  80. Y. Einaga, Boron-doped diamond electrodes: fundamentals for electrochemical applications. Acc. Chem. Res. 55, 3605–3615 (2022)

    Article  CAS  PubMed  Google Scholar 

  81. M. Werner, O. Dorsch, H.U. Baerwind et al., Charge transport in heavily B-doped polycrystalline diamond films. Appl. Phys. Lett. 64, 595–597 (1994)

    Article  CAS  Google Scholar 

  82. E.A. Ekimov, V.A. Sidorov, Superconductivity in diamond. Nature 428, 542–545 (2004)

    Article  CAS  PubMed  Google Scholar 

  83. C. Tavares, F. Omnès, J. Pernot, E. Bustarret, Electronic properties of boron-doped {111}-oriented homoepitaxial diamond layers. Diam. Relat. Mater. 15, 582–585 (2006)

    Article  CAS  Google Scholar 

  84. M.N.R. Ashfold, J.P. Goss, B.L. Green et al., Nitrogen in diamond. Chem. Rev. 120, 5745–5794 (2020)

    Article  CAS  PubMed  Google Scholar 

  85. R.G. Farrer, On the substitutional nitrogen donor in diamond. Solid State Commun. 7, 685–688 (1969)

    Article  CAS  Google Scholar 

  86. M.A. Pinault, J. Barjon, T. Kociniewski, F. Jomard, J. Chevallier, The n-type doping of diamond: Present status and pending questions. Phys. B Condens. Matter. 401–402, 51–56 (2007)

    Article  Google Scholar 

  87. S. Koizumi, M. Kamo, Y. Sato, H. Ozaki, T. Inuzuka, Growth and characterization of phosphorous doped 111 homoepitaxial diamond thin films. Appl. Phys. Lett. 71, 1065–1067 (1997)

    Article  CAS  Google Scholar 

  88. M.A. Pinault-Thaury, I. Stenger, R. Gillet et al., Attractive electron mobility in (113) n-type phosphorus-doped homoepitaxial diamond. Carbon N. Y. 175, 254–258 (2021)

    Article  CAS  Google Scholar 

  89. M. Hasegawa, D. Takeuchi, S. Yamanaka et al., n-Type control by sulfur ion implantation in homoepitaxial diamond films grown by chemical vapor deposition. Japanese J. Appl. Phys. Part Lett. (1999). https://doi.org/10.1143/JJAP.38.L1519

    Article  Google Scholar 

  90. X. Sun, G. Wu, S. Shen et al., Insight into B-S ratio model and surface atom interactions of co-doping diamond: first-principles studies. Diam. Relat. Mater. 135, 109824 (2023)

    Article  CAS  Google Scholar 

  91. D.Y. Liu, L.C. Hao, Z.A. Chen et al., Sulfur regulation of boron doping and growth behavior for high-quality diamond in microwave plasma chemical vapor deposition. Appl. Phys. Lett. (2020). https://doi.org/10.1063/5.0009615

    Article  PubMed  PubMed Central  Google Scholar 

  92. Z. Lin, L. Ji, W. Wang, Precision machining of single crystal diamond cutting tool via picosecond laser irradiation. Int. J. Refract. Met. Hard Mater. 114, 106226 (2023)

    Article  CAS  Google Scholar 

  93. G. Hemts, AlGaN / GaN high-electron mobility transistors with low thermal resistance grown on single-crystal diamond (111) substrates by metalorganic vapor-phase epitaxy. Appl. Phys. Lett. 98, 1–4 (2011)

    Google Scholar 

  94. J. Fu, A. Hoffman, M.K. Kuntumalla et al., Investigation of the cooling enhancement of a single crystal diamond heat sink with embedded microfluidic channels. Diam. Relat. Mater. 130, 109470 (2022)

    Article  CAS  Google Scholar 

  95. Z. Shi, Q. Yuan, Y. Wang et al., Optical properties of bulk single-crystal diamonds at 80–1200 K by vibrational spectroscopic methods. Materials (Basel). 14, 1–11 (2021)

    Article  Google Scholar 

  96. A.K. Ratnikova, M.P. Dukhnovsky, Y.Y. Fedorov et al., Homoepitaxial single crystal diamond grown on natural diamond seeds (type IIa) with boron-implanted layer demonstrating the highest mobility of 1150 cm2/V·s at 300 K for ion-implanted diamond. Diam. Relat. Mater. 20, 1243–1245 (2011)

    Article  CAS  Google Scholar 

  97. Wang XW. Research on single crystal diamond mosaic growth using HPHT diamond substrates. Dissertation of Master Degree. Shangdong University, Chinese Academy of Sciences, 2020

  98. M. Schreck, S. Gsell, R. Brescia et al., Ion bombardment induced buried lateral growth: the key mechanism for the synthesis of single crystal diamond wafers. Sci. Rep. 7, 1–8 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Science and Technology Major Project of Henan Province (No. 231100230300), Science and Technology Major Project of Henan Province (No. 221100230300) and the Innovative Funds Plan of Henan University of Technology (No. 2021ZKCJ06).

Author information

Authors and Affiliations

Authors

Contributions

Project administration, Zhengxin Li and Xun Yang.; writing—original draft, Ying Ren; writing—review and editing, Xiaogang Li, Wei Lv and Haoyong Dong; synergistic effect, Feng Yue.; review and editing, Nicolas Wöhrl and Joana Catarina Mendes. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Ying Ren.

Ethics declarations

Competing interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Prof. Zhengxin Li is the head of our research team and the funder of our research.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 286 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Y., Li, X., Lv, W. et al. Recent progress in homoepitaxial single-crystal diamond growth via MPCVD. J Mater Sci: Mater Electron 35, 525 (2024). https://doi.org/10.1007/s10854-024-12267-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12267-3

Navigation